CN101162650B - Flexible thin-film solid-state supercapacitor and manufacturing method thereof - Google Patents
Flexible thin-film solid-state supercapacitor and manufacturing method thereof Download PDFInfo
- Publication number
- CN101162650B CN101162650B CN 200710035013 CN200710035013A CN101162650B CN 101162650 B CN101162650 B CN 101162650B CN 200710035013 CN200710035013 CN 200710035013 CN 200710035013 A CN200710035013 A CN 200710035013A CN 101162650 B CN101162650 B CN 101162650B
- Authority
- CN
- China
- Prior art keywords
- film
- electrode
- slurry
- flexible
- membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- 239000010409 thin film Substances 0.000 title claims abstract description 11
- 239000010408 film Substances 0.000 claims abstract description 76
- 238000007639 printing Methods 0.000 claims abstract description 40
- 239000003792 electrolyte Substances 0.000 claims abstract description 27
- 239000007784 solid electrolyte Substances 0.000 claims abstract description 19
- 238000004806 packaging method and process Methods 0.000 claims abstract description 11
- 239000002033 PVDF binder Substances 0.000 claims description 26
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 26
- 239000003990 capacitor Substances 0.000 claims description 20
- 239000012528 membrane Substances 0.000 claims description 15
- 239000002002 slurry Substances 0.000 claims description 15
- 239000011267 electrode slurry Substances 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 8
- 229920002379 silicone rubber Polymers 0.000 claims description 5
- 244000043261 Hevea brasiliensis Species 0.000 claims description 4
- 229920003052 natural elastomer Polymers 0.000 claims description 4
- 229920001194 natural rubber Polymers 0.000 claims description 4
- 229920002635 polyurethane Polymers 0.000 claims description 4
- 239000004814 polyurethane Substances 0.000 claims description 4
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 4
- 239000004800 polyvinyl chloride Substances 0.000 claims description 4
- 210000004379 membrane Anatomy 0.000 claims 7
- 210000002469 basement membrane Anatomy 0.000 claims 2
- 239000002003 electrode paste Substances 0.000 abstract description 26
- 239000007787 solid Substances 0.000 abstract description 12
- 238000001035 drying Methods 0.000 abstract description 11
- 238000005520 cutting process Methods 0.000 abstract description 4
- 238000005516 engineering process Methods 0.000 abstract description 4
- 238000012858 packaging process Methods 0.000 abstract description 4
- 238000003825 pressing Methods 0.000 abstract description 4
- 239000000758 substrate Substances 0.000 abstract description 4
- 238000011031 large-scale manufacturing process Methods 0.000 abstract description 2
- 229920003023 plastic Polymers 0.000 abstract description 2
- 239000004033 plastic Substances 0.000 abstract description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 18
- 238000002360 preparation method Methods 0.000 description 16
- 238000003756 stirring Methods 0.000 description 16
- 239000000203 mixture Substances 0.000 description 11
- 239000004372 Polyvinyl alcohol Substances 0.000 description 10
- 229920002451 polyvinyl alcohol Polymers 0.000 description 10
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 9
- 239000006229 carbon black Substances 0.000 description 9
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 8
- 238000005538 encapsulation Methods 0.000 description 8
- 239000000843 powder Substances 0.000 description 8
- 239000008367 deionised water Substances 0.000 description 7
- 229910021641 deionized water Inorganic materials 0.000 description 7
- -1 hydrogen ions Chemical class 0.000 description 7
- 229920000128 polypyrrole Polymers 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 4
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000004945 silicone rubber Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000012785 packaging film Substances 0.000 description 3
- 229920006280 packaging film Polymers 0.000 description 3
- 229920000767 polyaniline Polymers 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- IQQRAVYLUAZUGX-UHFFFAOYSA-N 1-butyl-3-methylimidazolium Chemical compound CCCCN1C=C[N+](C)=C1 IQQRAVYLUAZUGX-UHFFFAOYSA-N 0.000 description 2
- NJMWOUFKYKNWDW-UHFFFAOYSA-N 1-ethyl-3-methylimidazolium Chemical compound CCN1C=C[N+](C)=C1 NJMWOUFKYKNWDW-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 239000002608 ionic liquid Substances 0.000 description 2
- 229910003002 lithium salt Inorganic materials 0.000 description 2
- 159000000002 lithium salts Chemical class 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 150000007530 organic bases Chemical class 0.000 description 2
- 150000003242 quaternary ammonium salts Chemical group 0.000 description 2
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 2
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid group Chemical group S(O)(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910001290 LiPF6 Inorganic materials 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000011245 gel electrolyte Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 229910001540 lithium hexafluoroarsenate(V) Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 238000005036 potential barrier Methods 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Secondary Cells (AREA)
Abstract
本发明公开了一种柔性薄膜型固态超级电容器及其制造方法,包括正、负电极、外电极及封装膜,正、负电极间设有柔性固态电解质隔膜。其制造方法如下:采用印刷技术依次将外电极浆料、电极浆料、柔性固态电解质浆料、电极浆料、外电极浆料、封装浆料精确地涂于基体上,配合相应的压制、烘干、裁剪、包装工艺,最终形成电极—隔膜—电极结构的柔性薄膜型固态超级电容器。本柔性薄膜型固态超级电容器适合规模生产,产品内阻低,功率特性好,非常适合于可弯曲的电子产品如电子纸、智能名片和塑料电子产品等中的应用。
The invention discloses a flexible thin-film solid-state supercapacitor and a manufacturing method thereof, comprising positive and negative electrodes, external electrodes and a package film, and a flexible solid-state electrolyte diaphragm is arranged between the positive and negative electrodes. Its manufacturing method is as follows: use printing technology to sequentially apply the external electrode paste, electrode paste, flexible solid electrolyte paste, electrode paste, external electrode paste, packaging paste on the substrate, and cooperate with the corresponding pressing, drying Drying, cutting, and packaging processes, and finally form a flexible film-type solid supercapacitor with an electrode-diaphragm-electrode structure. The flexible film-type solid supercapacitor is suitable for large-scale production, has low internal resistance and good power characteristics, and is very suitable for applications in bendable electronic products such as electronic paper, smart business cards and plastic electronic products.
