CN101174637A - A silicon-based single-electron memory with side gate structure and its manufacturing method - Google Patents
A silicon-based single-electron memory with side gate structure and its manufacturing method Download PDFInfo
- Publication number
- CN101174637A CN101174637A CNA2006101141892A CN200610114189A CN101174637A CN 101174637 A CN101174637 A CN 101174637A CN A2006101141892 A CNA2006101141892 A CN A2006101141892A CN 200610114189 A CN200610114189 A CN 200610114189A CN 101174637 A CN101174637 A CN 101174637A
- Authority
- CN
- China
- Prior art keywords
- silicon
- electrode
- nano
- ohmic contact
- electron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 234
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 234
- 239000010703 silicon Substances 0.000 title claims abstract description 234
- 230000015654 memory Effects 0.000 title claims abstract description 98
- 238000004519 manufacturing process Methods 0.000 title abstract description 6
- 239000002184 metal Substances 0.000 claims abstract description 120
- 239000002159 nanocrystal Substances 0.000 claims abstract description 64
- 238000003860 storage Methods 0.000 claims abstract description 43
- 238000000034 method Methods 0.000 claims abstract description 41
- 238000007667 floating Methods 0.000 claims abstract description 27
- 239000000758 substrate Substances 0.000 claims abstract description 27
- 230000008569 process Effects 0.000 claims abstract description 20
- 239000002070 nanowire Substances 0.000 claims abstract description 10
- 230000008878 coupling Effects 0.000 claims abstract description 8
- 238000010168 coupling process Methods 0.000 claims abstract description 8
- 238000005859 coupling reaction Methods 0.000 claims abstract description 8
- 238000010894 electron beam technology Methods 0.000 claims description 30
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 21
- 239000003292 glue Substances 0.000 claims description 21
- 229920002120 photoresistant polymer Polymers 0.000 claims description 21
- 230000000694 effects Effects 0.000 claims description 19
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 18
- 238000005516 engineering process Methods 0.000 claims description 17
- 229920005591 polysilicon Polymers 0.000 claims description 16
- 230000032258 transport Effects 0.000 claims description 12
- 238000004544 sputter deposition Methods 0.000 claims description 11
- 238000005566 electron beam evaporation Methods 0.000 claims description 9
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 9
- 238000000151 deposition Methods 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 8
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 6
- 229910052681 coesite Inorganic materials 0.000 claims description 6
- 229910052906 cristobalite Inorganic materials 0.000 claims description 6
- 238000013461 design Methods 0.000 claims description 6
- 238000005530 etching Methods 0.000 claims description 6
- 238000000206 photolithography Methods 0.000 claims description 6
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims description 6
- 239000000377 silicon dioxide Substances 0.000 claims description 6
- 235000012239 silicon dioxide Nutrition 0.000 claims description 6
- 229910052682 stishovite Inorganic materials 0.000 claims description 6
- 229910052905 tridymite Inorganic materials 0.000 claims description 6
- 239000004065 semiconductor Substances 0.000 claims description 5
- 238000000137 annealing Methods 0.000 claims description 4
- 238000000609 electron-beam lithography Methods 0.000 claims description 4
- 238000009616 inductively coupled plasma Methods 0.000 claims description 4
- 239000012212 insulator Substances 0.000 claims description 3
- 230000008021 deposition Effects 0.000 claims 2
- 230000000903 blocking effect Effects 0.000 abstract description 10
- 230000005055 memory storage Effects 0.000 abstract description 3
- 239000002096 quantum dot Substances 0.000 description 20
- 239000010408 film Substances 0.000 description 18
- 230000005641 tunneling Effects 0.000 description 12
- 230000008901 benefit Effects 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 238000007600 charging Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 4
- 239000004926 polymethyl methacrylate Substances 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 230000006399 behavior Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 238000013139 quantization Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000004377 microelectronic Methods 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 239000002210 silicon-based material Substances 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000010893 electron trap Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000002784 hot electron Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000002090 nanochannel Substances 0.000 description 1
- 229910021423 nanocrystalline silicon Inorganic materials 0.000 description 1
- 239000002120 nanofilm Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 238000005036 potential barrier Methods 0.000 description 1
- 238000005381 potential energy Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
- SBEQWOXEGHQIMW-UHFFFAOYSA-N silicon Chemical compound [Si].[Si] SBEQWOXEGHQIMW-UHFFFAOYSA-N 0.000 description 1
- 239000011856 silicon-based particle Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
Images
Landscapes
- Semiconductor Memories (AREA)
Abstract
本发明公开了一种具有侧栅结构的硅基单电子记忆存储器,包括在SOI衬底的顶层硅上,制备了一个用于存储电荷的硅纳米晶库仑岛,以及一个用于探测存储电荷的硅量子线电导。硅纳米晶库仑岛与硅量子线电导相邻,共同由覆盖在表面的浮栅控制电流。硅量子线电导的电流还可以由侧栅单独控制。电荷通过硅纳米线通道进入硅纳米晶库仑岛上。在硅纳米线通道上制作两个控制单个电荷进入的相邻纳米金属围栅和一个用于存储电荷擦除的纳米金属围栅。本发明同时公开了一种具有侧栅结构硅基单电子记忆存储器的制作方法。利用本发明,使得每个电子的存储过程都依赖于量子库仑阻塞效应,并且存储电荷势场通过电容耦合作用于信号电流,从而探测到单电荷的存储信息。
The invention discloses a silicon-based single-electron memory memory with a side gate structure, which comprises preparing a silicon nanocrystal Coulomb island for storing charges on the top layer silicon of an SOI substrate, and a sensor for detecting the stored charges Conductivity of silicon quantum wires. The silicon nanocrystal Coulomb island is adjacent to the conductance of the silicon quantum wire, and the current is controlled by the floating gate covering the surface. The conductance current of the silicon quantum wire can also be controlled independently by the side gate. Charges enter the Coulomb island of silicon nanocrystals through the silicon nanowire channel. On the silicon nanowire channel, two adjacent nano-metal gates for controlling the entry of a single charge and one nano-metal gate for erasing stored charges are fabricated. The invention also discloses a method for manufacturing a silicon-based single-electron memory storage device with a side gate structure. With the invention, the storage process of each electron depends on the quantum coulomb blocking effect, and the storage charge potential field acts on the signal current through capacitive coupling, thereby detecting the storage information of the single charge.
Description
技术领域 technical field
本发明涉及纳米电子学中单电子记忆存储器技术领域,尤其涉及一种具有侧栅结构的硅基单电子记忆存储器及其制作方法。The invention relates to the technical field of single-electron memory memory in nanoelectronics, in particular to a silicon-based single-electron memory memory with a side gate structure and a manufacturing method thereof.
背景技术 Background technique
纳米电子学是纳米科技的重要领域之一,是微电子学继续向微观领域的发展和延伸。目前,超大规模集成电路的特征尺寸已经进入到纳米尺度(<100nm)范围,在CMOS器件等比例缩小的过程中,量子效应的影响变得越来越突出。而单原子层的薄膜外延生长技术、隧道探针技术、先进的光刻技术制作出的纳米固体结构表现出奇特的量子效应,在这些效应的基础上人们发明了共振隧穿器件、单电子器件、量子点器件等新型量子器件。Nanoelectronics is one of the important fields of nanotechnology, and it is the continuous development and extension of microelectronics to the microscopic field. At present, the feature size of VLSI has entered the nanoscale (<100nm) range, and the impact of quantum effects has become more and more prominent in the process of scaling down CMOS devices. The nano-solid structure produced by single atomic layer thin film epitaxial growth technology, tunnel probe technology and advanced photolithography technology shows peculiar quantum effects. On the basis of these effects, people have invented resonant tunneling devices and single-electron devices. , quantum dot devices and other new quantum devices.
单电子器件是通过纳米尺寸的库仑岛控制单个电子的输运来进行工作的。随着纳米加工技术的发展,科学家已经可以在纳米尺度范围内控制库仑岛的尺寸和形状,以及隧穿结势垒的厚度和形状。Single-electron devices work by controlling the transport of individual electrons through nanometer-sized Coulomb islands. With the development of nanofabrication technology, scientists have been able to control the size and shape of the Coulomb island, as well as the thickness and shape of the tunnel junction barrier in the nanoscale range.
在库仑岛上,电子输运空间尺寸被减小到纳米量级,导致量子限制效应的显著增强,电子进入库仑岛必须隧穿通过。库仑岛内的电荷势能将排斥外界电子的进入,如果电子进入库仑岛所需的电荷能大于环境热能,这个电子将被阻塞。栅电场通过电容耦合可以对库仑岛进行电势调制,当库仑岛内的能级位于源漏电子库费米能级构成的能量窗口时,电子将通过共振隧穿效应高穿透率地通过库仑岛。这样,通过库仑岛的电子动量变化被显著地表现为具有分立能级特征的电流峰。On the Coulomb island, the size of the electron transport space is reduced to the nanometer level, resulting in a significant enhancement of the quantum confinement effect, and the electrons entering the Coulomb island must tunnel through. The charge potential energy in the Coulomb island will repel the entry of external electrons. If the charge energy required by the electron to enter the Coulomb island is greater than the thermal energy of the environment, the electron will be blocked. The electric field of the gate can modulate the potential of the Coulomb island through capacitive coupling. When the energy level in the Coulomb island is located in the energy window formed by the source-drain electron library Fermi level, the electrons will pass through the Coulomb island with a high penetration rate through the resonant tunneling effect. . In this way, electron momentum changes across Coulomb islands are prominently represented as current peaks with discrete energy level characteristics.
