CN106449739B - Single electron spin filter and single electron spin filtering method based on quantum dots - Google Patents
Single electron spin filter and single electron spin filtering method based on quantum dots Download PDFInfo
- Publication number
- CN106449739B CN106449739B CN201610907225.4A CN201610907225A CN106449739B CN 106449739 B CN106449739 B CN 106449739B CN 201610907225 A CN201610907225 A CN 201610907225A CN 106449739 B CN106449739 B CN 106449739B
- Authority
- CN
- China
- Prior art keywords
- spin
- electron
- source
- drain
- electrons
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002096 quantum dot Substances 0.000 title claims abstract description 64
- 238000001914 filtration Methods 0.000 title claims abstract description 26
- 238000000034 method Methods 0.000 title claims abstract description 16
- 230000005291 magnetic effect Effects 0.000 claims abstract description 30
- 230000005641 tunneling Effects 0.000 claims abstract description 8
- 230000010287 polarization Effects 0.000 claims description 18
- 230000000694 effects Effects 0.000 claims description 10
- 239000003574 free electron Substances 0.000 claims description 9
- 230000009471 action Effects 0.000 claims description 7
- 238000001514 detection method Methods 0.000 claims description 4
- 238000000926 separation method Methods 0.000 claims description 4
- 238000005036 potential barrier Methods 0.000 claims description 2
- 230000001105 regulatory effect Effects 0.000 claims 3
- 230000004888 barrier function Effects 0.000 abstract description 16
- 238000013461 design Methods 0.000 abstract description 3
- 238000012545 processing Methods 0.000 abstract description 3
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 230000005294 ferromagnetic effect Effects 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 229910021428 silicene Inorganic materials 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- 230000007717 exclusion Effects 0.000 description 3
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000000306 component Substances 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 230000002269 spontaneous effect Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229940090961 chromium dioxide Drugs 0.000 description 1
- IAQWMWUKBQPOIY-UHFFFAOYSA-N chromium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Cr+4] IAQWMWUKBQPOIY-UHFFFAOYSA-N 0.000 description 1
- AYTAKQFHWFYBMA-UHFFFAOYSA-N chromium(IV) oxide Inorganic materials O=[Cr]=O AYTAKQFHWFYBMA-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000005492 condensed matter physics Effects 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005421 electrostatic potential Methods 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000005428 wave function Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D48/00—Individual devices not covered by groups H10D1/00 - H10D44/00
- H10D48/385—Devices using spin-polarised carriers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D48/00—Individual devices not covered by groups H10D1/00 - H10D44/00
- H10D48/383—Quantum effect devices, e.g. of devices using quantum reflection, diffraction or interference effects
Landscapes
- Hall/Mr Elements (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
一种基于量子点的单电子自旋过滤器及单电子自旋过滤方法,主要组成部分是单电子晶体管,单电子晶体管具有库仑岛、源极、漏极和栅极,量子点作为单电子晶体管的库仑岛,库仑岛与源极和漏极以隧穿势垒连接,库仑岛与栅极以电容形式耦合;单电子晶体管置于垂直磁场中,单电子晶体管的漏极输出端连接自旋电子读出电路,自旋电子读出电路置于水平非均匀磁场中。本发明采用外部调控的方法,使自旋非极化的电子经过单电子晶体管后,变为自旋极化的电子,而且能对电子的自旋方向进行判定和计数,有利于数据处理快、功耗低、稳定性好的自旋电子器件的设计应用。
A single electron spin filter and a single electron spin filtering method based on quantum dots. The main component is a single electron transistor. The single electron transistor has a Coulomb island, a source, a drain and a gate. The quantum dot serves as a single electron transistor. Coulomb Island, the Coulomb Island is connected to the source and drain with a tunneling barrier, and the Coulomb Island is capacitively coupled to the gate; the single-electron transistor is placed in a vertical magnetic field, and the drain output of the single-electron transistor is connected to the spin electrons Readout circuit, the spintronic readout circuit is placed in a horizontal non-uniform magnetic field. The present invention adopts an external control method to turn spin-non-polarized electrons into spin-polarized electrons after passing through a single-electron transistor, and can determine and count the spin directions of electrons, which is beneficial to fast data processing and Design and application of spintronic devices with low power consumption and good stability.
Description
技术领域Technical field
本发明涉及纳米电子器件、单电子自旋及电子技术领域,特别涉及一种基于量子点的单电子自旋过滤器及单电子自旋过滤方法,具体地讲,涉及一种利用位于源漏偏压窗口的量子点塞曼分裂能级进行自旋过滤的器件设计。The present invention relates to the fields of nanoelectronic devices, single electron spin and electronic technology, and in particular to a single electron spin filter based on quantum dots and a single electron spin filtering method. Specifically, it relates to a single electron spin filter using a source-drain bias. Device design for spin filtering using the Zeeman splitting energy level of quantum dots in the pressure window.
背景技术Background technique
与传统的电子器件相比,自旋电子器件具有数据处理速度快、功耗低、稳定性好等优点。已成功研制的自旋电子器件包括巨磁电阻、自旋阀、磁隧道结和磁随机存储器等。然而,这些基于铁磁金属的自旋电子器件,难于发展具有放大功能的自旋晶体管,也难于实现与传统微电子器件的集成。Compared with traditional electronic devices, spintronic devices have the advantages of fast data processing speed, low power consumption, and good stability. Spintronic devices that have been successfully developed include giant magnetoresistance, spin valve, magnetic tunnel junction and magnetic random access memory. However, these spintronic devices based on ferromagnetic metals are difficult to develop spin transistors with amplification functions, and are also difficult to integrate with traditional microelectronic devices.