Description
技术领域technical field
本发明涉及一种电容器,特别涉及一种柔性薄膜型固态超级电容器及其制造方法。The invention relates to a capacitor, in particular to a flexible thin-film solid-state supercapacitor and a manufacturing method thereof.
背景技术Background technique
电容器是电子工业不可缺少的重要元器件,毫法至法拉级大容量电容器可用于电路的储能器件,但传统的电解电容器要做到毫法至法拉级必须具有很大的体积。Capacitors are indispensable and important components in the electronics industry. Large-capacity capacitors from millifarads to farads can be used as energy storage devices for circuits, but traditional electrolytic capacitors must have a large volume to achieve millifarads to farads.
超级电容器是近年来出现的一种新型储能器件,其容量可达法拉级甚至数千法拉,比传统电解电容器容量大几个数量级。它兼有常规电容器功率密度大、充电电池能量密度高的优点,可快速充放电,而且寿命长。Supercapacitor is a new type of energy storage device that has emerged in recent years. Its capacity can reach Farad levels or even thousands of Farads, which is several orders of magnitude larger than that of traditional electrolytic capacitors. It has the advantages of high power density of conventional capacitors and high energy density of rechargeable batteries, can be quickly charged and discharged, and has a long service life.
超级电容器可以分为双电层电容器和电化学电容器两大类。Supercapacitors can be divided into two categories: electric double layer capacitors and electrochemical capacitors.
活性炭双电层电容器是以活性炭为主要电极材料,其工作原理如图2所示。当金属电极插入电解液中时,电极表面上的净电荷与溶液中的带电离子形成双电层。由于界面上存在一个位垒,两层电荷不能越过边界彼此中和,按照电容器原理将形成一个平板电容器。由于活性炭表面积巨大,且形成的双电层厚度只有几埃,远比一般电解电容器氧化膜的几十至数百埃小。因此,双电层电容器可以获得法拉级的容量。Activated carbon electric double layer capacitors use activated carbon as the main electrode material, and its working principle is shown in Figure 2. When a metal electrode is inserted into an electrolyte, the net charge on the electrode surface forms an electric double layer with the charged ions in the solution. Because there is a potential barrier on the interface, the two layers of charges cannot cross the boundary and neutralize each other, and a flat-plate capacitor will be formed according to the capacitor principle. Due to the huge surface area of activated carbon, and the thickness of the formed electric double layer is only a few angstroms, which is far smaller than the tens to hundreds of angstroms of the oxide film of general electrolytic capacitors. Therefore, the electric double layer capacitor can obtain the capacity of Farad level.
电化学超级电容器工作原理:以氧化钌电化学电容器为例,电极为氧化钌(RuOx),电解液为硫酸,当金属氧化物电极在电解液中充电(放电)时,氢离子被吸附(解吸)进入(离开)氧化物晶格内部,发生氧化还原反应形成所谓的法拉第赝电容进行工作,所以称其为电化学电容器。电化学电容器能够获得比双电层电容器更高的电容量。The working principle of electrochemical supercapacitor: Take the ruthenium oxide electrochemical capacitor as an example, the electrode is ruthenium oxide (RuO x ), the electrolyte is sulfuric acid, when the metal oxide electrode is charged (discharged) in the electrolyte, hydrogen ions are adsorbed ( Desorption) enters (leaves) the interior of the oxide lattice, and a redox reaction occurs to form a so-called Faraday pseudocapacitor to work, so it is called an electrochemical capacitor. Electrochemical capacitors can achieve higher capacitance than electric double layer capacitors.
目前电子产品正朝着短、小、轻、薄方向的发展,为适应这一要求,电子元器件也向片式化、集成化、模块化发展。虽然超级电容器具有容量大、功率高、寿命长等优点,但由于目前的超级电容器使用液体溶液为电解液,为防止电解液泄露,器件的封装必须满足较高要求,使超级电容器难以进一步缩小体积,因此目前的超级电容器产品结构只有卷绕型(圆柱状)、钮扣型(类似于钮扣电池),由于其外形结构的限制,还未能在薄膜型电子产品、电子卡片等产品中获得应用。At present, electronic products are developing in the direction of short, small, light, and thin. In order to meet this requirement, electronic components are also developing towards chip, integration, and modularization. Although supercapacitors have the advantages of large capacity, high power, and long life, because current supercapacitors use liquid solutions as electrolytes, in order to prevent electrolyte leakage, the packaging of devices must meet high requirements, making it difficult to further reduce the size of supercapacitors. Therefore, the current supercapacitor product structure is only winding type (cylindrical) and button type (similar to a button battery). application.