单电子进入库仑岛可以视为存储一个电荷,流出库仑岛可以视为释放一个电荷。库仑岛在这种单电子进出的过程中,电势将具有e/Ctt(其中Ctt为库仑岛的整个电容)的起伏。那么单电子记忆存储器就是用来探测这种由于单电子输运引起库仑岛的库仑势起伏的器件。A single electron entering the Coulomb island can be regarded as storing a charge, and flowing out of the Coulomb island can be regarded as releasing a charge. In the process of this single electron going in and out of the Coulomb island, the potential will have a fluctuation of e/Ctt (where Ctt is the entire capacitance of the Coulomb island). Then the single-electron memory memory is a device used to detect the Coulomb potential fluctuation of the Coulomb island caused by the single-electron transport.
传统的存储器是通过操纵电荷流来完成对信息的传输和存储,而单电子存储器就是利用单电子库仑阻塞效应来精确控制几个甚至单个电子就可以完成同样的功能。它有以下几个方面的优点。首先,由于这种器件是依赖于电子间的排斥作用来实现其运行的,因此它可以在很小的尺寸下工作,使得大规模集成与复杂布线成为可能。其次,它能够利用很少的几个电子来完成基本的功能,因此能量的消耗是非常小的。如果能够高密度集成,其耗电量将仅为现在微电子晶体管电路的十万分之一。最后是由于器件尺寸小,只需要几个电子的隧穿就能够完成一个比特信息的传递,较之传统的需要大约105个左右的电子参与隧穿的器件来讲,它的响应速度也是相当快的。单电子存储器的这些优点恰恰是组成集成电路的器件所需具备的,在用于大规模及超大规模集成方面有很好的发展潜力。Traditional memory is to complete the transmission and storage of information by manipulating the charge flow, while single-electron memory uses the single-electron Coulomb blocking effect to precisely control several or even a single electron to complete the same function. It has the following advantages. First, since the device relies on the repulsion between electrons to achieve its operation, it can work in a small size, making large-scale integration and complex wiring possible. Secondly, it can use a few electrons to complete basic functions, so the energy consumption is very small. If it can be integrated at a high density, its power consumption will be only one hundred thousandth of the current microelectronic transistor circuit. Finally, due to the small size of the device, it only needs a few electrons to tunnel to complete the transmission of a bit of information. Compared with the traditional device that requires about 10 5 electrons to participate in tunneling, its response speed is also quite Fast. These advantages of single-electron memory are exactly what the devices that make up the integrated circuit need to have, and they have good development potential in large-scale and ultra-large-scale integration.
单电子器件领域的研究是从1969年Lambe和Jaklevic在类似单电子盒的结构中观察到电子量子化现象开始的(具体请参照文献“Lambe and R.C.Jaklevic,″Charge-quantization studies using tunnel capacitor,″Phys.Rev.Lerr.,vol.22,no.25,pp.1371-1375,June 1969.”所记载的内容)。The research in the field of single-electron devices began in 1969 when Lambe and Jaklevic observed electron quantization in a structure similar to a single-electron box (for details, please refer to the literature "Lambe and R.C.Jaklevic," Charge-quantization studies using tunnel capacitor," Phys.Rev.Lerr., vol.22, no.25, pp.1371-1375, June 1969."Recorded content).
硅基的单电子器件依赖硅材料可氧化等特性和成熟的工艺优势,在不到十年的时间里,就获得了直径小于10nm的晶体硅量子点而实现了室温工作,并且大多数硅基单电子器件的制备方法能够与现有的硅CMOS工艺更好地兼容,使制备大规模量子数字集成电路成为可能。Silicon-based single-electron devices rely on the oxidizable characteristics of silicon materials and mature process advantages. In less than ten years, crystalline silicon quantum dots with a diameter of less than 10nm have been obtained to work at room temperature, and most silicon-based The preparation method of single-electron devices can be better compatible with the existing silicon CMOS process, making it possible to prepare large-scale quantum digital integrated circuits.
目前国际上能够室温工作的半导体单电子晶体管主要都在薄硅膜的SOI衬底上制作成功的。相对体硅材料,SOI的氧化绝缘埋层把器件与衬底隔离开,减轻了衬底载流子对器件的影响,减小了硅器件的寄生电容效应,易于实现全介质隔离,避免了器件与衬底之间的相互作用。用于制作单电子器件的SOI衬底的硅膜都足够薄,利于制成微小的隧道结和量子点。随着晶体管尺寸的不断缩小,SOI技术的优势愈来愈突出。薄硅膜上的晶体管开启时,氧化埋层界面处于耗尽状态,硅膜全部耗尽。具有抗辐照、耐高温、低电场、高跨导、良好的短沟道和窄沟道特性,特别适合于高速、低压、低功耗电路的应用。At present, semiconductor single-electron transistors that can work at room temperature in the world are mainly successfully fabricated on SOI substrates with thin silicon films. Compared with the bulk silicon material, the oxide insulating buried layer of SOI isolates the device from the substrate, reduces the influence of the substrate carrier on the device, reduces the parasitic capacitance effect of the silicon device, and is easy to achieve full dielectric isolation, avoiding the device interaction with the substrate. The silicon film of the SOI substrate used to make single-electron devices is thin enough to make tiny tunnel junctions and quantum dots. With the continuous reduction of transistor size, the advantages of SOI technology become more and more prominent. When the transistor on the thin silicon film is turned on, the interface of the buried oxide layer is in a depleted state, and the silicon film is completely depleted. With radiation resistance, high temperature resistance, low electric field, high transconductance, good short channel and narrow channel characteristics, it is especially suitable for high-speed, low-voltage, low-power circuit applications.
到1993年,第一个在室温下能够观察到单电子存储的单电子存储器由Yano和Ishii等人研制成功(具体请参照文献“K.Yano,T.Ishii,T.Hashimoto,T.Kobayashi,F.Murai,and K.Seki,“Room-temperaturesingle-electron memory using fine-grain polycrystalline silicon,”in Proc.IEEEInt.Electron Devices Meeting,1993,pp.541-545.”所记载的内容),单电子存储器的应用前景才显现出来。但是,仅仅实现室温下单电子存储并不意味着它就能够在实际中进行应用,要实现单电子存储器的应用还有很多的问题需要解决,如:工艺的兼容性,编程速度,存储时间等,近几年,科学家们在提高单电子存储器的性能方面进行了大量的工作。以下列出了几种典型的单电子存储器的设计方案:By 1993, the first single-electron memory that can observe single-electron storage at room temperature was successfully developed by Yano and Ishii et al. (For details, please refer to the literature "K. Yano, T. Ishii, T. Hashimoto, T. Kobayashi, F.Murai, and K.Seki, "Room-temperaturesingle-electron memory using fine-grain polycrystalline silicon," in Proc.IEEEInt.Electron Devices Meeting, 1993, pp.541-545."), single electron The application prospect of memory has just emerged. However, just realizing single-electron storage at room temperature does not mean that it can be applied in practice. To realize the application of single-electron storage, there are still many problems to be solved, such as: process compatibility, programming speed, storage time, etc. , in recent years, scientists have done a lot of work on improving the performance of single-electron memories. Several typical single-electron memory designs are listed below:
(1)具有浮栅结构的单电子存储器(1) Single-electron memory with a floating gate structure
如图1所示,图1为现有技术中具有浮栅结构的单电子存储器的结构示意图(具体请参照文献“Shin-ichi O’UCHI,Takeshi TSUBOKURA,TakuroTAJIMA,Shuhei AMAKAWA,Minoru FUJISHIMA1 and KoichiroHOH1,″Charging and Retention Times in Silicon-Floating-Dot-Single-Electron Memory,″Jpn.J.Appl.Phys.Vol.40(2001)pp.2041-2045.”所记载的内容)。它是在普通的MOSFET的沟道和栅极之间放入能够存储电荷用的量子点或量子点阵,量子点与沟道间由薄层绝缘介质隔离,电子以隧穿的方式进出量子点,由于存在较大的电荷库仑能,通过栅极电压即可控制量子点内电荷的数目。利用量子点上的不同电位就能控制相应的沟道电流,借以影响沟道电流的大小。这样通过测量此电流即可获知器件的不同状态。As shown in Figure 1, Figure 1 is a schematic structural diagram of a single-electron memory with a floating gate structure in the prior art (for details, please refer to the literature "Shin-ichi O'UCHI, Takeshi TSUBOKURA, Takuro TAJIMA, Shuhei AMAKAWA, Minoru FUJISHIMA1 and KoichiroHOH1, "Charging and Retention Times in Silicon-Floating-Dot-Single-Electron Memory, "Jpn.J.Appl.Phys.Vol.40(2001)pp.2041-2045."Recorded content). It is to put quantum dots or quantum dot arrays capable of storing charges between the channel and the gate of an ordinary MOSFET. The quantum dots and the channel are separated by a thin layer of insulating medium, and electrons enter and exit the quantum dots by tunneling. , due to the large charge Coulomb energy, the number of charges in the quantum dot can be controlled by the gate voltage. The corresponding channel current can be controlled by using different potentials on the quantum dots, so as to affect the magnitude of the channel current. In this way, different states of the device can be known by measuring this current.