半金属中的自发电子自旋极化率几乎为100%,因此,可以采用半金属材料作为自旋极化的发射源研究自旋极化。常见的半金属材料有:掺杂锰氧化物,双钙钛矿锰氧化物,二氧化铬,氧化铁和Heussler合金等。但是,半金属的居里温度比较低,且电子自旋极化率随着温度的升高会迅速下降,这些缺点使其实际应用价值大打折扣。The spontaneous electron spin polarization rate in semimetals is almost 100%. Therefore, semimetal materials can be used as the emission source of spin polarization to study spin polarization. Common semi-metallic materials include: doped manganese oxide, double perovskite manganese oxide, chromium dioxide, iron oxide and Heussler alloy, etc. However, the Curie temperature of the semimetal is relatively low, and the electron spin polarization rate decreases rapidly as the temperature increases. These shortcomings greatly reduce its practical application value.
1988年,J. S. Moodera等人首次了提出隧道结中的自旋过滤概念,根据隧道结所用的势垒层材料,此类隧道结可分为三种类型:铁磁隧道结、铁电隧道结和多铁隧道结(其中包括单相多铁和复合多铁隧道结)。铁磁隧道结是指采用铁磁性绝缘材料或半导体材料作为势垒层的隧道结,其自旋极化来自于铁磁性半导体势垒的自旋过滤效应,铁磁隧道结的自旋过滤效应起源于铁磁势垒的高度的自旋相关性,势垒的磁性、高度和宽度等因素也将对过滤效应产生一定影响。铁电隧道结是指用铁电绝缘材料作为势垒层的隧道结。铁电势垒的自发极化,导致电极中靠近势垒的界面处产生屏蔽电荷,进而形成静电势,使得电极中的能带发生歪曲,即自旋向上和向下两个通道的电子穿越隧道结时的隧穿几率不一样,因此就产生了自旋过滤效应。铁电隧道结的自旋过滤效应起源于势垒层的有效宽度是自旋相关的。多铁隧道结是采用同时具有铁磁性和铁电性的铁磁-铁电型多铁材料作势垒制成隧道结,这两种产生自旋过滤效应的物理机制也就可能在这样的多铁隧道结中同时发生作用。In 1988, J. S. Moodera and others first proposed the concept of spin filtering in tunnel junctions. According to the barrier layer material used in the tunnel junction, this type of tunnel junction can be divided into three types: ferromagnetic tunnel junction, ferroelectric tunnel junction and Multi-rail tunnel junctions (including single-phase multi-rail tunnel junctions and composite multi-rail tunnel junctions). Ferromagnetic tunnel junction refers to a tunnel junction that uses ferromagnetic insulating materials or semiconductor materials as the barrier layer. Its spin polarization comes from the spin filtering effect of the ferromagnetic semiconductor barrier. The spin filtering effect of the ferromagnetic tunnel junction originates. Due to the spin correlation of the height of the ferromagnetic barrier, factors such as the magnetism, height and width of the barrier will also have a certain impact on the filtering effect. Ferroelectric tunnel junction refers to a tunnel junction that uses ferroelectric insulating material as a barrier layer. The spontaneous polarization of the ferroelectric barrier causes shielding charges to be generated at the interface close to the barrier in the electrode, thereby forming an electrostatic potential, which distorts the energy band in the electrode, that is, electrons in the two spin-up and spin-down channels pass through the tunnel junction. The tunneling probability is different at different times, so a spin filtering effect is produced. The spin filtering effect of ferroelectric tunnel junctions originates from the fact that the effective width of the barrier layer is spin-dependent. Multiferroic tunnel junctions are made of ferromagnetic-ferroelectric multiferroic materials that are both ferromagnetic and ferroelectric as potential barriers. These two physical mechanisms that produce spin filtering effects are also possible in such multiferroics. Simultaneous action occurs in the tunnel junction.
在非磁性半导体以及拓扑绝缘体中,由粒子的自旋轨道相互作用可以产生自旋极化现象。硅烯材料与石墨烯结构相似,其导带和价带的边缘都是出现在K和K’的布里渊区的对称点上。然而,硅烯结构中存在曲翘结构,这使得硅烯结构中的自旋轨道耦合强度比较大, 从而使K和K’处打开的能隙较大。由于曲翘结构能通过外加垂直电场来改变,从而能隙的大小可以外部控制。施加Zeeman场时,硅烯的能带结构在布里渊区的两个狄拉克点附近分别占据自旋完全极化的状态,因此,通过硅烯二端器件的电流的自旋是可以完全极化的,从而达到控制电流极化方向的目的。当非极化电流通过三端器件时,自旋极化方向不同的电流分别从另外两个电极流出,就实现了自旋分离。但是,器件与电极的界面效应对自旋极化率的影响比较显著。In nonmagnetic semiconductors and topological insulators, the spin-orbit interaction of particles can produce spin polarization. The structure of silicene material is similar to that of graphene. The edges of its conduction band and valence band appear at the symmetry points of the Brillouin zone of K and K’. However, there is a warped structure in the silicene structure, which makes the spin-orbit coupling intensity in the silicene structure relatively large, resulting in a larger energy gap opened at K and K’. Since the warped structure can be changed by applying a vertical electric field, the size of the energy gap can be controlled externally. When a Zeeman field is applied, the energy band structure of silicene occupies a fully spin-polarized state near the two Dirac points of the Brillouin zone. Therefore, the spin of the current passing through the silicene two-terminal device can be fully polarized. ized, thereby achieving the purpose of controlling the polarization direction of the current. When a non-polarized current passes through a three-terminal device, currents with different spin polarization directions flow out from the other two electrodes respectively, thus achieving spin separation. However, the interface effect between the device and the electrode has a significant impact on the spin polarizability.