Joo-Hwan Sunga等人以金为模板电极,通过电化学合成制备聚吡咯(PPy)电极,在用聚乙烯醇(PVA)与磷酸(H3PO4)制成凝胶电解质,用该凝胶电解质将聚吡咯电极粘下而形成柔性超级电容器,该技术简单可行,金模板电极可重复使用,但聚吡咯电极需通过电解合成,生产效率低,不适合工业化生产,且内阻高,功率性能差。Joo-Hwan Sunga et al. used gold as a template electrode to prepare a polypyrrole (PPy) electrode by electrochemical synthesis, and made a gel electrolyte with polyvinyl alcohol (PVA) and phosphoric acid (H 3 PO 4 ). The electrolyte sticks the polypyrrole electrode to form a flexible supercapacitor. This technology is simple and feasible, and the gold template electrode can be reused. However, the polypyrrole electrode needs to be synthesized by electrolysis, which has low production efficiency and is not suitable for industrial production. It also has high internal resistance and high power performance. Difference.
发明内容Contents of the invention
为解决现有超级电容器封装要求高、体积较大、生产效率低的技术问题,本发明提供一种柔性薄膜型固态超级电容器及其制造方法。In order to solve the technical problems of high packaging requirements, large volume and low production efficiency of existing supercapacitors, the present invention provides a flexible film-type solid supercapacitor and a manufacturing method thereof.
本发明解决上述技术问题的技术方案是:包括正、负电极、外电极及封装膜,其特征在于:正、负电极间设有柔性固态电解质隔膜。The technical solution of the present invention to solve the above-mentioned technical problems is to include positive and negative electrodes, external electrodes and packaging film, and is characterized in that a flexible solid electrolyte diaphragm is arranged between the positive and negative electrodes.
上述的柔性薄膜型固态超级电容器中,所述正、负极组成为导电聚合物、活性炭、炭黑、金属氧化物。In the above-mentioned flexible film-type solid supercapacitor, the positive and negative electrodes are composed of conductive polymers, activated carbon, carbon black, and metal oxides.
上述的柔性薄膜型固态超级电容器,中,所述柔性固态电解质隔膜为凝胶态电解质或固体电解质。In the above-mentioned flexible thin-film solid-state supercapacitor, the flexible solid-state electrolyte diaphragm is a gel state electrolyte or a solid electrolyte.
上述的柔性薄膜型固态超级电容器中,所述凝胶态电解质由电解质盐、聚合物、增塑剂、无机添加剂组成,固体电解质由聚氧乙烯或聚氧丙烯与电解质盐组成。In the above-mentioned flexible film-type solid supercapacitor, the gel state electrolyte is composed of electrolyte salt, polymer, plasticizer, and inorganic additives, and the solid electrolyte is composed of polyoxyethylene or polyoxypropylene and electrolyte salt.
上述的柔性薄膜型固态超级电容器中,所述电解质盐为季铵盐、离子液体或锂盐。In the above-mentioned flexible thin-film solid-state supercapacitor, the electrolyte salt is a quaternary ammonium salt, an ionic liquid or a lithium salt.
上述的柔性薄膜型固态超级电容器中,所述季铵盐为(C2H5)1NBF4或CH3(C2H5)3NBF1,离子液体为[EMIm]BF4、[BMIm]BF4、[BMIm]PF6、[EMIm]NTf2或[BMPy]NTf2,锂盐为LiBF4、LiPF6或LiAsF6。In the above flexible film-type solid supercapacitor, the quaternary ammonium salt is (C 2 H 5 ) 1 NBF 4 or CH 3 (C 2 H 5 ) 3 NBF 1 , and the ionic liquid is [EMIm]BF 4 , [BMIm] BF 4 , [BMIm]PF 6 , [EMIm]NTf 2 or [BMPy]NTf 2 , and the lithium salt is LiBF 4 , LiPF6 or LiAsF6.
一种柔性薄膜型固态超级电容器的制造方法,包括以下步骤:A method for manufacturing a flexible film-type solid-state supercapacitor, comprising the following steps:
分别配制外电极浆料、电极浆料、柔性固态电解质浆料、封装浆料;Separately prepare external electrode paste, electrode paste, flexible solid electrolyte paste, packaging paste;
将外电极浆料印刷于有机基膜上,印刷后将印刷膜烘干得到正极外电极膜;Printing the external electrode paste on the organic base film, drying the printed film after printing to obtain the positive external electrode film;
将电极浆料印刷于已烘干的外电极膜上,使外电极一端露出,其余部位覆盖,印刷后将印刷膜烘干得到正极膜;Printing the electrode paste on the dried outer electrode film, exposing one end of the outer electrode and covering the rest, drying the printed film after printing to obtain the positive electrode film;
将电解质浆料印刷于已烘干的正极膜上,使电解质膜完全覆盖正极膜,并比正极膜的每个边均宽稍许,印刷后将印刷膜烘干得到固态电解质膜;Printing the electrolyte slurry on the dried positive electrode film so that the electrolyte film completely covers the positive electrode film and is slightly wider than each side of the positive electrode film, and drying the printed film after printing to obtain a solid electrolyte film;
将电极浆料印刷于已烘干的固态电解质膜上,印刷面积与正极膜相同,其位置与正极膜正好相对,印刷后将印刷膜烘干得到负极膜;Printing the electrode paste on the dried solid electrolyte membrane, the printing area is the same as that of the positive electrode film, and its position is just opposite to the positive electrode film, and drying the printed film after printing to obtain the negative electrode film;
将外电极浆料印刷于已烘干的负极膜上,其印刷面积及位置与正极外电极膜相同,印刷后将印刷膜烘干得到负极外电极膜;Printing the external electrode paste on the dried negative electrode film, the printing area and position are the same as the positive external electrode film, and drying the printed film after printing to obtain the negative external electrode film;
将封装浆料印刷于已烘干的负极外电极膜上,使正极外电极膜与负极外电极膜的引出边露出,其余处完全覆盖,印刷后将印刷膜烘干得到封装膜。Printing the encapsulation paste on the dried negative external electrode film, exposing the leading edge of the positive external electrode film and the negative external electrode film, and completely covering the rest, drying the printed film after printing to obtain the encapsulation film.