(2)粒状薄膜作为隧穿结的单电子存储器(2) Single-electron memories with granular thin films as tunnel junctions
如图2所示,图2为现有技术中以粒状薄膜作为隧穿结的单电子存储器结构示意图。它是由Yano等提出来的一种设计方案,具体请参照文献“K.Yano,T.Ishii,T.Sano,T.Mine,F.Murai,and K.Seki,“Singleelectron-memory integrated circuit for giga-to-tera bit storage,”IEEE Int.Solid-State Circuits Conf.,1996,pp.266-267.”所记载的内容。这种设计遵循了三个主要的原则:能够在室温下工作;能够有效地抑制背景电荷的影响;而且能够利用现有的工艺进行制作。它的工作原理与浮栅结构的单电子存储器的原理相似,都是利用存储点中电荷的存储状态来控制源漏间的电流。在一定的偏压下,电荷被限制在薄膜中,借以调制流过薄膜的电流的大小。在抑制背景电荷的影响方面,当没有背景电荷时,如果所施加栅电压很小时,由于库仑阻塞效应,薄膜内不存在导通的沟道。当栅电压增大到阈值电压以上时通道导通,有电荷流过。在存在背景电荷时,部分区域的库仑阻塞效应消失而另外部分区域的效应增强,在没有足够偏压时总体表现仍是没有通道导通。由于它的电荷的存储点和依靠存储点来调制的电流路径都在同一个粒状的薄膜上,因此对器件的工作状态不好单独调节。As shown in FIG. 2 , FIG. 2 is a schematic diagram of a single-electron memory structure using a granular thin film as a tunnel junction in the prior art. It is a design proposed by Yano et al. For details, please refer to the literature "K.Yano, T.Ishii, T.Sano, T.Mine, F.Murai, and K.Seki,"Singleelectron-memory integrated circuit for giga-to-tera bit storage, "IEEE Int. Solid-State Circuits Conf., 1996, pp.266-267." This design follows three main principles: it can work at room temperature; it can effectively suppress the influence of background charges; and it can be fabricated using existing processes. Its working principle is similar to that of single-electron memory with a floating gate structure, which uses the storage state of the charge in the storage point to control the current between the source and drain. Under a certain bias voltage, charges are confined in the film, thereby modulating the magnitude of the current flowing through the film. In terms of suppressing the influence of background charges, when there is no background charge, if the applied gate voltage is small, there is no conduction channel in the film due to the Coulomb blocking effect. When the gate voltage increases above the threshold voltage, the channel turns on and charges flow. In the presence of background charge, the Coulomb blockade effect in some regions disappears, while the effect in other regions increases. When there is not enough bias voltage, the overall performance is still no channel conduction. Since the storage point of its charge and the current path modulated by the storage point are all on the same granular film, it is not easy to adjust the working state of the device independently.
(3)侧栅结构的单电子存储器(3) Single-electron memory with side gate structure
如图3所示,图3为现有技术中准一维量子点阵列的单电子存储器的结构示意图(具体请参照文献“A.Dutta,S.P.Lee,S.Hatatani,and S.Oda,″Silicon-based single-electron memory using a multiple-tunnel junctionfabricated by electron-beam direct writing″Appl.Phys.Lett.75,1422(1999).”所记载的内容)。这是一种二维平面结构的器件,有利于简化制备的工艺。其中的准一维量子点阵列起到多隧穿结的作用,它能够提供较高的库仑阻塞能量间隙来抑制背景电荷的涨落。在一定的栅压下,电子通过多隧穿结流入或流出存储结点,用库仑阻塞效应将控制存储电子在多隧穿结中的分布。读出过程是利用单电子晶体管实现的,存储结点上的充电电荷电势可以通过电容耦合影响单电子晶体管量子点的能级状态,进而影响流过单电子晶体管的电导电流。As shown in Figure 3, Figure 3 is a schematic structural view of a single-electron memory of a quasi-one-dimensional quantum dot array in the prior art (for details, please refer to the literature "A.Dutta, S.P.Lee, S.Hatatani, and S.Oda, "Silicon -based single-electron memory using a multiple-tunnel junction fabricated by electron-beam direct writing "Appl. Phys. Lett.75, 1422 (1999)." Recorded content). This is a device with a two-dimensional planar structure, which is conducive to simplifying the preparation process. The quasi-one-dimensional quantum dot array acts as a multi-tunnel junction, which can provide a high Coulomb blockade energy gap to suppress background charge fluctuations. Under a certain gate voltage, electrons flow into or out of the storage node through the multi-tunnel junction, and the distribution of stored electrons in the multi-tunnel junction will be controlled by the Coulomb blocking effect. The readout process is realized by using a single-electron transistor, and the charging charge potential on the storage node can affect the energy level state of the single-electron transistor quantum dot through capacitive coupling, and then affect the conductance current flowing through the single-electron transistor.
侧栅结构的单电子存储器的纳米技术工艺是最具挑战的。如果能够实现室温工作,对单电子逻辑电路的发展和应用具有重要意义。1994年Nakazato等在掺杂的GaAs材料上制作出了第一只实验用的多结单电子存储器(具体请参照文献“K Nakazato,R J Blaikie,H Ahmed et al,“Single-electron memory”,J.Appl.Phys.75(10),1994,p.5123.”所记载的内容)。1995年Likharev等提出与随机背景电荷无关的多结单电子存储器模型(具体请参照文献“K Likharev A Korotokov,“Analysis ofQ0-independent single-electorn systems”,in Int.Workshop ComputationalElectronics,1995,p.42.”所记载的内容)。1998年Ahmed小组在SOI材料上制作出了4.2K温度工作的多结单电子RAM存储器(具体请参照文献“NJ Stone,H Ahmed,“Silicon single electron memory cell”,Appl.Phys.Lett.73(15),1998,p.2134.”所记载的内容)。1999年Oda小组在SIMOX材料上制备出了20K温度工作的多结单电子存储器(具体请参照文献“A Dutta,S P Lee,S Hatatani,et al,“Silicon-based single-electron memory using amultiple-tunnel junction fabricated by electron-beam direct writing”,Appl.Phys.Lett.75(10),1999,p.1422.”所记载的内容)。2000年Ahmed小组实现了65K温度工作的单电子多隧道结栅与CMOS集成的存储器件(具体请参照文献“Z A K Durrani,A C Irvine,H Ahmed,“Coulomb blockadememory using integrated single-electron transistor/metal-oxide-semiconductortransistor gain cells”,IEEE Electron devices,47(12),2000,p.2334.”所记载的内容)。2002年Nakajima等研究了多隧道结单电子晶体管的电导机制(具体请参照文献“A.Nakajima,Yuhei Ito,S Yokoyama,“Conductionmechamnism of Si single-electron transistor having a one-dimensional regulararray of multiple tunnel junctions”,Appl.Phys.Lett.81(4),2002,p.733.”所记载的内容)。2004年Amakawa综述了多隧道结单电子器件的逻辑(具体请参照文献“S Amakawa,et al,“Single-electron logic based onmultiple-tunnel junctions”,Mesoscopic Tunneling Devices,Ed.HiroshiNakashima,2004:ISBN:81-271-0007-2.”所记载的内容)。The nanotechnology process of single-electron memories with side-gate structures is the most challenging. If it can work at room temperature, it will be of great significance to the development and application of single-electron logic circuits. In 1994, Nakazato et al. produced the first experimental multi-junction single-electron memory on doped GaAs material (for details, please refer to the literature "K Nakazato, R J Blaikie, H Ahmed et al, "Single-electron memory", J.Appl.Phys.75(10), 1994, p.5123."Recorded content). In 1995, Likharev et al. proposed a multi-junction single-electron memory model independent of random background charge (for details, please refer to the literature "K Likharev A Korotokov, "Analysis of Q0-independent single-electron systems", in Int.Workshop Computational Electronics, 1995, p.42 .” content recorded). In 1998, the Ahmed group produced a multi-junction single electronic RAM memory working at a temperature of 4.2K on SOI materials (for details, please refer to the document "NJ Stone, H Ahmed, "Silicon single electron memory cell", Appl.Phys.Lett.73( 15), 1998, p.2134." recorded content). In 1999, the Oda group prepared a multi-junction single-electron memory working at 20K temperature on the SIMOX material (for details, please refer to the literature "A Dutta, S P Lee, S Hatatani, et al, "Silicon-based single-electron memory using multiple- tunnel junction fabricated by electron-beam direct writing”, Appl.Phys.Lett.75(10), 1999, p.1422.”Recorded content). In 2000, the Ahmed group realized a single-electron multi-tunnel junction gate and CMOS integrated memory device working at a temperature of 65K (for details, please refer to the literature "Z A K Durrani, A C Irvine, H Ahmed," Coulomb blockade memory using integrated single-electron transistor/ metal-oxide-semiconductortransistor gain cells", IEEE Electron devices, 47(12), 2000, p.2334."Recorded content). In 2002, Nakajima et al. studied the conductance mechanism of multi-tunnel junction single-electron transistors (for details, please refer to the literature "A. Nakajima, Yuhei Ito, S Yokoyama, "Conduction mechanism of Si single-electron transistor having a one-dimensional regular array of multiple tunnel junctions" , Appl.Phys.Lett.81(4), 2002, p.733."Recorded content). In 2004, Amakawa reviewed the logic of multi-tunnel junction electronic devices (for details, please refer to the literature "S Amakawa, et al, "Single-electron logic based on multiple-tunnel junctions", Mesoscopic Tunneling Devices, Ed.HiroshiNakashima, 2004: ISBN: 81 -271-0007-2." as recorded).