凝聚态物理学的研究热点之一是探索纳米尺度下量子体系的特性,寻求新一代量子电子器件。随着自旋电子学的发展,能有效的操纵电子自旋自由度成了物理界和材料界关注的重点。量子点具有人工可调控性,利用其制造的量子点器件已得到了令人瞩目的发展,是当今纳米电子器件研制的热点方向。量子点中电子的自旋属性扮演着重要的角色,利用量子点器件中的电子自旋进行量子信息处理,被认为是最有希望实现未来量子计算机的方向之一。上世纪90年代开展了大量有关量子点的研究。到目前为止,量子点已经成为一种束缚单电子电荷的标准技术。只要你愿意,电子被捕获的时间可以要多久就多久。当一个电子从量子点隧穿出去时,电荷的变化可以在μs量级上被测量到。与对电荷进行控制相比,要控制单个自旋并测量单个电子的自旋是非常困难的,幸运的是,这些技术已经发展起来了。结果表明,一个量子点能够使一个或者两个电子受到限制;单个电子的自旋能被调控而置于向上和向下两态的叠加态;两个自旋能被调控而产生相互作用,进而形成一种纠缠态,如自旋单态或者自旋三态,这些操控的结果可以通过彼此独立的自旋进行测量。对彼此独立电子的自旋能够完全控制的能力,使得我们可以研究固态环境中的完全量子机制的单自旋动力学。One of the research hotspots in condensed matter physics is to explore the characteristics of quantum systems at the nanoscale and seek a new generation of quantum electronic devices. With the development of spintronics, the ability to effectively manipulate the electron spin degree of freedom has become a focus of attention in the physics and materials communities. Quantum dots have artificial controllability, and quantum dot devices manufactured using them have achieved remarkable development, and are a hot topic in the development of nanoelectronic devices today. The spin properties of electrons in quantum dots play an important role. Using the electron spin in quantum dot devices for quantum information processing is considered to be one of the most promising directions for realizing future quantum computers. A lot of research on quantum dots was carried out in the 1990s. By now, quantum dots have become a standard technology for trapping the charge of single electrons. The electrons can be trapped for as long as you like. When an electron tunnels out of a quantum dot, the change in charge can be measured on the order of μs. Controlling individual spins and measuring the spin of individual electrons is very difficult compared to controlling charge, but fortunately, these techniques have been developed. The results show that a quantum dot can confine one or two electrons; the spin of a single electron can be controlled to be placed in a superposition state of up and down states; the two spins can be controlled to interact, and then An entangled state is formed, such as a spin singlet or a spin triplet, and the results of these manipulations can be measured using the spins independently of each other. The ability to fully control the spins of electrons independently of each other allows us to study the single-spin dynamics of fully quantum mechanisms in solid-state environments.
量子点是固态人造亚微米结构,典型地它包含103~109个原子和相当数目的电子。在半导体量子点中,除了少数自由电子外,其余所有电子都是紧束缚的,这个数目从零到几千不等。首先,量子点中的每一个电子,其自旋直接受到外部磁场以塞曼能量的方式施加的影响,其次,泡利不相容原理禁止两个具有相同自旋方向的电子占据同一个轨道,因此不同电子进入不同的轨道,这通常会导致不同能态具有不同能量。最后,库仑相互作用会导致有对称和反对称轨道波函数的不同能态之间的能量差异(能量交换)。因为量子点具有量子化能级、受束电子数目可受调控、能级可受调控等特点,我们提出了基于量子点的单电子自旋过滤的方法。Quantum dots are solid artificial submicron structures that typically contain 10 3 to 10 9 atoms and a considerable number of electrons. In a semiconductor quantum dot, all but a few free electrons are tightly bound, ranging from zero to several thousand. First, the spin of each electron in a quantum dot is directly affected by the external magnetic field in the form of Zeeman energy. Second, the Pauli exclusion principle prohibits two electrons with the same spin direction from occupying the same orbit. So different electrons go into different orbits, which usually results in different energy states with different energies. Finally, Coulomb interactions lead to energy differences (energy exchange) between different energy states with symmetric and antisymmetric orbital wave functions. Because quantum dots have the characteristics of quantized energy levels, the number of beamed electrons can be controlled, and the energy levels can be controlled, we proposed a method of single electron spin filtering based on quantum dots.
发明内容Contents of the invention
本发明所要解决的技术问题是:针对上述背景技术存在的问题,而提供一种基于量子点的单电子自旋过滤器及单电子自旋过滤方法,基于单电子晶体管的量子点结构,采用外部调控的方法,使自旋非极化的电子经过单电子晶体管后,变为自旋极化的电子,而且能对电子的自旋方向进行判定和计数。The technical problem to be solved by the present invention is to provide a single electron spin filter and a single electron spin filtering method based on quantum dots in view of the problems existing in the above background technology. The quantum dot structure based on a single electron transistor adopts an external The control method makes the spin-non-polarized electrons change into spin-polarized electrons after passing through the single-electron transistor, and the spin direction of the electrons can be determined and counted.