采用本发明的技术制造出的外电极、正负电极、电解质、封装均有较好的柔性,因此在具有柔性的基片上能够制造出柔性器件;又由于采用精密印刷技术进行制造,因此可以制造出薄膜型器件,并且容易实现批量制造。综上,采用本发明技术可以批量制造厚度为0.2~1.0mm的柔性薄膜型超级电容器。The external electrodes, positive and negative electrodes, electrolytes, and packaging manufactured by the technology of the present invention have good flexibility, so flexible devices can be manufactured on a flexible substrate; Thin-film devices are produced, and mass production is easy to achieve. To sum up, flexible thin-film supercapacitors with a thickness of 0.2-1.0 mm can be manufactured in batches by adopting the technology of the present invention.
本柔性薄膜型固态超级电容器,适合规模生产,产品内阻低,功率特性好,非常适合于可弯曲的电子产品(柔性电子产品)的应用,例如电子纸,智能名片和塑料电子产品等。The flexible film-type solid supercapacitor is suitable for large-scale production, has low internal resistance and good power characteristics, and is very suitable for the application of bendable electronic products (flexible electronic products), such as electronic paper, smart business cards and plastic electronic products.
下面结合附图和具体实施例对本发明作进一步的说明。The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments.
附图说明Description of drawings
图1为本发明的柔性薄膜型固态超级电容器结构图。Fig. 1 is a structural diagram of the flexible thin-film solid-state supercapacitor of the present invention.
图2为活性炭双电层超级电容器工作原理图。Figure 2 is a schematic diagram of the working principle of the activated carbon electric double layer supercapacitor.
图3为本发明的柔性薄膜型固态超级电容器制造过程示意图。Fig. 3 is a schematic diagram of the manufacturing process of the flexible film-type solid supercapacitor of the present invention.
具体实施方式Detailed ways
本发明的柔性薄膜型固态超级电容器的结构如图1所示,由正、负两个电极(3、5)、两电极间的柔性固态电解质隔膜4、外电极2、6及柔性封装膜1。The structure of the flexible film-type solid-state supercapacitor of the present invention is as shown in Figure 1, by positive and negative two electrodes (3,5), the flexible
实施例1:Example 1:
(1)电极浆料配制:将80g活性炭、10g炭黑、10g聚偏氟乙烯(PVDF)与500g与N甲基吡咯烷酮搅拌混和3小时。(1) Preparation of electrode slurry: Stir and mix 80 g of activated carbon, 10 g of carbon black, 10 g of polyvinylidene fluoride (PVDF) and 500 g of N-methylpyrrolidone for 3 hours.
(2)电解质浆料配制:将100g聚乙烯醇粉末(PVA)与800g去离子水混合,加热到95℃搅拌2小时,再加入粒度<5μm的1g SiO2微粉、15g四氟硼酸四乙基铵搅拌10小时混合均匀。(2) Preparation of electrolyte slurry: mix 100g of polyvinyl alcohol powder (PVA) with 800g of deionized water, heat to 95°C and stir for 2 hours, then add 1g of SiO 2 micropowder with particle size <5μm, 15g of tetraethyl tetrafluoroborate Ammonium was stirred for 10 hours to mix well.
(3)外电极浆料配制:将10g聚乙烯醇粉末(PVA)与100g去离子水混合,加热到90℃搅拌1小时,再加入将20g镍粉(-200日)与10g银粉(-200目),搅拌2小时。(3) Preparation of external electrode slurry: Mix 10g of polyvinyl alcohol powder (PVA) with 100g of deionized water, heat to 90°C and stir for 1 hour, then add 20g of nickel powder (-200 days) and 10g of silver powder (-200 mesh), stirred for 2 hours.
(4)封装浆料配制:将50g聚偏氟乙烯(PVDF)与500g去离子水搅拌混合3小时。(4) Preparation of encapsulation slurry: Stir and mix 50 g of polyvinylidene fluoride (PVDF) and 500 g of deionized water for 3 hours.
(5)事先准备好用于印刷外电极膜、电极膜、电解质膜、封装膜的印刷模板。(5) Prepare printing templates for printing the outer electrode film, electrode film, electrolyte film, and packaging film in advance.
(6)印刷正极外电极膜:将外电极浆料印刷于0.1mm厚的硅橡胶基膜上,印刷面积:4.0×2.0mm,厚度:30~100μm,如图3的第一步所示。印刷后将印刷膜在60℃~120℃的烘箱中干燥30分钟得到正极外电极膜。(6) Print positive external electrode film: Print the external electrode paste on a 0.1 mm thick silicone rubber base film, printing area: 4.0×2.0 mm, thickness: 30-100 μm, as shown in the first step of Figure 3 . After printing, the printed film is dried in an oven at 60° C. to 120° C. for 30 minutes to obtain a positive external electrode film.
(7)印刷正极膜:将电极浆料印刷于已烘干的外电极膜上,印刷面积:2.0×2.0mm,厚度:30~100μm,使外电极一端露出2.0mm,其余部位覆盖,如图3的第二步所示。印刷后将印刷膜在60℃~120℃的烘箱中干燥30分钟得到正极膜。(7) Print positive electrode film: print the electrode paste on the dried external electrode film, printing area: 2.0×2.0mm, thickness: 30-100μm, so that 2.0mm is exposed at one end of the external electrode, and the rest is covered, as shown in the figure 3 as shown in the second step. After printing, the printed film was dried in an oven at 60° C. to 120° C. for 30 minutes to obtain a positive electrode film.