我国近几年也开展了SOI衬底上硅基单电子器件的研究工作。中国科学院物理所开展了各种结构的单电子晶体管的设计,并研制了90K温度下的硅基单电子晶体管(具体请参照文献“T.H.Wang,H.W.Li and J.M.Zhou,Si single-electron transistors with in-plane point-contact metal gates,Appl.Phys.Lett.78,2160(2001).”所记载的内容)。西安理工大学与香港科技大学合作采用电子束光刻技术和反应离子刻蚀等工艺,制做了p型SIMOX上的硅单电子晶体管,可在77K下低温工作(具体请参照文献“G.Lu,Z.M.Chen,J.N.Wang,W.K.Ge.Fabrication and characteristics of aSi-based single electron transistor,Chinese J.Semiconductors,23(3),246(2002).”所记载的内容)。南京大学开展了基于单电子效应的室温硅基多量子点存储器的研究(具体请参照文献“黄信凡,基于单电子效应的室温硅基多量子点存储器,国家自然科学基金项目编号60471021,南京大学”所记载的内容)。In recent years, my country has also carried out research work on silicon-based single-electron devices on SOI substrates. The Institute of Physics of the Chinese Academy of Sciences has carried out the design of single-electron transistors with various structures, and developed a silicon-based single-electron transistor at a temperature of 90K (for details, please refer to the literature "T.H.Wang, H.W.Li and J.M.Zhou, Si single-electron transistors with in -plane point-contact metal gates, Appl. Phys. Lett.78, 2160 (2001)."Recorded content). Xi'an University of Technology and Hong Kong University of Science and Technology cooperated with electron beam lithography and reactive ion etching to manufacture silicon single-electron transistors on p-type SIMOX, which can work at low temperatures at 77K (for details, please refer to the literature "G.Lu , Z.M.Chen, J.N.Wang, W.K.Ge.Fabrication and characteristics of aSi-based single electron transistor, Chinese J.Semiconductors, 23(3), 246(2002).”Recorded content). Nanjing University has carried out research on room-temperature silicon-based multi-quantum dot memory based on single-electron effect (for details, please refer to the literature "Huang Xinfan, Room-temperature silicon-based multi-quantum dot memory based on single-electron effect, National Natural Science Foundation of China Project No. 60471021, Nanjing University" recorded content).
单电子器件的工作原理依靠电子间的库仑排斥力为基础的库仑阻塞效应。单电子器件在室温工作需要亚10nm结构才能达到克服环境热噪声的库仑能量。纳米硅晶颗粒可以替代存储器器件的浮栅,分布在浮栅上的存储电荷显示出几个有吸引力的特性,如与EEPROM相比有比较快的写时间、工作在较低的温度下,与快闪存储器相比有较好的耐久性等。当然,在单电子存储器商业化生产成为可能以前,还需要克服许多主要的挑战。各种单电子存储系统结构也正在发展过程中,例如单电子晶体管触发器、单电子陷阱存储器、单电子晶体管环形存储器、与随机背景电荷无关的存储器和单/多岛存储器等(具体请参照文献“C.Wasshuber,H.Kosina,S.Selberherr,A comparative study of single-electron memories,IEEE TransElectron.Devices,45(11),1998,p.2365.”所记载的内容)。The working principle of single-electron devices relies on the Coulomb blocking effect based on the Coulomb repulsion between electrons. Sub-10nm structures are required for single-electron devices operating at room temperature to achieve Coulomb energy to overcome ambient thermal noise. Nanocrystalline silicon particles can replace the floating gate of memory devices. The stored charge distributed on the floating gate shows several attractive characteristics, such as faster write time and lower temperature compared with EEPROM, Compared with flash memory, it has better durability and the like. Of course, there are a number of major challenges that need to be overcome before commercial production of single-electron memories is possible. Various single-electron storage system structures are also under development, such as single-electron transistor flip-flops, single-electron trap memories, single-electron transistor ring memories, random background charge-independent memories, and single/multi-island memories, etc. (For details, please refer to literature "C.Wasshuber, H.Kosina, S.Selberherr, A comparative study of single-electron memories, IEEE TransElectron.Devices, 45(11), 1998, p.2365."Recorded content).
单电子计数系统主要是利用单电子旋转栅原理,通过在单电子晶体管的双势垒加以频率f变化的栅压,通过将栅电压增大到超过一定的阈值,一个电子随机地从源电极被拉进到中心库仑岛,然后,再降低栅电压,便可以将电子推出中心库仑岛,这种旋转(turnstile)的控制门产生阶梯状的电流ef,犹如电压每旋转一周就转出一个电子一般,表现出单电子的输运状态。由于库仑岛的电容极小,电容的充放电时间极短,器件的开关速度极快。2003年参与欧洲COUNT计划的六家计量实验室和Chalmers大学联合发表了初期的实现量子标准的计量电子流的研究成果(具体请参照文献“H.E.Van den Brom,O.Kerkhof et al,Counting electrons one byone-overview of a joint European research project,IEEE trans.Instrum.Meas.,52(2),2003,p.584.”所记载的内容)。COUNT计划的目的是为了解决和发展用于计量小于1nA电子流的基础仪器和计量标准。单电子器件提供了高精密度操纵和探测单个电子的输运行为的手段。COUNT计划利用两个互补的单电子隧穿器件,其中一个用于单电子泵以提供电流源,单个电子可以长时间地存储在库仑岛上,通过栅电压可以控制电子的输运行为;另一个用于单电子计数器来作为电流表,单电子电流表可以探测到每一个电子的传输。The single-electron counting system mainly utilizes the principle of the single-electron rotating gate. By applying a gate voltage with frequency f changing on the double potential barrier of the single-electron transistor, by increasing the gate voltage to exceed a certain threshold, an electron is randomly drawn from the source electrode. Pulling it into the central Coulomb island, and then lowering the gate voltage, electrons can be pushed out of the central Coulomb island. This kind of turnstile (turnstile) control gate generates a ladder-shaped current ef, as if the voltage turns out an electron every time it rotates. , exhibiting a single-electron transport state. Due to the extremely small capacitance of the Coulomb island, the charging and discharging time of the capacitor is extremely short, and the switching speed of the device is extremely fast. In 2003, six metrology laboratories participating in the European COUNT program and Chalmers University jointly published the initial research results on the measurement of electron flow to achieve quantum standards (for details, please refer to the literature "H.E. Van den Brom, O. Kerkhof et al, Counting electrons one by one-overview of a joint European research project, IEEE trans.Instrum.Meas., 52(2), 2003, p.584."Recorded content). The purpose of the COUNT project is to solve and develop basic instruments and measurement standards for measuring electron currents less than 1nA. Single-electron devices provide the means to manipulate and probe the transport behavior of individual electrons with high precision. COUNT plans to use two complementary single-electron tunneling devices, one of which is used for a single-electron pump to provide a current source. A single electron can be stored on the Coulomb island for a long time, and the transport behavior of the electron can be controlled by the gate voltage; the other A single-electron counter is used as an ammeter, which detects the transmission of every electron.
总之,利用单电子器件的库仑阻塞效应和共振隧穿效应,可以有效地操纵单电子的输运行为。单电子记忆存储器及其电荷计数探测系统在海量数据存储、量子信号探测、量子逻辑电路等领域具有极其巨大的潜力。In conclusion, the transport behavior of single electrons can be effectively manipulated by exploiting the Coulomb blocking effect and resonant tunneling effect of single electron devices. Single-electron memory and its charge counting detection system have great potential in the fields of mass data storage, quantum signal detection, and quantum logic circuits.
发明内容 Contents of the invention
(一)要解决的技术问题(1) Technical problems to be solved
有鉴于此,本发明的一个目的在于提供一种具有侧栅结构的硅基单电子记忆存储器,使得每个电子的存储过程都依赖于量子库仑阻塞效应,并且存储电荷势场通过电容耦合作用于信号电流,从而探测到单电荷的存储信息。In view of this, an object of the present invention is to provide a silicon-based single-electron memory with a side gate structure, so that the storage process of each electron depends on the quantum coulomb blocking effect, and the stored charge potential field acts on the Signal current, thereby detecting the stored information of a single charge.
本发明的另一个目的在于提供一种具有侧栅结构硅基单电子记忆存储器的制作方法,使得每个电子的存储过程都依赖于量子库仑阻塞效应,并且存储电荷势场通过电容耦合作用于信号电流,从而探测到单电荷的存储信息。Another object of the present invention is to provide a method for fabricating a silicon-based single-electron memory with a side-gate structure, so that the storage process of each electron depends on the quantum Coulomb blocking effect, and the potential field of the stored charge acts on the signal through capacitive coupling. current, thereby detecting the stored information of a single charge.