本发明采用的技术方案是:一种基于量子点的单电子自旋过滤器,主要组成部分是单电子晶体管,单电子晶体管具有库仑岛、源极、漏极和栅极,量子点作为单电子晶体管的库仑岛,库仑岛与源极和漏极以隧穿势垒连接,库仑岛与栅极以电容形式耦合;单电子晶体管置于垂直磁场中,单电子晶体管的漏极输出端连接自旋电子读出电路,自旋电子读出电路置于水平非均匀磁场中。The technical solution adopted by the present invention is: a single electron spin filter based on quantum dots. The main component is a single electron transistor. The single electron transistor has a Coulomb island, a source, a drain and a gate. The quantum dots serve as single electrons. The Coulomb Island of the transistor is connected to the source and drain with a tunneling barrier, and the Coulomb Island is capacitively coupled to the gate; the single-electron transistor is placed in a vertical magnetic field, and the drain output of the single-electron transistor is connected to the spin Electronic readout circuit, the spin electron readout circuit is placed in a horizontal non-uniform magnetic field.
上述技术方案中,所述量子点采用石墨烯量子点。In the above technical solution, the quantum dots are graphene quantum dots.
上述技术方案中,所述单电子晶体管的库仑岛、源极、漏极和栅极集成设置在硅基片表面形成的二氧化硅衬底上,库仑岛、隧穿势垒、源极、漏极和栅极上再沉积有氧化铝保护层。In the above technical solution, the Coulomb island, source, drain and gate of the single electron transistor are integrated and arranged on the silicon dioxide substrate formed on the surface of the silicon substrate, and the Coulomb island, tunneling barrier, source, drain A protective layer of aluminum oxide is deposited on the electrode and gate.
一种采用上述基于量子点的单电子自旋过滤器的单电子自旋过滤方法,量子点作为单电子晶体管的库仑岛,其分立能级在垂直磁场中发生塞曼分裂,分裂能级具有自旋相关性,具有自旋过滤效应。A single-electron spin filtering method using the above-mentioned single-electron spin filter based on quantum dots. The quantum dots serve as Coulomb islands of single-electron transistors, and their discrete energy levels undergo Zeeman splitting in a vertical magnetic field. The splitting energy levels have self-propelled properties. Spin correlation, with spin filtering effect.
上述技术方案中,调节单电子晶体管的源、漏偏置电压和栅压,使自旋向上或者自旋向下的某个特定自旋方向的量子点塞曼分裂能级位于源、漏偏压窗口,形成单电子晶体管的单电子输运通道,完成单电子自旋过滤;调节单电子晶体管的源、漏偏置电压和栅压,可以使量子点塞曼分裂能级都不位于源、漏偏压窗口,关闭单电子晶体管的电子通道,从而没有电子被自旋极化;In the above technical solution, the source and drain bias voltages and gate voltages of the single-electron transistor are adjusted so that the Zeeman splitting energy level of a quantum dot with a specific spin direction with spin up or spin down is located at the source and drain bias voltages. The window forms the single electron transport channel of the single electron transistor to complete single electron spin filtering; adjusting the source and drain bias voltages and gate voltages of the single electron transistor can make the quantum dot Zeeman splitting energy level neither located at the source nor the drain. Bias window, which closes the electron channel of a single-electron transistor so that no electrons are spin polarized;
上述技术方案中,经由单电子晶体管发生了自旋极化的出射电子,在水平非均匀磁场的作用下,运动方向会发生偏转,从而实现分离和探测;自旋方向相反的电子,其磁矩取向相反,在水平非均匀磁场中运动时,因受力不同而运动轨迹被分开,到达两个不同的探测器。In the above technical solution, the emitted electrons with spin polarization through the single-electron transistor will deflect their movement direction under the action of the horizontal non-uniform magnetic field, thereby achieving separation and detection; the magnetic moments of electrons with opposite spin directions will The orientation is opposite. When moving in a horizontal non-uniform magnetic field, the motion trajectories are separated due to different forces and reach two different detectors.
上述技术方案中,单电子晶体管的充电能大于塞曼分裂能,塞曼分裂能大于热能。In the above technical solution, the charging energy of the single-electron transistor is greater than the Zeeman splitting energy, and the Zeeman splitting energy is greater than the thermal energy.
上述技术方案中,调节源、漏偏压的大小使得最多只能容纳一个塞曼分裂能级处在偏压窗口中;通过调节源、漏偏压和栅压,可以将库仑岛上的自由电子耗尽,然后再注入单个电子,完成单电子自旋极化。In the above technical solution, the source and drain biases are adjusted so that at most one Zeeman splitting energy level can be accommodated in the bias window; by adjusting the source, drain bias and gate voltage, the free electrons on the Coulomb island can be depleted, and then a single electron is injected to complete single electron spin polarization.
上述技术方案中,源、漏偏压不变,只改变栅压,可以调节作为电子通道的、具有特定自旋方向的某个能级上下移动,实现电子通道的打开或者关闭。In the above technical solution, the source and drain bias voltages remain unchanged, and only the gate voltage is changed. A certain energy level with a specific spin direction as an electron channel can be adjusted to move up and down to open or close the electron channel.
上述技术方案中,源、漏偏压不变,只改变栅压,可以调节具有不同自旋方向的相邻量子点能级,依次出现在偏压窗口,成为自旋极化的电子通道。In the above technical solution, the source and drain bias voltages remain unchanged and only the gate voltage is changed. The energy levels of adjacent quantum dots with different spin directions can be adjusted to appear in the bias window in sequence and become spin-polarized electron channels.
上述技术方案中,经由单电子晶体管发生了自旋极化的出射电子,在水平非均匀磁场的作用下运动方向发生偏转,实现分离,可以被探测。In the above technical solution, the emitted electrons that are spin polarized through the single electron transistor are deflected in the direction of movement under the action of the horizontal non-uniform magnetic field, are separated, and can be detected.