(8)印刷固态电解质膜:将电解质浆料印刷于已烘干的正极膜上,印刷面积:3.0×3.0mm,厚度:30~100μm,使电解质膜完全覆盖正极膜,并比正极膜的每个边均宽0.5mm,如图3的第三步所示。印刷后将印刷膜60℃~120℃的烘箱中干燥30分钟得到固态电解质膜。(8) Printing solid electrolyte membrane: Print the electrolyte slurry on the dried positive electrode film, printing area: 3.0×3.0mm, thickness: 30-100μm, so that the electrolyte film completely covers the positive electrode film The average width of each side is 0.5mm, as shown in the third step of Figure 3. After printing, dry the printed film in an oven at 60° C. to 120° C. for 30 minutes to obtain a solid electrolyte membrane.
(9)印刷负极膜:将电极浆料印刷于已烘干的固态电解质膜上,印刷面积:2.0×2.0mm,厚度:30~100μm,使负极膜的每个边均比电解质膜窄0.5mm,即负极膜与正极膜正好相对,如图3的第四步所示。印刷后将印刷膜60℃~120℃的烘箱中干燥30分钟得到负极膜。(9) Printing negative electrode film: Print the electrode paste on the dried solid electrolyte membrane, printing area: 2.0×2.0mm, thickness: 30-100μm, so that each side of the negative electrode film is 0.5mm narrower than the electrolyte membrane , that is, the negative electrode film is exactly opposite to the positive electrode film, as shown in the fourth step of FIG. 3 . After printing, dry the printed film in an oven at 60° C. to 120° C. for 30 minutes to obtain a negative electrode film.
(10)印刷负极外电极膜:将外电极浆料印刷于已烘干的负极膜上,印刷面积:4.0×2.0mm,厚度:50~100μm,使负极外电极膜的一个边长出负极2.0mm,其余处正好覆盖,如图3的第五步所示。印刷后将印刷膜60℃~120℃的烘箱中干燥30分钟得到负极外电极膜。(10) Printing negative external electrode film: Print the external electrode paste on the dried negative electrode film. mm, and the rest are just covered, as shown in the fifth step of Figure 3. After printing, the printed film was dried in an oven at 60° C. to 120° C. for 30 minutes to obtain a negative external electrode film.
(11)印刷封装膜:将封装浆料印刷于已烘干的负极外电极膜上,印刷面积:4.0×4.0mm,厚度:50~100μm,使正极外电极膜与负极外电极膜的向外的边各露出1.0mm,其余处完全覆盖,如图3的第六步所示。印刷后将印刷膜60℃~120℃的烘箱中干燥30分钟得到封装膜。(11) Printing packaging film: Print packaging paste on the dried negative external electrode film, printing area: 4.0×4.0mm, thickness: 50-100μm, so that the positive external electrode film and the negative external electrode film face outward 1.0mm is exposed on each side, and the rest is completely covered, as shown in the sixth step of Figure 3. After printing, dry the printed film in an oven at 60° C. to 120° C. for 30 minutes to obtain an encapsulation film.
实施例2:Example 2:
(1)电极浆料配制:将60g活性炭、25g二氧化锰、5g炭黑、10g聚偏氟乙烯(PVDF)与500g N甲基吡咯烷酮搅拌混和3小时。(1) Electrode slurry preparation: 60g of activated carbon, 25g of manganese dioxide, 5g of carbon black, 10g of polyvinylidene fluoride (PVDF) and 500g of N-methylpyrrolidone were stirred and mixed for 3 hours.
(2)电解质浆料配制:将100g聚乙烯醇粉末(PVA)与800g去离子水混合,加热到95℃搅拌2小时,再加入粒度<5μm的1g SiO2微粉、15g四氟硼酸四乙基铵,搅拌10小时混合均匀。(2) Electrolyte slurry preparation: mix 100g polyvinyl alcohol powder (PVA) with 800g deionized water, heat to 95°C and stir for 2 hours, then add 1g SiO2 micropowder with particle size <5μm, 15g tetraethylammonium tetrafluoroborate , and stirred for 10 hours to mix well.
(3)外电极浆料配制:将10g聚偏氟乙烯粉末(PVDF)与100gN甲基吡咯烷酮,加热到60℃搅拌1小时,再加入将20g镍粉(-200目)与10银粉(-200目),搅拌2小时。(3) Preparation of external electrode slurry: Heat 10g of polyvinylidene fluoride powder (PVDF) and 100g of N-methylpyrrolidone to 60°C and stir for 1 hour, then add 20g of nickel powder (-200 mesh) and 10g of silver powder (-200 mesh), stirred for 2 hours.
(4)封装浆料配制:将50g聚偏氟乙烯(PVDF)与500g去离子水搅拌混合3小时。(4) Preparation of encapsulation slurry: Stir and mix 50 g of polyvinylidene fluoride (PVDF) and 500 g of deionized water for 3 hours.