(二)技术方案(2) Technical solution
为达到上述一个目的,本发明提供了一种具有侧栅结构的硅基单电子记忆存储器,该硅基单电子记忆存储器包括:In order to achieve the above-mentioned purpose, the present invention provides a silicon-based single-electron memory with a side gate structure, the silicon-based single-electron memory includes:
绝缘体上硅(SOI)衬底;Silicon-on-insulator (SOI) substrates;
在所述SOI衬底上由顶层硅制作的硅纳米电导细线5和硅量子线14,所述硅纳米电导细线5与硅量子线14相互平行,硅量子线14用于探测硅纳米晶库仑岛6中的存储电荷,存储电荷通过硅纳米电导细线5进入硅纳米晶库仑岛6;Silicon nanoconductance
位于硅纳米电导细线5中间位置且与硅纳米电导细线5连接的用于存储电荷的硅纳米晶库仑岛6;A silicon
位于硅纳米电导细线5两端且与硅纳米电导细线5连接的第一欧姆接触电导台阶3和第二欧姆接触电导台阶4;A first ohmic
位于第一欧姆接触电导台阶3上的第一源极金属电极7和位于第二欧姆接触电导台阶4上的第一漏极金属电极8;The first source metal electrode 7 located on the first ohmic
位于硅纳米晶库仑岛6两侧硅纳米电导细线5上的第一围栅纳米电极9、第二围栅纳米电极10和第三围栅纳米电极11,所述第一围栅纳米电极9和第二围栅纳米电极10位于硅纳米晶库仑岛6的同一侧,所述第三围栅纳米电极11位于硅纳米晶库仑岛6的另一侧;The first fence nano-
位于硅量子线14相对于硅纳米电导细线5另一侧且与硅量子线14连接的第三欧姆接触电导台阶15和第四欧姆接触电导台阶16;A third ohmic
位于第三欧姆接触电导台阶15上的第二源极金属电极19和位于第四欧姆接触电导台阶16上的第二漏极金属电极20;The second
位于硅量子线14相对于第三欧姆接触电导台阶15和第四欧姆接触电导台阶16同侧且在第三欧姆接触电导台阶15和第四欧姆接触电导台阶16之间的第五欧姆接触电导台阶17;The fifth ohmic contact conductance step located on the same side of the
位于第五欧姆接触电导台阶17上的金属侧栅电极18;a metal
覆盖在硅纳米电导细线5、硅纳米晶库仑岛6、硅量子线14、第一围栅纳米电极9、第二围栅纳米电极10和第三围栅纳米电极11上的绝缘介质层12;An insulating
覆盖在绝缘介质层12上的表面金属浮栅13。The surface
所述硅纳米晶库仑岛6所用材料为超薄多晶硅膜,用于实现室温条件下对电荷的强烈的量子限制效应,每个电荷的存储过程都依赖于量子库仑阻塞效应。The material used for the silicon
所述存储电荷的势场通过电容耦合作用于通过邻近的硅量子线14的信号电流,使硅量子线14获得单个电荷的存储信息。The potential field of the stored charge acts on the signal current passing through the adjacent
所述信号电流通过金属侧栅电极18和/或表面金属浮栅13控制。The signal current is controlled by the metal
所述第一欧姆接触电导台阶3、第二欧姆接触电导台阶4、第三欧姆接触电导台阶15、第四欧姆接触电导台阶16和第五欧姆接触电导台阶17由所述SOI衬底的顶层硅制作而成。The first ohmic
所述第一源极金属电极7和第一漏极金属电极8分别淀积在第一欧姆接触电导台阶3和第二欧姆接触电导台阶4上,并经过退火实现欧姆接触;The first source metal electrode 7 and the first
所述金属侧栅电极18淀积在第五欧姆接触电导台阶17上,并经过退火实现欧姆接触;The metal
所述第二源极金属电极19和第二漏极金属电极20分别淀积在第三欧姆接触电导台阶15和第四欧姆接触电导台阶16上,并经过退火实现欧姆接触。The second
所述第一围栅纳米电极9和第二围栅纳米电极10用于控制单个电荷进入硅纳米晶库仑岛6,实现单电荷的可控存储;The first surrounding gate nano-
所述第三围栅纳米电极11用于硅纳米晶库仑岛6上存储电荷的擦除。The third surrounding gate nano-
为达到上述另一个目的,本发明提供了一种具有侧栅结构硅基单电子记忆存储器的制作方法,该方法包括:In order to achieve the above another object, the present invention provides a method for fabricating a silicon-based single-electron memory with a side gate structure, the method comprising:
A、在SOI衬底的氧化硅绝缘层上制作出硅纳米电导细线5、硅量子线14、第一欧姆接触电导台阶3、第二欧姆接触电导台阶4、第三欧姆接触电导台阶15、第四欧姆接触电导台阶16和第五欧姆接触电导台阶17;A. On the silicon oxide insulating layer of the SOI substrate, silicon nanometer conductance
B、利用掩膜介质套刻出与硅纳米电导细线5相连接的库仑岛窗口,露出SOI衬底的氧化硅绝缘层;B. Use the mask dielectric sleeve to carve out the Coulomb island window connected to the silicon nanoconductance
C、溅射薄层多晶硅,化学腐蚀掉掩膜介质,在所述库仑岛窗口区形成硅纳米晶库仑岛6;C, sputtering a thin layer of polycrystalline silicon, chemically etching away the mask medium, and forming a silicon
D、淀积形成第一源极金属电极7、第一漏极金属电极8、金属侧栅电极18、第二源极金属电极19和第二漏极金属电极20,并退火实现欧姆接触;D, deposit and form the first source metal electrode 7, the first
E、淀积形成第一围栅纳米电极9、第二围栅纳米电极10和第三围栅纳米电极11;E, deposit and form the first fence nano-
F、在硅纳米电导细线5、硅纳米晶库仑岛6、硅量子线14、第一围栅纳米电极9、第二围栅纳米电极10和第三围栅纳米电极11上淀积形成绝缘介质层12;F, deposit and form insulation on the silicon nanoconductance
G、在绝缘介质层12上淀积形成表面金属浮栅13;G. Depositing and forming a surface
H、制作电极引线窗口。H. Make electrode lead window.
所述步骤A包括:设计版图,利用光刻和电子束曝光技术在覆盖电子束胶的SOI衬底上制作硅纳米线电导结构图形;利用感应耦合等离子体(ICP)刻蚀技术在SOI衬底的顶层硅上制作出硅纳米电导细线5、硅量子线14、第一欧姆接触电导台阶3、第二欧姆接触电导台阶4、第三欧姆接触电导台阶15、第四欧姆接触电导台阶16和第五欧姆接触电导台阶17,然后再通过热氧化,形成氧化绝缘层限制的纳米线导电通道。The step A includes: designing the layout, using photolithography and electron beam exposure technology to make a silicon nanowire conductance structure pattern on the SOI substrate covered with electron beam glue; using inductively coupled plasma (ICP) etching technology on the SOI substrate Silicon nanoconductance
所述步骤B包括:电子束胶作为溅射硅纳米晶的掩膜介质,利用电子束曝光技术在电子束胶上套刻出用于溅射硅纳米晶库仑岛6的库仑岛窗口区域,使之与硅纳米电导细线5对准。The step B includes: using electron beam glue as a mask medium for sputtering silicon nanocrystals, using electron beam exposure technology to engrave the Coulomb Island window area for sputtering silicon
所述步骤C包括:将薄层多晶硅溅射在电子束胶表面及其窗口区域,通过剥离(lift-off)工艺将电子束胶表面的薄层多晶硅薄膜去除,留下窗口区与硅纳米电导细线5对准的硅纳米晶库仑岛6。The step C includes: sputtering a thin layer of polysilicon on the surface of the electron beam glue and its window area, and removing the thin layer of polysilicon film on the surface of the electron beam glue by a lift-off process, leaving the window area and the silicon nanoconductor Silicon
所述步骤D包括:覆盖光刻胶,在欧姆电导台阶上用光刻套刻出金属电极窗口,用电子束蒸发淀积金属Ti/Al,去光刻胶后,形成金属-半导体的第一源极金属电极7、第一漏极金属电极8、金属侧栅电极18、第二源极金属电极19和第二漏极金属电极20,然后在450℃至550℃下高温退火,形成金属电极与硅电导台阶的欧姆接触。The step D includes: covering the photoresist, engraving a metal electrode window with a photoresist on the ohmic conductance step, depositing metal Ti/Al by electron beam evaporation, and forming the first metal-semiconductor after removing the photoresist. The source metal electrode 7, the first
所述步骤E包括:覆盖电子束胶,在输运存储电荷的硅纳米电导细线5上,利用电子束光刻套刻出纳米围栅电极窗口,利用电子束蒸发设备淀积金属Ni,去掉电子束胶,形成第一围栅纳米电极9、第二围栅纳米电极10和第三围栅纳米电极11。The step E includes: covering the electron beam glue, on the silicon nano-conductance
所述步骤F包括:利用等离子增强化学汽相淀积(PECVD)设备在硅纳米电导细线5、硅纳米晶库仑岛6、硅量子线14、第一围栅纳米电极9、第二围栅纳米电极10和第三围栅纳米电极11上淀积形成绝缘介质SiO2层12。Said step F includes: using plasma enhanced chemical vapor deposition (PECVD) equipment on silicon nanoconductance
所述步骤G包括:覆盖光刻胶,在绝缘介质层12上用光刻套刻出浮栅金属电极窗口,用电子束蒸发淀积金属Al,去光刻胶后,形成表面金属浮栅13。The step G includes: covering the photoresist, engraving the floating gate metal electrode window on the insulating
所述步骤H包括:覆盖光刻胶,在绝缘介质层12上用光刻套刻出第一源极金属电极7、第一漏极金属电极8、第一围栅纳米电极9、第二围栅纳米电极10、第三围栅纳米电极11、金属侧栅电极18、第二源极金属电极19和第二漏极金属电极20的引线窗口,用缓冲氢氟酸HF化学腐蚀出SiO2层电极引线连接窗口,去掉光刻胶,连接金属引线。The step H includes: covering the photoresist, and engraving the first source metal electrode 7, the first
(三)有益效果(3) Beneficial effects
从上述技术方案可以看出,本发明具有以下有益效果:As can be seen from the foregoing technical solutions, the present invention has the following beneficial effects:
1、利用本发明,通过单电子记忆存储器及其电荷计数探测系统实现海量信息存储,将具有巨大的市场需求量和社会进步意义。单电子记忆存储器及其电荷计数探测系统依赖其低功率、高密度集成、超快的响应速度等优点,将在未来海量存储领域发挥重要的不可替代的作用。1. Utilizing the present invention, realizing massive information storage through single electronic memory storage and its charge counting detection system will have huge market demand and social progress significance. Relying on the advantages of low power, high-density integration, and ultra-fast response speed, single-electron memory and its charge counting detection system will play an important and irreplaceable role in the field of mass storage in the future.