本发明实现了对单个入射电子的自旋极化,以及自旋极化出射电子的读出,有利于数据处理速度快、功耗低、稳定性好的自旋电子器件的设计,应用广泛。The invention realizes the spin polarization of a single incident electron and the readout of the spin-polarized emitted electron, which is beneficial to the design of spin electronic devices with fast data processing speed, low power consumption and good stability, and is widely used.
附图说明Description of drawings
图1为单个量子点的单电子晶体管模型;图1中,1是源极,2是漏极,3是栅极,4是库仑岛,11是源极与库仑岛之间的隧穿势垒,21是漏极与库仑岛之间的隧穿势垒,31是栅极与库仑岛之间的耦合电容;Figure 1 is a single electron transistor model of a single quantum dot; in Figure 1, 1 is the source, 2 is the drain, 3 is the gate, 4 is the Coulomb island, and 11 is the tunneling barrier between the source and the Coulomb island. , 21 is the tunneling barrier between the drain and the Coulomb island, 31 is the coupling capacitance between the gate and the Coulomb island;
图2为基于量子点的自旋过滤器的构成示意图;图2中,51和52是单电子晶体管的保护电阻,52和53构成了源漏输入电压的分压器,单电子晶体管置于垂直磁场B1中,自旋电子读出电路置于水平非均匀磁场B2中;Figure 2 is a schematic diagram of the spin filter based on quantum dots; in Figure 2, 51 and 52 are the protection resistors of the single-electron transistor, 52 and 53 constitute a voltage divider for the source-drain input voltage, and the single-electron transistor is placed vertically In the magnetic field B 1 , the spin electron readout circuit is placed in the horizontal non-uniform magnetic field B 2 ;
图3为少电子量子点用作双极自旋过滤器的原理示意图;图3中,12是源极费米能级,22是漏极费米能级,41和42是库仑岛的塞曼分裂能级;Figure 3 is a schematic diagram of the principle of using few-electron quantum dots as a bipolar spin filter; in Figure 3, 12 is the source Fermi level, 22 is the drain Fermi level, 41 and 42 are the Zeeman of the Coulomb island. Split energy level;
图4为通过调节栅压实现不同自旋极化的原理示意图;图4中,(a)是量子点上自由电子被耗尽,(b)是量子点中一个自旋向上的能级位于源漏偏压窗口,(c)是量子点中一个自旋向下的能级位于源漏偏压窗口;Figure 4 is a schematic diagram of the principle of realizing different spin polarization by adjusting the gate voltage; in Figure 4, (a) is the depletion of free electrons on the quantum dot, (b) is a spin-up energy level in the quantum dot located at the source Drain bias window, (c) is a spin-down energy level in the quantum dot located in the source-drain bias window;
图5为基于量子点的自旋过滤的原理示意图。Figure 5 is a schematic diagram of the principle of spin filtering based on quantum dots.
具体实施方式Detailed ways
参见附图,本发明的基于量子点的单电子自旋过滤器,主要组成部分是单电子晶体管,单电子晶体管具有库仑岛、源极、漏极和栅极,量子点作为单电子晶体管的库仑岛,库仑岛与源极和漏极以隧穿势垒连接,库仑岛与栅极以电容形式耦合;单电子晶体管置于垂直磁场中,单电子晶体管的漏极输出端连接自旋电子读出电路,自旋电子读出电路置于水平非均匀磁场中,所述量子点采用石墨烯量子点,所述单电子晶体管的库仑岛、源极、漏极和栅极集成设置在硅基片表面形成的二氧化硅衬底上,库仑岛、隧穿势垒、源极、漏极和栅极上再沉积有氧化铝保护层。Referring to the drawings, the main component of the single-electron spin filter based on quantum dots of the present invention is a single-electron transistor. The single-electron transistor has a Coulomb island, a source, a drain and a gate. The quantum dot serves as the Coulomb of the single-electron transistor. The Coulomb island is connected to the source and drain with a tunneling barrier, and the Coulomb island is capacitively coupled to the gate; the single-electron transistor is placed in a vertical magnetic field, and the drain output of the single-electron transistor is connected to the spin electron readout circuit, the spin electron readout circuit is placed in a horizontal non-uniform magnetic field, the quantum dots are graphene quantum dots, and the Coulomb island, source, drain and gate of the single electron transistor are integrated on the surface of the silicon substrate On the formed silicon dioxide substrate, an aluminum oxide protective layer is deposited on the Coulomb island, tunnel barrier, source electrode, drain electrode and gate electrode.