(5)按实施例1的工艺步骤采用印刷技术依次将外电极浆料、电极浆料、柔性固态电解质浆料、电极浆料、外电极浆料、封装浆料精确地涂于有机基膜(PVDF、PVC、聚氨酯、硅橡胶、天然橡胶的任一种)上,配合相应的压制、烘干、裁剪、包装工艺,最终形成电极—隔膜—电极结构的柔性薄膜型固态超级电容器。(5) According to the process steps of Example 1, the external electrode paste, electrode paste, flexible solid electrolyte paste, electrode paste, external electrode paste, and packaging paste are accurately applied to the organic base film ( Any one of PVDF, PVC, polyurethane, silicone rubber, and natural rubber), with the corresponding pressing, drying, cutting, and packaging processes, and finally form a flexible film-type solid supercapacitor with an electrode-diaphragm-electrode structure.
实施例3:Example 3:
(1)电极浆料配制:将85g聚吡咯(PPy)、5g炭黑、10g聚偏氟乙烯(PVDF)与500g与N甲基吡咯烷酮搅拌混和3小时。(1) Electrode slurry preparation: 85g of polypyrrole (PPy), 5g of carbon black, 10g of polyvinylidene fluoride (PVDF) and 500g of N-methylpyrrolidone were stirred and mixed for 3 hours.
(2)电解质浆料配制:将100g共聚物P(VDF-HFP)与800gNMP混合,搅拌2小时,加入30ml邻苯二甲酸二丁酯(DBP),搅拌1小时,再加入0.3g Al2O3纳米粉末(平均粒径<60nm)、15g四氟硼酸四乙基铵,搅拌1小时混合均匀。(2) Electrolyte slurry preparation: mix 100g copolymer P(VDF-HFP) with 800g NMP, stir for 2 hours, add 30ml dibutyl phthalate (DBP), stir for 1 hour, then add 0.3g Al 2 O 3 nanometer powder (average particle size <60nm), 15g tetraethylammonium tetrafluoroborate, stir for 1 hour and mix well.
(3)外电极浆料配制:将10g聚偏氟乙烯粉末(PVDF)与100gN甲基吡咯烷酮,加热到60℃搅拌1小时,再加入将20g镍粉(-200目)与10银粉(-200目),搅拌2小时。(3) Preparation of external electrode slurry: Heat 10g of polyvinylidene fluoride powder (PVDF) and 100g of N-methylpyrrolidone to 60°C and stir for 1 hour, then add 20g of nickel powder (-200 mesh) and 10g of silver powder (-200 mesh), stirred for 2 hours.
(4)封装浆料配制:将50g聚偏氟乙烯(PVDF)与500g去离子水搅拌混合3小时。(4) Preparation of encapsulation slurry: Stir and mix 50 g of polyvinylidene fluoride (PVDF) and 500 g of deionized water for 3 hours.
(5)按实施例1的工艺步骤采用印刷技术依次将外电极浆料、电极浆料、柔性固态电解质浆料、电极浆料、外电极浆料、封装浆料精确地涂于基体(PVDF、PVC、聚氨酯、硅橡胶、天然橡胶的任一种)上,配合相应的压制、烘干、裁剪、包装工艺,最终形成电极—隔膜—电极结构的柔性薄膜型固态超级电容器。(5) According to the process steps of Example 1, the external electrode paste, electrode paste, flexible solid electrolyte paste, electrode paste, external electrode paste, and packaging paste are accurately applied to the substrate (PVDF, Any one of PVC, polyurethane, silicone rubber, natural rubber), with the corresponding pressing, drying, cutting, and packaging processes, and finally form a flexible film-type solid supercapacitor with an electrode-diaphragm-electrode structure.
实施例4:Example 4:
(1)电极浆料配制:将85g聚苯胺(PANI)、5g炭黑、10g聚偏氟乙烯(PVDF)与500g与N甲基吡咯烷酮搅拌混和3小时。(1) Electrode slurry preparation: 85g of polyaniline (PANI), 5g of carbon black, 10g of polyvinylidene fluoride (PVDF), and 500g of N-methylpyrrolidone were stirred and mixed for 3 hours.
(2)电解质浆料配制:将100g共聚物P(VDF-HFP)与800gNMP混合,搅拌2小时,加入30ml邻苯二甲酸二丁酯(DBP),搅拌1小时,再加入0.3g Al2O3纳米粉末(平均粒径<60nm)、15g三甲基—乙基四氟硼酸铵,搅拌1小时混合均匀。(2) Electrolyte slurry preparation: mix 100g copolymer P(VDF-HFP) with 800g NMP, stir for 2 hours, add 30ml dibutyl phthalate (DBP), stir for 1 hour, then add 0.3g Al 2 O 3 nanometer powder (average particle size <60nm), 15g of trimethyl-ethylammonium tetrafluoroborate, stirred for 1 hour and mixed evenly.
(3)外电极浆料配制:将10g聚偏氟乙烯粉末(PVDF)与100gN甲基吡咯烷酮,加热到60℃搅拌1小时,再加入将20g镍粉(-200目)与10银粉(-200目),搅拌2小时。(3) Preparation of external electrode slurry: Heat 10g of polyvinylidene fluoride powder (PVDF) and 100g of N-methylpyrrolidone to 60°C and stir for 1 hour, then add 20g of nickel powder (-200 mesh) and 10g of silver powder (-200 mesh), stirred for 2 hours.
(4)封装浆料配制:将50g聚偏氟乙烯(PVDF)与500g去离子水搅拌混合3小时。(4) Preparation of encapsulation slurry: Stir and mix 50 g of polyvinylidene fluoride (PVDF) and 500 g of deionized water for 3 hours.