2、利用本发明,硅纳米晶体存储器是目前一种先进的纳米薄膜存储技术,这种纳米级的非易失性存储器将大大降低海量存储器的材料成本,因此单电子记忆存储器可成为目前非易失性存储器的未来替代品。2. Using the present invention, silicon nanocrystal memory is an advanced nano-film storage technology at present. This nanoscale non-volatile memory will greatly reduce the material cost of mass memory, so single-electronic memory memory can become the current non-volatile memory. A future replacement for volatile memory.
3、利用本发明,单电子存储器件在宇宙空间的低温环境中,具有更加优异的性能,低温对库仑电荷能提供了更好的信号背景,这不同于依赖于热电子进行信息存储的浮栅存储器。在SOI材料上的单电子存储器件通过加固栅氧化层和场氧化层,对辐照产生的载流子影响进行了加固。单电子存储器及其电荷计数探测系统在未来空间飞行器上具有极其广阔的应用前景。3. Using the present invention, the single-electron storage device has more excellent performance in the low-temperature environment of space, and the low temperature can provide a better signal background for the Coulomb charge, which is different from the floating gate that relies on hot electrons for information storage memory. Single-electron storage devices on SOI materials are reinforced against the influence of carriers generated by irradiation by strengthening the gate oxide layer and the field oxide layer. Single-electron memory and its charge counting detection system have extremely broad application prospects in future space vehicles.
附图说明 Description of drawings
图1为现有技术中具有浮栅结构的单电子存储器的结构示意图;FIG. 1 is a schematic structural view of a single-electron memory with a floating gate structure in the prior art;
图2为现有技术中以粒状薄膜作为隧穿结的单电子存储器结构示意图;2 is a schematic diagram of a single-electron memory structure using a granular thin film as a tunnel junction in the prior art;
图3为现有技术中准一维量子点阵列的单电子存储器的结构示意图;Fig. 3 is the structural representation of the single electron memory of quasi-one-dimensional quantum dot array in the prior art;
图4为本发明提供的用于电荷存储的硅纳米晶库仑岛及其导电通道的横截面示意图;Fig. 4 is the cross-sectional schematic view of the silicon nanocrystal Coulomb island and its conductive channel for charge storage provided by the present invention;
图5为本发明提供的侧栅结构的硅基单电子记忆存储器的平面结构示意图;5 is a schematic plan view of a silicon-based single-electron memory memory with a side gate structure provided by the present invention;
图6为本发明提供的制作具有侧栅结构硅基单电子记忆存储器的方法流程图。FIG. 6 is a flowchart of a method for fabricating a silicon-based single-electron memory with a side gate structure provided by the present invention.
具体实施方式 Detailed ways
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be described in further detail below in conjunction with specific embodiments and with reference to the accompanying drawings.
如图4和图5所示,图4为本发明提供的用于电荷存储的硅纳米晶库仑岛及其导电通道的横截面示意图,图5为本发明提供的侧栅结构的硅基单电子记忆存储器的平面结构示意图。该硅基单电子记忆存储器包括:绝缘体上硅(SOI)衬底,该SOI衬底自上而下由顶层硅、氧化硅绝缘层和硅衬底构成;在所述SOI衬底上由顶层硅制作的硅纳米电导细线5和硅量子线14,所述硅纳米电导细线5与硅量子线14相互平行,硅量子线14用于探测硅纳米晶库仑岛6中的存储电荷,存储电荷通过硅纳米电导细线5进入硅纳米晶库仑岛6;位于硅纳米电导细线5中间位置且与硅纳米电导细线5连接的用于存储电荷的硅纳米晶库仑岛6;位于硅纳米电导细线5两端且与硅纳米电导细线5连接的第一欧姆接触电导台阶3和第二欧姆接触电导台阶4;位于第一欧姆接触电导台阶3上的第一源极金属电极7和位于第二欧姆接触电导台阶4上的第一漏极金属电极8;位于硅纳米晶库仑岛6两侧硅纳米电导细线5上的第一围栅纳米电极9、第二围栅纳米电极10和第三围栅纳米电极11,所述第一围栅纳米电极9和第二围栅纳米电极10位于硅纳米晶库仑岛6的同一侧,所述第三围栅纳米电极11位于硅纳米晶库仑岛6的另一侧;位于硅量子线14相对于硅纳米电导细线5另一侧且与硅量子线14连接的第三欧姆接触电导台阶15和第四欧姆接触电导台阶16;位于第三欧姆接触电导台阶15上的第二源极金属电极19和位于第四欧姆接触电导台阶16上的第二漏极金属电极20;位于硅量子线14相对于第三欧姆接触电导台阶15和第四欧姆接触电导台阶16同侧且在第三欧姆接触电导台阶15和第四欧姆接触电导台阶16之间的第五欧姆接触电导台阶17;位于第五欧姆接触电导台阶17上的金属侧栅电极18;覆盖在硅纳米电导细线5、硅纳米晶库仑岛6、硅量子线14、第一围栅纳米电极9、第二围栅纳米电极10和第三围栅纳米电极11上的绝缘介质层12;覆盖在绝缘介质层12上的表面金属浮栅13。As shown in Figure 4 and Figure 5, Figure 4 is a schematic cross-sectional view of the silicon nanocrystal Coulomb island and its conductive channel for charge storage provided by the present invention, and Figure 5 is a silicon-based single electron with side gate structure provided by the present invention Schematic diagram of the planar structure of memory storage. The silicon-based single-electron memory memory includes: a silicon-on-insulator (SOI) substrate, which is composed of a top layer of silicon, a silicon oxide insulating layer, and a silicon substrate from top to bottom; on the SOI substrate, the top layer of silicon The silicon nanoconductance thin wire 5 and the silicon quantum wire 14 made, the silicon nanoconductance thin wire 5 and the silicon quantum wire 14 are parallel to each other, and the silicon quantum wire 14 is used to detect the stored charge in the silicon nanocrystal Coulomb island 6, and the stored charge Enter the silicon nanocrystal Coulomb island 6 through the silicon nanoconductance thin wire 5; the silicon nanocrystal Coulomb island 6 for storing charge located in the middle of the silicon nanoconductance thin wire 5 and connected with the silicon nanoconductance thin wire 5; The first ohmic contact conductance step 3 and the second ohmic contact conductance step 4 connected to the two ends of the thin line 5 and connected with the silicon nanoconductance thin line 5; the first source metal electrode 7 located on the first ohmic contact conductance step 3 and the The first drain metal electrode 8 on the second ohmic contact conductance step 4; the first surrounding gate nano-electrode 9, the second surrounding gate nano-electrode 10 and The third fence nano-electrode 11, the first fence nano-electrode 9 and the second fence nano-electrode 10 are located on the same side of the silicon nanocrystal Coulomb island 6, and the third fence nano-electrode 11 is located on the silicon nanocrystal Coulomb island. The other side of the