一种采用上述基于量子点的单电子自旋过滤器的单电子自旋过滤方法,量子点作为单电子晶体管的库仑岛,其分立能级在垂直磁场中发生塞曼分裂,分裂能级具有自旋相关性,具有自旋过滤效应,调节单电子晶体管的源、漏偏置电压和栅压,使自旋向上或者自旋向下的某个特定自旋方向的量子点塞曼分裂能级位于源、漏偏压窗口,形成单电子晶体管的单电子输运通道,完成单电子自旋过滤;调节单电子晶体管的源、漏偏置电压和栅压,可以使量子点塞曼分裂能级都不位于源、漏偏压窗口,关闭单电子晶体管的电子通道,从而没有电子被自旋极化,经由单电子晶体管发生了自旋极化的出射电子,在水平非均匀磁场的作用下,运动方向会发生偏转,从而实现分离和探测;自旋方向相反的电子,其磁矩取向相反,在水平非均匀磁场中运动时,因受力不同而运动轨迹被分开,到达两个不同的探测器,单电子晶体管的充电能大于塞曼分裂能,塞曼分裂能大于热能,调节源、漏偏压的大小使得最多只能容纳一个塞曼分裂能级处在偏压窗口中;通过调节源、漏偏压和栅压,可以将库仑岛上的自由电子耗尽,然后再注入单个电子,完成单电子自旋极化,源、漏偏压不变,只改变栅压,可以调节作为电子通道的、具有特定自旋方向的某个能级上下移动,实现电子通道的打开或者关闭,源、漏偏压不变,只改变栅压,可以调节具有不同自旋方向的相邻量子点能级,依次出现在偏压窗口,成为自旋极化的电子通道。A single-electron spin filtering method using the above-mentioned single-electron spin filter based on quantum dots. The quantum dots serve as Coulomb islands of single-electron transistors, and their discrete energy levels undergo Zeeman splitting in a vertical magnetic field. The splitting energy levels have self-propelled properties. Spin correlation, with spin filtering effect, adjusts the source, drain bias voltage and gate voltage of the single-electron transistor, so that the Zeeman splitting energy level of a quantum dot with a specific spin direction with spin up or spin down is located at The source and drain bias windows form the single electron transport channel of the single electron transistor to complete single electron spin filtering; adjusting the source, drain bias voltage and gate voltage of the single electron transistor can make the quantum dot Zeeman splitting energy levels Not located in the source and drain bias windows, the electron channel of the single-electron transistor is closed, so that no electrons are spin-polarized. The emitted electrons that are spin-polarized through the single-electron transistor move under the action of the horizontal non-uniform magnetic field. The direction will be deflected to achieve separation and detection; electrons with opposite spin directions have opposite magnetic moments. When moving in a horizontal non-uniform magnetic field, their motion trajectories are separated due to different forces and arrive at two different detectors. , the charging energy of a single-electron transistor is greater than the Zeeman splitting energy, and the Zeeman splitting energy is greater than the thermal energy. Adjust the source and drain bias voltages so that at most one Zeeman splitting energy level can be accommodated in the bias window; by adjusting the source, The drain bias and gate voltage can exhaust the free electrons on the Coulomb Island, and then inject a single electron to complete single electron spin polarization. The source and drain biases remain unchanged, and only the gate voltage is changed, which can be adjusted as an electron channel. A certain energy level with a specific spin direction moves up and down to open or close the electron channel. The source and drain biases remain unchanged and only the gate voltage is changed. The energy levels of adjacent quantum dots with different spin directions can be adjusted. , appear in the bias window in turn and become a spin-polarized electron channel.
上述方法中,经由单电子晶体管发生了自旋极化的出射电子,在水平非均匀磁场的作用下运动方向发生偏转,实现分离,可以被探测。In the above method, the emitted electrons that are spin-polarized through the single-electron transistor are deflected in the direction of motion under the action of a horizontal non-uniform magnetic field, and are separated and can be detected.
本发明的基于量子点的单电子自旋过滤器,是根据泡利不相容原理,禁止量子点的两个具有相同自旋方向的电子占据同一个塞曼分裂能级,因此电子进入特定自旋方向的轨道,就被自旋极化。The single-electron spin filter based on quantum dots of the present invention is based on the Pauli exclusion principle and prohibits two electrons with the same spin direction of the quantum dot from occupying the same Zeeman splitting energy level, so the electrons enter a specific self-spin filter. Orbitals in the spin direction are spin polarized.
上述自旋极化的电子,因磁矩取向不同,在水平非均匀磁场中将被分离开而到达不同的探测器,完成自旋态的检测。The above-mentioned spin-polarized electrons will be separated in the horizontal non-uniform magnetic field due to different magnetic moment orientations and reach different detectors to complete the detection of spin states.
为了实现单电子自旋过滤,可以采用下面三个步骤:To achieve single electron spin filtering, the following three steps can be taken:
(1)耗尽单电子晶体管库仑岛上自由电子;(1) Deplete the free electrons on the Coulomb Island of the single-electron transistor;
(2)向单电子晶体管库仑岛注入一个电子;(2) Inject an electron into the Coulomb Island of the single-electron transistor;
(3)测量出射电子的自旋态。(3) Measure the spin state of the emitted electron.
如果塞曼分裂超过了充电能,通过量子点的电子输运是自旋极化的,量子点可以被当作自旋过滤器。如图3所示,如果只有单电子自旋向上态能量上是处于源漏偏压窗口的,在库仑岛上电子被耗尽和含有一个自由电子的输运过程中,电子是自旋向上极化的。If the Zeeman splitting exceeds the charging energy, the electron transport through the quantum dot is spin polarized and the quantum dot can be used as a spin filter. As shown in Figure 3, if only a single electron spin-up state energy is in the source-drain bias window, the electron is depleted on the Coulomb island and contains a free electron during the transport process, the electron is spin-up to the pole. ized.
如图4所示,在库仑岛上含有一个自由电子和含有二个自由电子的输运过程中,如果没有激发态是被允许的,因为电子通道已经有一个自旋向上的电子,根据泡利不相容原理,则只能允许一个自旋向下的电子进入电子通道,从而出射电子是自旋向下极化的。因此,通过调节量子点到相关输运,自旋过滤器的极化可以发生电性反转。As shown in Figure 4, in the transport process containing one free electron and two free electrons on the Coulomb island, if no excited state is allowed, because the electron channel already has an electron with an upward spin, according to Pauli The exclusion principle allows only one spin-down electron to enter the electron channel, so that the emitted electron is spin-down polarized. Therefore, by tuning the quantum dot to the relevant transport, the polarization of the spin filter can be electrically reversed.