(5)按实施例1的工艺步骤采用印刷技术依次将外电极浆料、电极浆料、柔性固态电解质浆料、电极浆料、外电极浆料、封装浆料精确地涂于基体(PVDF、PVC、聚氨酯、硅橡胶、天然橡胶的任一种)上,配合相应的压制、烘干、裁剪、包装工艺,最终形成电极—隔膜—电极结构的柔性薄膜型固态超级电容器。(5) According to the process steps of Example 1, the external electrode paste, electrode paste, flexible solid electrolyte paste, electrode paste, external electrode paste, and packaging paste are accurately applied to the substrate (PVDF, Any one of PVC, polyurethane, silicone rubber, natural rubber), with the corresponding pressing, drying, cutting, and packaging processes, and finally form a flexible film-type solid supercapacitor with an electrode-diaphragm-electrode structure.
上述实施例中制造所得的超级电容器性能如表1所示。The properties of the supercapacitors manufactured in the above examples are shown in Table 1.
表1Table 1
由表2可以看出,按本发明可以制造出性能优良的柔性薄膜型固体超级电容器。As can be seen from Table 2, the flexible film type solid supercapacitor with excellent performance can be manufactured according to the present invention.
上述仅是本发明的几个实例,并不说明本发明仅限于下述实例所述的内容,本行业中的技术人员依照本发明权利要求项制造的产品均属本发明内容。The above are only a few examples of the present invention, and do not illustrate that the present invention is limited to the content described in the following examples. The products manufactured by those skilled in the art according to the claims of the present invention all belong to the content of the present invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200710035013 CN101162650B (en) | 2007-05-29 | 2007-05-29 | Flexible thin-film solid-state supercapacitor and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200710035013 CN101162650B (en) | 2007-05-29 | 2007-05-29 | Flexible thin-film solid-state supercapacitor and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101162650A CN101162650A (en) | 2008-04-16 |
CN101162650B true CN101162650B (en) | 2010-06-30 |
Family
ID=39297548
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200710035013 Expired - Fee Related CN101162650B (en) | 2007-05-29 | 2007-05-29 | Flexible thin-film solid-state supercapacitor and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101162650B (en) |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012021289A1 (en) * | 2010-08-12 | 2012-02-16 | Massachusetts Institute Of Technology | Flexible conducting polymer energy storage device |
TWI537996B (en) * | 2011-10-04 | 2016-06-11 | 逢甲大學 | Supercapacitor and method of manufacture thereof |
CN103387731A (en) * | 2012-05-08 | 2013-11-13 | 海洋王照明科技股份有限公司 | Gel polymer electrolyte membrane and preparation method thereof |
CN103219164B (en) * | 2013-04-19 | 2016-05-25 | 中国科学院物理研究所 | Ultra-thin, self-supporting, flexibility, all-solid-state supercapacitor and preparation method thereof |
KR102180586B1 (en) * | 2013-07-02 | 2020-11-19 | 오츠카 가가쿠 가부시키가이샤 | Nonaqueous electrolyte solution for electric double layer capacitors |
CN103714978B (en) * | 2013-12-12 | 2016-08-31 | 中国科学院深圳先进技术研究院 | Electrode slice and preparation method thereof, ultracapacitor |
CN106711498A (en) * | 2015-11-17 | 2017-05-24 | 浙江省化工研究院有限公司 | Polymer lithium ion battery and preparation method thereof |
CN105551827B (en) * | 2016-02-29 | 2018-03-16 | 西南大学 | With reference to the preparation method of the layer assembly flexibility all-solid-state supercapacitor of silk-screen printing |
CN105871247B (en) * | 2016-04-27 | 2019-01-18 | 北京大学 | The self-charging energy unit and its manufacturing method integrated based on friction generator and supercapacitor |
CN106298276B (en) * | 2016-09-26 | 2018-09-04 | 南开大学 | A kind of method that continuous printing prepares ultracapacitor |
CN108122682B (en) * | 2016-11-26 | 2020-11-10 | 中国科学院大连化学物理研究所 | Arbitrary shape stacked supercapacitor on the same substrate and preparation method thereof |
CN108122685B (en) * | 2016-11-26 | 2020-11-10 | 中国科学院大连化学物理研究所 | Stacked supercapacitor prepared by ink-jet printing and preparation method thereof |
CN106783220A (en) * | 2016-12-19 | 2017-05-31 | 北京印刷学院 | A kind of preparation method of flexible all-solid-state supercapacitor |
CN107564736B (en) * | 2017-07-31 | 2018-10-26 | 西北工业大学 | The preparation method of all solid state asymmetric capacitor |
CN108400378A (en) * | 2018-03-15 | 2018-08-14 | 清陶(昆山)能源发展有限公司 | A kind of all-solid lithium-ion battery flexible and preparation method thereof |
CN108493009A (en) * | 2018-03-28 | 2018-09-04 | 深圳新源柔性科技有限公司 | A kind of printing ultracapacitor preparation method and printing ultracapacitor |
CN109637845B (en) * | 2019-01-09 | 2021-06-22 | 南京滕峰科技有限公司 | Method for constructing all-solid-state flexible supercapacitor based on double-solid-state redox electrolyte |
CN109932016B (en) * | 2019-01-29 | 2020-07-03 | 南开大学 | Inflatable flexible capacitive volume sensor and preparation method thereof |
CN110172771B (en) * | 2019-04-26 | 2021-01-26 | 合肥工业大学 | Novel wearable supercapacitor fabric and preparation method thereof |
CN110233059B (en) * | 2019-05-15 | 2021-02-19 | 广州广华精容能源技术有限公司 | Coaxial linear super capacitor and preparation method thereof |