所述硅纳米晶库仑岛6所用材料为超薄多晶硅膜,用于实现室温条件下对电荷的强烈的量子限制效应,每个电荷的存储过程都依赖于量子库仑阻塞效应。超薄的多晶硅薄膜,预期有强烈的量子制约效应。多晶硅薄膜厚度的变化,能量变化大到300meV,它比室温下热能26meV大很多,因此平行于多晶硅薄膜的电子传送强烈受到由这个量子制约效应产生的随机电位的影响。如果将多晶硅薄膜制作为存储电荷的纳米结构,那么多晶硅纳米结构形成的二维隧穿结阵列将不受背景电荷影响。背景电荷来自于位置接近量子点的杂质,以及其他量子点的可引入电荷的电容。颗粒状薄膜的量子点阵列上量子点数量的增多,有助于减小了串联总电容,提高了电荷的库仑互作用能,从而克服了受环境热噪声干扰的背景电荷的影响The material used for the silicon
所述存储电荷的势场通过电容耦合作用于通过邻近的硅量子线14的信号电流,使硅量子线14获得单个电荷的存储信息。所述的硅量子线14用于探测存储电荷,存储电荷硅纳米晶库仑岛6的势场通过电容耦合作用于通过邻近硅量子线14的信号电流,从而获得单个电荷的存储信息。通过硅量子线14的信号电流,是通过金属侧栅电极18和表面金属浮栅13来控制的。量子线电导电流-电压曲线是非线性量子调制的,为了使电导导通,需要一个限定的栅阈值电压。对于单电荷写入与擦除状态下,单电子记忆存储器的金属侧栅电极18的阈值电压将具有电学回滞特性,反映了纳米晶库仑岛6的电荷存储与释放的性能。结果,与电荷量子化特性结合,在一定栅压范围内,系统可以稳定在两个或多个电荷量态,因而,单电子存储器实现双稳态或多稳态工作是可能的。The potential field of the stored charge acts on the signal current passing through the adjacent
所述第一欧姆接触电导台阶3、第二欧姆接触电导台阶4、第三欧姆接触电导台阶15、第四欧姆接触电导台阶16和第五欧姆接触电导台阶17由所述SOI衬底的顶层硅制作而成。The first ohmic
所述第一源极金属电极7和第一漏极金属电极8分别淀积在第一欧姆接触电导台阶3和第二欧姆接触电导台阶4上,并经过退火实现欧姆接触;所述金属侧栅电极18淀积在第五欧姆接触电导台阶17上,并经过退火实现欧姆接触;所述第二源极金属电极19和第二漏极金属电极20分别淀积在第三欧姆接触电导台阶15和第四欧姆接触电导台阶16上,并经过退火实现欧姆接触。The first source metal electrode 7 and the first
所述第一围栅纳米电极9和第二围栅纳米电极10用于控制单个电荷进入硅纳米晶库仑岛6,实现单电荷的可控存储;所述第三围栅纳米电极11用于硅纳米晶库仑岛6上存储电荷的擦除。The first fence nano-
电荷的存储和擦除仅依赖于加在硅纳米晶库仑岛6两端的充放电偏压和浮栅13的电压。在量子点阵列结构中,强的库仑排斥力使得已传送存储的电电荷阻碍了其它电子的传输,库仑能量变得可与环境热浮动能量相比拟。写入和读出少量电子的操作,就是通过阈值栅压改变e/Cg(Cg是存储节点的总电容)来克服库仑能对单电子的俘获和流出限制。硅纳米晶库仑岛6形成具有纳米隧穿结的二维阵列,串联的隧穿结电容减小,电荷库仑能将被提高,从而提高了工作温度。多隧穿结单电子的存储和释放,必须使结阵列两端的电势差变化大于一个电荷库仑能隙。当在偏置高于库仑能隙时,中间组态能量低于近邻的初态,发生顺序隧穿效应。顺序隧穿的发生将抑制共隧穿,即抑制在库仑阻塞区电子依赖库仑岛激发态能级发生的非弹性隧穿。因此,多隧穿结可以有效地抑制共隧穿效应产生的漏电流,从而可以控制少量电荷的存储与释放。电荷从电流通道传输到孤立点中的一个点上并陷入,这个陷入造成侧栅电势的量子跳跃。通过硅量子线14的信号电流,是通过硅纳米晶库仑岛6两端偏压和/或金属侧栅电极18和/或表面金属浮栅13来控制的。The storage and erasing of charges only depend on the charging and discharging bias applied to both ends of the silicon
所述的在与纳米晶库仑岛6相连接的硅纳米电导细线5上,制作两个相邻第一围栅纳米电极9和第二围栅纳米电极10,用于控制单电子的进入,实现单电荷的可控存储。在与纳米晶库仑岛6相联接的硅纳米电导细线5的另一侧上,制作一个的第三围栅纳米电极11,用于硅纳米晶存储岛上存储电荷的擦除。相邻的第一围栅纳米电极9和第二围栅纳米电极10之间的区域作为单电子的结点存储岛,在第一围栅纳米电极9和第二围栅纳米电极10上加以频率f变化的栅压,这种旋转(turnstile)的控制门产生阶梯状的电流ef,犹如电压每旋转一周就转出一个电子一般,表现出单电子的输运状态。由于库仑岛的电容极小,电容的充放电时间极短,器件的开关速度极快。这样进入硅纳米晶侧栅纳米通道的电子可以被第一围栅纳米电极9、第二围栅纳米电极10和第三围栅纳米电极11有效地人工控制,在旋转门上的频率变化作为电子存储的输入信号,邻近的硅量子线14的电流变化作为输出信号被检测到。单电子记忆存储器的信息存储位改变它的值超过预定时间,所产生的延迟过程会造成一个误差。量子点会由于热激发或共隧穿而自发地放电。即便是正确的值加到单元上,写周期也会产生错误的数值,或一个读周期也许会失效。对纳米晶库仑岛6储位信息刷新的过程可以通过第一围栅纳米电极9、第二围栅纳米电极10和第三围栅纳米电极11旋转门进行电子计数检测,由此可以判断写入刷新的误码率。On the silicon nanoconductance
基于上述图4和图5提供的侧栅结构的硅基单电子记忆存储器的结构示意图,图6示出了本发明提供的制作具有侧栅结构硅基单电子记忆存储器的方法流程图,该方法包括以下步骤:Based on the schematic structural diagrams of the silicon-based single-electron memory with a side gate structure provided in Figure 4 and Figure 5 above, Figure 6 shows a flow chart of a method for fabricating a silicon-based single-electron memory with a side-gate structure provided by the present invention, the method Include the following steps:
步骤601:在SOI衬底的氧化硅绝缘层上制作出硅纳米电导细线5、硅量子线14、第一欧姆接触电导台阶3、第二欧姆接触电导台阶4、第三欧姆接触电导台阶15、第四欧姆接触电导台阶16和第五欧姆接触电导台阶17;Step 601: Fabricate silicon nanometer conductance
步骤602:利用掩膜介质套刻出与硅纳米电导细线5相连接的库仑岛窗口,露出SOI衬底的氧化硅绝缘层;Step 602: using a mask dielectric sleeve to carve out a Coulomb island window connected to the silicon nanoconductive
步骤603:溅射薄层多晶硅,化学腐蚀掉掩膜介质,在所述库仑岛窗口区形成硅纳米晶库仑岛6;Step 603: sputtering a thin layer of polysilicon, chemically etching away the mask medium, and forming silicon
步骤604:淀积形成第一源极金属电极7、第一漏极金属电极8、金属侧栅电极18、第二源极金属电极19和第二漏极金属电极20,并退火实现欧姆接触;Step 604: Depositing and forming the first source metal electrode 7, the first
步骤605:淀积形成第一围栅纳米电极9、第二围栅纳米电极10和第三围栅纳米电极11;Step 605: Depositing and forming the first fenced nano-
步骤606:在硅纳米电导细线5、硅纳米晶库仑岛6、硅量子线14、第一围栅纳米电极9、第二围栅纳米电极10和第三围栅纳米电极11上淀积形成绝缘介质层12;Step 606: Deposit and form silicon nanoconductance
步骤607:在绝缘介质层12上淀积形成表面金属浮栅13;Step 607: Deposit and form a surface
步骤608:制作电极引线窗口。Step 608: Make electrode lead window.
实施例Example
基于图6示出的制作具有侧栅结构硅基单电子记忆存储器的方法流程图,以下结合具体的实施例对本发明制作具有侧栅结构硅基单电子记忆存储器的方法进一步详细说明。Based on the flow chart of the method for fabricating a silicon-based single-electron memory with a side-gate structure shown in FIG. 6 , the method for fabricating a silicon-based single-electron memory with a side-gate structure of the present invention will be further described in detail below in conjunction with specific embodiments.
本发明提供的一种侧栅结构的硅基单电子记忆存储器的工艺实施方法,具体包括如下步骤:The process implementation method of a silicon-based single-electron memory memory with a side gate structure provided by the present invention specifically includes the following steps:
(1)在SOI硅薄膜上制作出纳米线电导结构;(1) Fabricate a nanowire conductance structure on the SOI silicon film;
根据图4和图5所述的结构设计的版图,利用光刻和电子束曝光技术在覆盖电子束胶的SOI片上制作硅纳米线电导结构图形;再利用感应耦合等离子体(ICP)刻蚀技术制作出硅纳米电导细线5、硅量子线14、第一欧姆接触电导台阶3、第二欧姆接触电导台阶4、第三欧姆接触电导台阶15、第四欧姆接触电导台阶16和第五欧姆接触电导台阶17。然后再通过热氧化,形成氧化绝缘层限制的纳米线导电通道。According to the layout of the structural design described in Figure 4 and Figure 5, use photolithography and electron beam exposure technology to make silicon nanowire conductance structure patterns on the SOI sheet covered with electron beam glue; and then use inductively coupled plasma (ICP) etching technology Fabricate silicon nanoconductance
(2)覆盖掩膜介质;(2) Covering the masking medium;
甩150nm厚的电子束胶聚甲基丙烯酸甲酯(PolyMethyl MethAcrylate,PMMA)作为硅纳米晶生长的掩膜介质。Electron beam gel polymethyl methacrylate (PolyMethyl MethAcrylate, PMMA) with a thickness of 150nm was used as a mask medium for the growth of silicon nanocrystals.
(3)套刻出硅纳米晶库仑岛窗口;(3) Carve out silicon nanocrystal Coulomb island window;
电子束胶作为溅射硅纳米晶的掩膜介质,利用电子束曝光技术在电子束胶上套刻出用于溅射硅纳米晶库仑岛6的库仑岛窗口区域,使之与硅纳米电导细线5对准,使得硅纳米晶溅射在窗口区域的氧化硅表面。Electron beam glue is used as a mask medium for sputtering silicon nanocrystals, and the Coulomb island window area for sputtering silicon
(4)将薄层多晶硅溅射在电子束胶表面及其窗口区域,厚度为50nm,并通过剥离(lift-off)工艺将电子束胶表面的薄层多晶硅薄膜去除,留下窗口区与硅纳米电导细线5对准的硅纳米晶库仑岛6(4) sputtering a thin layer of polysilicon on the surface of the electron beam glue and its window area, with a thickness of 50nm, and removing the thin layer of polysilicon film on the surface of the electron beam glue by a lift-off process, leaving the window area and silicon Silicon
(5)去掉覆盖的掩膜介质:利用丙酮去除PMMA掩膜及其上面的硅纳米晶薄层。(5) Remove the covered mask medium: use acetone to remove the PMMA mask and the silicon nanocrystal thin layer thereon.
(6)在氧化硅表面的硅纳米晶库仑岛6与硅纳米电导细线5相连,高温退火为实现硅纳米晶与硅纳米线较好的电学接触。(6) The silicon
(7)制作欧姆接触金属电极:(7) Making ohmic contact metal electrodes:
覆盖光刻胶,在欧姆电导台阶上用光刻套刻出金属电极窗口,用电子束蒸发淀积金属Ti/Al,去光刻胶后,在450℃至550℃下高温退火形成金属-半导体的第一源极金属电极7、第一漏极金属电极8、金属侧栅电极18、第二源极金属电极19和第二漏极金属电极20。Cover the photoresist, engrave the metal electrode window with a photoresist sleeve on the ohmic conductivity step, and deposit metal Ti/Al by electron beam evaporation. After removing the photoresist, anneal at a high temperature at 450°C to 550°C to form a metal-semiconductor The first source metal electrode 7 , the first
(8)制作控制围栅金属电极:(8) Make the control fence metal electrode:
覆盖电子束胶,在输运存储电荷的硅纳米电导细线5上,利用电子束光刻套刻出纳米围栅电极窗口,利用电子束蒸发设备淀积金属Ni,去掉电子束胶,形成第一围栅纳米电极9、第二围栅纳米电极10和第三围栅纳米电极11。Cover the electron beam glue, on the silicon nanometer conductance
(9)覆盖绝缘介质层:(9) Covering the insulating dielectric layer:
利用等离子增强化学汽相淀积(PECVD)设备在硅纳米电导细线5、硅纳米晶库仑岛6、硅量子线14、第一围栅纳米电极9、第二围栅纳米电极10和第三围栅纳米电极11上淀积形成绝缘介质SiO2层12。Utilize the plasma enhanced chemical vapor deposition (PECVD) equipment on silicon nanoconductance
(10)淀积浮栅金属电极:(10) Deposit floating gate metal electrodes:
覆盖光刻胶,在绝缘介质层12上用光刻套刻出浮栅金属电极窗口,用电子束蒸发淀积金属Al,去光刻胶后,形成表面金属浮栅13。Cover the photoresist, engrave the floating gate metal electrode window on the insulating
(11)制作电极引线窗口:(11) Make electrode lead window:
覆盖光刻胶,在绝缘介质层12上用光刻套刻出第一源极金属电极7、第一漏极金属电极8、第一围栅纳米电极9、第二围栅纳米电极10、第三围栅纳米电极11、金属侧栅电极18、第二源极金属电极19和第二漏极金属电极20的引线窗口,用缓冲氢氟酸HF化学腐蚀出SiO2层电极引线连接窗口,去掉光刻胶,连接金属引线。Cover the photoresist, and engrave the first source metal electrode 7, the first
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006101141892A CN100468748C (en) | 2006-11-01 | 2006-11-01 | A silicon-based single-electron memory with side gate structure and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006101141892A CN100468748C (en) | 2006-11-01 | 2006-11-01 | A silicon-based single-electron memory with side gate structure and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101174637A true CN101174637A (en) | 2008-05-07 |
CN100468748C CN100468748C (en) | 2009-03-11 |
Family
ID=39423000
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2006101141892A Expired - Fee Related CN100468748C (en) | 2006-11-01 | 2006-11-01 | A silicon-based single-electron memory with side gate structure and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100468748C (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102142376A (en) * | 2010-12-31 | 2011-08-03 | 上海集成电路研发中心有限公司 | Preparation method of silicon nanowire fence device |
CN106383163A (en) * | 2016-10-19 | 2017-02-08 | 中国人民解放军国防科学技术大学 | Ionizing gas sensor based on single electron transistor and preparation method thereof |
CN118936567A (en) * | 2024-10-14 | 2024-11-12 | 西安交通大学 | A temperature-salinity-depth sensor based on silicon nanochannel and a manufacturing method thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6443699B2 (en) * | 2014-08-29 | 2018-12-26 | 国立研究開発法人科学技術振興機構 | Nanodevice |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6984842B1 (en) * | 1999-10-25 | 2006-01-10 | The Board Of Trustees Of The University Of Illinois | Silicon nanoparticle field effect transistor and transistor memory device |
JP4873335B2 (en) * | 2000-04-28 | 2012-02-08 | 独立行政法人科学技術振興機構 | Information processing structure |
-
2006
- 2006-11-01 CN CNB2006101141892A patent/CN100468748C/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102142376A (en) * | 2010-12-31 | 2011-08-03 | 上海集成电路研发中心有限公司 | Preparation method of silicon nanowire fence device |
CN102142376B (en) * | 2010-12-31 | 2015-12-09 | 上海集成电路研发中心有限公司 | The preparation method of silicon nanowire wrap gate device |
CN106383163A (en) * | 2016-10-19 | 2017-02-08 | 中国人民解放军国防科学技术大学 | Ionizing gas sensor based on single electron transistor and preparation method thereof |
CN106383163B (en) * | 2016-10-19 | 2023-10-17 | 中国人民解放军国防科学技术大学 | Ionization type gas sensor based on single-electron transistor and preparation method thereof |
CN118936567A (en) * | 2024-10-14 | 2024-11-12 | 西安交通大学 | A temperature-salinity-depth sensor based on silicon nanochannel and a manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN100468748C (en) | 2009-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0843360A1 (en) | Memory device | |
EP0843361A1 (en) | Memory device | |
Hou et al. | 2D atomic crystals: a promising solution for next‐generation data storage | |
JP4162280B2 (en) | Memory device and memory array circuit | |
CN106449739B (en) | Single electron spin filter and single electron spin filtering method based on quantum dots | |
Durrani et al. | Coulomb blockade memory using integrated Single-Electron Transistor/Metal-Oxide-Semiconductor transistor gain cells | |
Xu et al. | Lateral piezopotential-gated field-effect transistor of ZnO nanowires | |
CN101174637A (en) | A silicon-based single-electron memory with side gate structure and its manufacturing method | |
JP3566148B2 (en) | Spin-dependent switching element | |
Kumar et al. | Kink effect in TiO2 embedded ZnO quantum dot‐based thin film transistors | |
Nonnenmann et al. | The ferroelectric field effect within an integrated core/shell nanowire | |
Kim et al. | Ultrashort SONOS memories | |
CN100409454C (en) | Quantum confinement of silicon-based single-electron transistors by oxygen implantation | |
Silva et al. | Nonvolatile silicon memory at the nanoscale | |
CN101359684B (en) | Silicon based single electron transistor of wrap gate control construction and manufacturing method thereof | |
Snider et al. | Implementations of quantum-dot cellular automata | |
Deleonibus | Emerging Devices for Low-power and High-performance Nanosystems: Physics, Novel Functions, and Data Processing | |
CN206293444U (en) | A kind of single electron spin filter based on quantum dot | |
CN2567781Y (en) | Memory designed with carbon nano-pipe one-electron transistor and carbon nano-pipe transistor | |
Silva et al. | Few electron memories: Finding the compromise between performance, variability and manufacturability at the nano-scale | |
Molas et al. | Manipulation of periodic Coulomb blockade oscillations in ultra-scaled memories by single electron charging of silicon nanocrystal floating gates | |
JP2008211251A (en) | Memory device | |
CN1262008C (en) | AND gate logic device with monowall carbon nano tube strucure and mfg. method | |
CN111900091B (en) | Doping method of two-dimensional nano semiconductor material | |
CN101800242A (en) | Nanoelectronic device using nanocrystalline material as Coulomb island and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090311 Termination date: 20141101 |
|
EXPY | Termination of patent right or utility model |