以下通过本发明一个具体的实施例,结合附图对本发明单电子自旋过滤的方法作进一步详细的说明:The single electron spin filtering method of the present invention will be further described in detail below through a specific embodiment of the present invention and in conjunction with the accompanying drawings:
(1)采用如图1所示的单电子晶体管作为单电子自旋过滤器的核心组成部分,源极和漏极分别与库仑岛通过隧穿耦合,栅极与库仑岛通过电容耦合。如图2所示,单电子晶体管完成单个注入电子的自旋极化,输出电子的自旋态通过读出电路进行检测。(1) The single-electron transistor shown in Figure 1 is used as the core component of the single-electron spin filter. The source and drain are tunnel-coupled with the Coulomb island, and the gate is capacitively coupled with the Coulomb island. As shown in Figure 2, the single-electron transistor completes the spin polarization of a single injected electron, and the spin state of the output electron is detected through the readout circuit.
(2)调节源漏偏压和栅极电压,如图4(a)所示,由于量子点自旋向上能级41和自旋向下能级42都高于源极1的电子库费米能级12,量子点上没有电子。(2) Adjust the source-drain bias and gate voltage, as shown in Figure 4(a), because the quantum dot spin-up energy level 41 and spin-down energy level 42 are both higher than the electron library Fermi of source 1 Energy level 12, there are no electrons on the quantum dot.
(3)栅极施加一个正的电压脉冲,如图4(b)所示,将量子点自旋向上能级41调节到源漏偏压窗口中,而自旋向下能级42仍然高于源极1的电子库费米能级12。于是,从能量角度来讲,允许一个电子隧穿到达量子点的能级41之上,这个电子是自旋向上极化的。(3) Apply a positive voltage pulse to the gate, as shown in Figure 4(b), to adjust the quantum dot spin-up energy level 41 into the source-drain bias window, while the spin-down energy level 42 is still higher than The electron pool of source 1 has a Fermi level of 12. Therefore, from an energy perspective, an electron is allowed to tunnel above the energy level 41 of the quantum dot, and this electron is spin-polarized upward.
(4)如果栅极施加一个较大的正电压脉冲,如图4(c)所示,将量子点自旋向下能级42调节到源漏偏压窗口中,而自旋向上能级41低于漏极2的电子库费米能级22。于是,从能量角度来讲,允许一个电子隧穿到达量子点的能级42之上,这个电子是自旋向下极化的。(4) If a large positive voltage pulse is applied to the gate, as shown in Figure 4(c), the quantum dot spin down energy level 42 is adjusted to the source-drain bias window, while the spin up energy level 41 Below the electron pool Fermi level 22 of drain 2. Therefore, from an energy perspective, an electron is allowed to tunnel above the energy level 42 of the quantum dot, and this electron is spin-polarized downward.
(5)入射量子点的电子在一段时间之后,将会发生隧穿到达漏极2,如图5所示,这个电子在磁场作用下会因为自旋方向不同而受到不同的力,具有不同的运动轨迹,被探测器检测。(5) After a period of time, the electrons incident on the quantum dot will tunnel to the drain 2. As shown in Figure 5, this electron will receive different forces due to different spin directions under the action of the magnetic field, and will have different characteristics. The motion trajectory is detected by the detector.
量子点是一种常规通用的系统,存在许多不同材料和形态的量子点。上述实施例仅为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明技术方案和技术构思所做出其它各种相应的改变和变形,都应涵盖在本发明的保护范围之内。Quantum dots are a general-purpose system, and there are many different materials and forms of quantum dots. The above embodiments only illustrate the technical concepts and characteristics of the present invention. Their purpose is to enable those familiar with this technology to understand the content of the present invention and implement it accordingly. They do not limit the scope of protection of the present invention. All other corresponding changes and modifications made based on the technical solutions and technical concepts of the present invention should be covered by the protection scope of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610907225.4A CN106449739B (en) | 2016-10-19 | 2016-10-19 | Single electron spin filter and single electron spin filtering method based on quantum dots |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610907225.4A CN106449739B (en) | 2016-10-19 | 2016-10-19 | Single electron spin filter and single electron spin filtering method based on quantum dots |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106449739A CN106449739A (en) | 2017-02-22 |
CN106449739B true CN106449739B (en) | 2023-09-12 |
Family
ID=58176174
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610907225.4A Active CN106449739B (en) | 2016-10-19 | 2016-10-19 | Single electron spin filter and single electron spin filtering method based on quantum dots |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106449739B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108344956B (en) * | 2018-01-23 | 2020-06-12 | 湖北工业大学 | Application Circuit Based on Self-excited Single Electron Spin Electromagnetic Transistor |
CN108491933B (en) * | 2018-01-23 | 2022-12-16 | 湖北工业大学 | Doped element nanowire multi-type inter-embedded silicon carbide transistor |
CN108470216A (en) * | 2018-01-23 | 2018-08-31 | 湖北工业大学 | Fermi's lepton quantum bit based on autoexcitation spin single electron Electromagnetic Environmental Effect transistor |
KR102007391B1 (en) * | 2018-11-02 | 2019-08-06 | 브이메모리 주식회사 | Variable low resistance line non-volatile memory device and operating method thereof |
CN109683027A (en) * | 2019-01-23 | 2019-04-26 | 中国科学技术大学 | Measuring device and preparation method thereof for self-organizing germanium silicon nanowires |
CN111551881B (en) * | 2020-05-12 | 2022-05-03 | 山东省肿瘤防治研究院(山东省肿瘤医院) | Nuclear magnetic resonance magnetic field measurement method and system based on particle accelerator |