CN112259776B (en) * | 2019-07-02 | 2022-02-22 | 邱瑞光 | Electricity storage unit, electricity storage module, and battery |
CN113080977B (en) * | 2021-03-25 | 2022-12-20 | 山东科技大学 | A method for preparing a flexible electrode, a flexible electrode, and a method for using the electrode |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1519870A (en) * | 2003-01-23 | 2004-08-11 | 上海奥威科技开发有限公司 | Method for producing mixed type super capacitor |
CN1538470A (en) * | 2003-09-30 | 2004-10-20 | 清华大学深圳研究生院 | Stacked supercapacitor and manufacturing method thereof |
CN1547216A (en) * | 2003-12-11 | 2004-11-17 | 北京理工大学 | A Novel Composite Electrolyte Material |
CN1770344A (en) * | 2004-10-25 | 2006-05-10 | 中国科学院电工研究所 | A kind of supercapacitor and its manufacturing method |
-
2007
- 2007-05-29 CN CN 200710035013 patent/CN101162650B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1519870A (en) * | 2003-01-23 | 2004-08-11 | 上海奥威科技开发有限公司 | Method for producing mixed type super capacitor |
CN1538470A (en) * | 2003-09-30 | 2004-10-20 | 清华大学深圳研究生院 | Stacked supercapacitor and manufacturing method thereof |
CN1547216A (en) * | 2003-12-11 | 2004-11-17 | 北京理工大学 | A Novel Composite Electrolyte Material |
CN1770344A (en) * | 2004-10-25 | 2006-05-10 | 中国科学院电工研究所 | A kind of supercapacitor and its manufacturing method |
Non-Patent Citations (7)
Title |
---|
A.Lewandowski,M.Galinski.Carbon-ionic liquid double-layer capacitors.JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS65.2004,65281-286,第1部分的12-14行,对比文件5的表2. |
A.Lewandowski,M.Galinski.Carbon-ionic liquid double-layer capacitors.JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS65.2004,65281-286,第1部分的12-14行,对比文件5的表2. * |
夏熙等.一种正在迅速发展的贮能装置--超级电容器(2).电池工业第9卷 第4期.2004,第9卷(第4期),181-188页,表8. |
夏熙等.一种正在迅速发展的贮能装置——超级电容器(2).电池工业第9卷 第4期.2004,第9卷(第4期),181-188页,表8. * |
张军玲.离子液体电解质在电化学电容器中的应用研究.中国优秀硕士学位论文全文数据库(电子期刊)工程科技Ⅱ辑.2005,工程科技Ⅱ辑C042-58,第8页最后两行-第9页第1行. * |
邓梅根等.双电层电容器电解质研究进展.电子元件与材料第24卷 第10期.2005,第24卷(第10期),61-64页,2.2.2的5-7行. |
邓梅根等.双电层电容器电解质研究进展.电子元件与材料第24卷 第10期.2005,第24卷(第10期),61-64页,2.2.2的5-7行. * |
Also Published As
Publication number | Publication date |
---|---|
CN101162650A (en) | 2008-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101162650B (en) | Flexible thin-film solid-state supercapacitor and manufacturing method thereof | |
Zhang et al. | Halide perovskite materials for energy storage applications | |
Kim et al. | High performance flexible double-sided micro-supercapacitors with an organic gel electrolyte containing a redox-active additive | |
Keskinen et al. | Architectural modifications for flexible supercapacitor performance optimization | |
US7414825B2 (en) | Electrochemical device | |
EP2545567A1 (en) | Electrical energy storage device containing an electroactive separator | |
CN109036858B (en) | Flexible all-solid-state planar interdigital lithium ion capacitor and preparation method thereof | |
CN105826086B (en) | Flexible all-solid-state supercapacitor and preparation method thereof based on SiC nanowire array | |
Wang et al. | Material and structural design of microsupercapacitors | |
CN101226829B (en) | A kind of tantalum ruthenium hybrid electrolytic capacitor and its preparation method | |
CN102623183A (en) | A kind of preparation method of electrolytic capacitor | |
CN109065372B (en) | A kind of all-solid flexible supercapacitor and preparation method thereof | |
KR101098240B1 (en) | Manufacturing method of supercapacitor cell | |
KR101635763B1 (en) | Composite for ultracapacitor electrode, manufacturing method of ultracapacitor electrode using the composite, and ultracapacitor manufactured by the method | |
KR20100035870A (en) | Gel-type electrolyte composition for electric double layer capacitors, method of preparing the same, and electric double layer capacitors comprising electrolyte layer | |
KR101860755B1 (en) | Composite for ultracapacitor electrode, manufacturing method of ultracapacitor electrode using the composite, and ultracapacitor manufactured by the method | |
KR20140043788A (en) | An energy storage device, an inorganic gelled electrolyte and methods thereof | |
KR101493976B1 (en) | Manufacturing method of Asymmetrical Super Capacitor with Cylindrical Type | |
US9036332B2 (en) | Energy storage device, an inorganic gelled electrolyte and methods thereof | |
CN114724868A (en) | Preparation method of miniature supercapacitor printed by graphene conductive aqueous slurry | |
JP2014521231A5 (en) | ||
KR101936044B1 (en) | Supercapacitor electrode for high temperature, manufactureing method of the electrode, and Supercapacitor for high temperature using the electrode | |
Tuukkanen et al. | Printable power storage: batteries and supercapacitors | |
Krebs et al. | Printable power storage: batteries and supercapacitors | |
CN106601495B (en) | Three asymmetric solid-state electrochemistry capacitors of nanometer aniline copolymer and activated carbon structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100630 |
|
CF01 | Termination of patent right due to non-payment of annual fee |