CN115763610B (en) * | 2022-11-07 | 2024-10-29 | 隆基绿能科技股份有限公司 | High performance ferroelectric tunnel junction and device including the same |
CN117949799B (en) * | 2024-03-22 | 2024-06-11 | 吕梁学院 | Method and system for measuring performance of organic spintronic devices based on gate voltage |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001093274A (en) * | 1999-09-22 | 2001-04-06 | Toshiba Corp | Spin-dependent switching element |
CN1487593A (en) * | 2003-07-28 | 2004-04-07 | 中国科学技术大学 | Single-electron transistor with stable switching characteristics |
KR20060063814A (en) * | 2006-02-28 | 2006-06-12 | 손맹호 | Spin-dependent single electron transistor |
US7180087B1 (en) * | 2000-08-30 | 2007-02-20 | Etech Ag | Spin filter and a memory using such a spin filter |
KR20070034406A (en) * | 2005-09-23 | 2007-03-28 | 최중범 | Single Electron Spin Filtering Nanodevices |
CN101853918A (en) * | 2009-11-27 | 2010-10-06 | 中国科学院物理研究所 | Single-electron magnetoresistance structures and their applications |
CN101965631A (en) * | 2008-02-11 | 2011-02-02 | 库克有限公司 | The control of electronics or hole spin and reading |
WO2014146162A1 (en) * | 2013-03-20 | 2014-09-25 | Newsouth Innovations Pry Limited | Quantum computing with acceptor-based qubits |
CN206293444U (en) * | 2016-10-19 | 2017-06-30 | 中国人民解放军国防科学技术大学 | A kind of single electron spin filter based on quantum dot |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4574674B2 (en) * | 2005-03-24 | 2010-11-04 | 独立行政法人科学技術振興機構 | Logic circuit and single electron spin transistor |
KR20100072610A (en) * | 2008-12-22 | 2010-07-01 | 한국전자통신연구원 | Semiconductor device and method of fabricating the same |
-
2016
- 2016-10-19 CN CN201610907225.4A patent/CN106449739B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001093274A (en) * | 1999-09-22 | 2001-04-06 | Toshiba Corp | Spin-dependent switching element |
US7180087B1 (en) * | 2000-08-30 | 2007-02-20 | Etech Ag | Spin filter and a memory using such a spin filter |
CN1487593A (en) * | 2003-07-28 | 2004-04-07 | 中国科学技术大学 | Single-electron transistor with stable switching characteristics |
KR20070034406A (en) * | 2005-09-23 | 2007-03-28 | 최중범 | Single Electron Spin Filtering Nanodevices |
KR20060063814A (en) * | 2006-02-28 | 2006-06-12 | 손맹호 | Spin-dependent single electron transistor |
CN101965631A (en) * | 2008-02-11 | 2011-02-02 | 库克有限公司 | The control of electronics or hole spin and reading |
CN101853918A (en) * | 2009-11-27 | 2010-10-06 | 中国科学院物理研究所 | Single-electron magnetoresistance structures and their applications |
WO2014146162A1 (en) * | 2013-03-20 | 2014-09-25 | Newsouth Innovations Pry Limited | Quantum computing with acceptor-based qubits |
CN206293444U (en) * | 2016-10-19 | 2017-06-30 | 中国人民解放军国防科学技术大学 | A kind of single electron spin filter based on quantum dot |
Non-Patent Citations (1)
Title |
---|
单电子晶体管用于电荷检测的研究;苏丽娜、吕利;微纳电子技术;第51卷(第10期);P617-P622 * |
Also Published As
Publication number | Publication date |
---|---|
CN106449739A (en) | 2017-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106449739B (en) | Single electron spin filter and single electron spin filtering method based on quantum dots | |
KR100855105B1 (en) | Spin Transistor Using Vertical Magnetization | |
Wang et al. | Electric-field control of spin-orbit interaction for low-power spintronics | |
KR20010030601A (en) | Quantum computer | |
JP5579563B2 (en) | Charge carrier device | |
US7973375B2 (en) | Spin transistor and method of manufacturing same | |
US10355046B1 (en) | Steep slope field-effect transistor (FET) for a perpendicular magnetic tunnel junction (PMTJ) | |
US20150311305A1 (en) | Spin mosfet | |
CN103718303A (en) | Rectifying device, transistor, and rectifying method | |
CN109962157B (en) | A spintronic device and method of making the same | |
CN206293444U (en) | A kind of single electron spin filter based on quantum dot | |
JP3566148B2 (en) | Spin-dependent switching element | |
CN100468748C (en) | A silicon-based single-electron memory with side gate structure and its manufacturing method | |
Vaithiyanathan et al. | Performance analysis of FinFET and negative capacitance FET over 6T SRAM | |
Hutin et al. | SOI CMOS technology for quantum information processing | |
CN115332436A (en) | Multi-iron tunnel junction device, spin valve device and spin polarization current regulation method | |
US10243021B1 (en) | Steep slope field-effect transistor (FET) for a perpendicular magnetic tunnel junction (PMTJ) | |
KR102688944B1 (en) | Spin-charge conversion control element and manufacturing method of the same | |
Pal et al. | Computational study of spin injection in 2D materials | |
KR102618318B1 (en) | Field-free Spin Orbit Torque Switching device and manufacturing method thereof | |
Hasan | Ferromagnetic Semiconductors and Spintronic Devices | |
Vakili et al. | Anatomy of nanomagnetic switching at a 3D Topological Insulator PN junction | |
KR102589211B1 (en) | Spin-charge conversion control element and manufacturing method of the same | |
Pingale et al. | Utilization of Spintronics | |
GB2560936A (en) | Spin electronic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |