CN105826086B - Flexible all-solid-state supercapacitor and preparation method thereof based on SiC nanowire array - Google Patents
Flexible all-solid-state supercapacitor and preparation method thereof based on SiC nanowire array Download PDFInfo
- Publication number
- CN105826086B CN105826086B CN201510513078.8A CN201510513078A CN105826086B CN 105826086 B CN105826086 B CN 105826086B CN 201510513078 A CN201510513078 A CN 201510513078A CN 105826086 B CN105826086 B CN 105826086B
- Authority
- CN
- China
- Prior art keywords
- flexible
- solid
- positive
- supercapacitor
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002070 nanowire Substances 0.000 title claims abstract description 11
- 238000002360 preparation method Methods 0.000 title claims abstract description 8
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims abstract description 26
- 229910010271 silicon carbide Inorganic materials 0.000 claims abstract description 20
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 7
- 239000004744 fabric Substances 0.000 claims abstract description 7
- 239000007784 solid electrolyte Substances 0.000 claims abstract description 7
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000007787 solid Substances 0.000 claims abstract description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims abstract description 3
- 229910021389 graphene Inorganic materials 0.000 claims abstract description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 4
- 239000000017 hydrogel Substances 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims 1
- 239000004698 Polyethylene Substances 0.000 claims 1
- 239000004411 aluminium Substances 0.000 claims 1
- 230000005611 electricity Effects 0.000 claims 1
- -1 polyethylene Polymers 0.000 claims 1
- 229920000573 polyethylene Polymers 0.000 claims 1
- 230000010148 water-pollination Effects 0.000 claims 1
- 239000003792 electrolyte Substances 0.000 abstract description 6
- 238000005452 bending Methods 0.000 abstract description 5
- 239000004372 Polyvinyl alcohol Substances 0.000 abstract description 4
- 239000003990 capacitor Substances 0.000 abstract description 4
- 229920002451 polyvinyl alcohol Polymers 0.000 abstract description 4
- 238000000034 method Methods 0.000 abstract description 3
- 238000003756 stirring Methods 0.000 abstract description 2
- 238000003491 array Methods 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 238000002484 cyclic voltammetry Methods 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 239000007772 electrode material Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- SICLLPHPVFCNTJ-UHFFFAOYSA-N 1,1,1',1'-tetramethyl-3,3'-spirobi[2h-indene]-5,5'-diol Chemical compound C12=CC(O)=CC=C2C(C)(C)CC11C2=CC(O)=CC=C2C(C)(C)C1 SICLLPHPVFCNTJ-UHFFFAOYSA-N 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000011982 device technology Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000012983 electrochemical energy storage Methods 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
一种制备基于SiC纳米线阵列的柔性全固态超级电容器的制备方法,该超级电容器包括柔性正电极、固体电解质、隔膜和柔性负电极,其包括以下具体步骤:本发明解决上述技术问题所采用的技术方案为:该SiC纳米线阵列的柔性超级固态电容器的制备方法包括以下具体步骤:(1)在柔性碳布、石墨烯膜上生长碳化硅或氮掺杂的或铝掺杂的碳化硅纳米线阵列做为超级电容器的正、负电极,并裁剪成合适的大小;(2)将质量百分比为30~50%的聚乙烯醇、30~50%磷酸和20~40%的水在70~90°C下搅拌混合均匀制成电解质;(3)将电解质分别涂敷在柔性正、负电极表面,在空气环境中待体电解质成型;(4)在柔性正、负电极间放入隔膜叠压在一起,静置干燥即可得到柔性全固态超级电容器。此固态超级电容器在弯折和扭曲的情况下,性能没有明显变化。
A method for preparing a flexible all-solid-state supercapacitor based on a SiC nanowire array, the supercapacitor includes a flexible positive electrode, a solid electrolyte, a diaphragm, and a flexible negative electrode, which includes the following specific steps: the present invention solves the above technical problems. The technical solution is: the preparation method of the flexible super solid capacitor of the SiC nanowire array includes the following specific steps: (1) growing silicon carbide or nitrogen-doped or aluminum-doped silicon carbide nanometers on flexible carbon cloth or graphene film The line array is used as the positive and negative electrodes of the supercapacitor, and it is cut into a suitable size; (2) The mass percentage is 30~50% polyvinyl alcohol, 30~50% phosphoric acid and 20~40% water in 70~ Stir and mix evenly at 90°C to make the electrolyte; (3) Coat the electrolyte on the surface of the flexible positive and negative electrodes respectively, and wait for the bulk electrolyte to form in the air environment; (4) Put a diaphragm stack between the flexible positive and negative electrodes Press them together and let them stand to dry to get a flexible all-solid supercapacitor. The performance of this solid-state supercapacitor does not change significantly under bending and twisting.
Description
技术领域technical field
本发明涉及一种SiC纳米线阵列的柔性全固态超级电容器的制备方法,属于电化学储能器件制备技术领域。The invention relates to a method for preparing a flexible all-solid-state supercapacitor of a SiC nanowire array, and belongs to the technical field of preparation of electrochemical energy storage devices.
技术背景technical background
电子器件技术正在向微小型化、集成化和柔性化方向发展。与传统电子器件相比,柔性电子器件在便携式、可穿戴电子产品及航空航天、生物医学、信息、能源等领域具有重要的应用前景。2013年8月,柔性技术已经被外媒评选为全球十大科技进展之一。为了满足这些柔性电子产品广泛的应用需求,储能器件不仅要有较大的能量和功率密度,同时要有优良的柔韧性和可加工性以满足未来柔性集成电路技术和制造工艺飞速发展的要求。Electronic device technology is developing towards miniaturization, integration and flexibility. Compared with traditional electronic devices, flexible electronic devices have important application prospects in portable and wearable electronic products, aerospace, biomedicine, information, energy and other fields. In August 2013, flexible technology has been selected by foreign media as one of the top ten technological advances in the world. In order to meet the wide application requirements of these flexible electronic products, energy storage devices must not only have greater energy and power density, but also have excellent flexibility and processability to meet the requirements of the rapid development of flexible integrated circuit technology and manufacturing processes in the future. .
超级电容器,是一种基于电极材料存储电荷的新型高效储能器件,性能介于传统静电电容器和电池的之间,具有高能量密度、长循环寿命、充放电快速、工作温度范围宽等突出优点,主要是利用双电层和氧化还原赝电容存储电能,在消费类电子、汽车等领域有望得到大规模应用。伴随着具有纳米结构的新型电极材料引入超级电容器,纳米材料独特的物理、化学性能使得超级电容器的高性能逐渐得到提高,设计具有阵列结构、高导电性、高比表面积柔性全固态超级电容器电极材料越来越成为可能。Supercapacitor is a new type of high-efficiency energy storage device based on electrode materials to store charges. Its performance is between that of traditional electrostatic capacitors and batteries. It has outstanding advantages such as high energy density, long cycle life, fast charging and discharging, and wide operating temperature range. , mainly using the electric double layer and redox pseudocapacitance to store electrical energy, and is expected to be widely used in consumer electronics, automobiles and other fields. With the introduction of new electrode materials with nanostructures into supercapacitors, the unique physical and chemical properties of nanomaterials have gradually improved the performance of supercapacitors, and the design of flexible all-solid supercapacitor electrode materials with array structure, high conductivity, and high specific surface area more and more possible.
SiC具有耐化学腐蚀性好、强度高、硬度高、耐高温及独特的优异电学和光学等性能,是研究微电子器件和光电子器件理想的新型半导体材料。掺杂氮和铝的碳化硅纳米线阵列因具有较好的导电性及高的比表面积,有望成为较好的超级电容器电极材料。SiC has good chemical corrosion resistance, high strength, high hardness, high temperature resistance and unique excellent electrical and optical properties. It is an ideal new semiconductor material for researching microelectronic devices and optoelectronic devices. Silicon carbide nanowire arrays doped with nitrogen and aluminum are expected to be good electrode materials for supercapacitors due to their good electrical conductivity and high specific surface area.
发明内容Contents of the invention
本发明所要解决的技术问题是基于碳化硅纳米线阵列及掺杂氮和铝的碳化硅纳米线阵列的优良的物理、化学性能提供一种制备基于SiC纳米线阵列的柔性固态超级电容器的制备方法。The technical problem to be solved by the present invention is to provide a method for preparing a flexible solid-state supercapacitor based on SiC nanowire arrays based on the excellent physical and chemical properties of silicon carbide nanowire arrays and silicon carbide nanowire arrays doped with nitrogen and aluminum .
本发明解决上述技术问题所采用的技术方案为:该SiC纳米线阵列的柔性超级固态电容器的制备方法包括以下具体步骤:The technical scheme adopted by the present invention to solve the above-mentioned technical problems is: the preparation method of the flexible super solid capacitor of the SiC nanowire array comprises the following specific steps:
(1)在柔性碳布、石墨烯膜上生长碳化硅或氮掺杂的或铝掺杂的碳化硅纳米线阵列做为超级电容器的正、负电极,并裁剪成合适的大小;(1) Growing silicon carbide or nitrogen-doped or aluminum-doped silicon carbide nanowire arrays on flexible carbon cloth or graphene film as the positive and negative electrodes of supercapacitors, and cutting them into appropriate sizes;
(2)将质量百分比为30~50%的聚乙烯醇、30~50%磷酸或硫酸和20~40%的水在70~90℃下搅拌混合均匀制成电解质;(2) Stir and mix 30-50% polyvinyl alcohol, 30-50% phosphoric acid or sulfuric acid and 20-40% water at 70-90° C. to make electrolyte;
(3)将电解质分别涂敷在柔性正、负电极表面,在空气环境中待体电解质成型;(3) The electrolyte is coated on the surface of the flexible positive and negative electrodes respectively, and the bulk electrolyte is formed in the air environment;
(4)在柔性正、负电极间放入隔膜叠压在一起,静置干燥即可得到柔性全固态超级电容器。(4) A separator is placed between the flexible positive and negative electrodes and stacked together, and the flexible all-solid-state supercapacitor can be obtained by standing and drying.
所述步骤(4)中所用的隔膜为亲水性隔膜。The membrane used in the step (4) is a hydrophilic membrane.
与现有技术相比,本发明的优点在于:Compared with the prior art, the present invention has the advantages of:
与已报道的没有掺杂的SiC纳米线阵列的电容器相比,本发明实现了氮和铝掺杂的柔性全固态超级电容器的制备Compared with the reported capacitors without doped SiC nanowire arrays, the present invention enables the fabrication of flexible all-solid-state supercapacitors doped with nitrogen and aluminum
附图说明Description of drawings
图1为本发明所制得的超级电容器器件的结构原理图;Fig. 1 is the structural schematic diagram of the supercapacitor device that the present invention makes;
图2为本发明实施例一所制得的SiC超级电容器在不同扫描速率下的循环伏安曲线;Fig. 2 is the cyclic voltammetry curve of the SiC supercapacitor prepared in Example 1 of the present invention at different scan rates;
图3为本发明实施例一所制得的SiC超级电容器的恒电流充放电曲线;Fig. 3 is the constant current charge and discharge curve of the SiC supercapacitor prepared in Example 1 of the present invention;
图4为本发明实施例一所制得的SiC超级电容器在不弯折和弯折90度、180度及扭曲60度、120度、240度情况下的循环伏安曲线对比图;Fig. 4 is a comparison chart of cyclic voltammetry curves of the SiC supercapacitor prepared in Example 1 of the present invention without bending, bending 90 degrees, 180 degrees and twisting 60 degrees, 120 degrees, 240 degrees;
图5为本发明实施例二所制得的SiC超级电容器在不同扫描速率下的循环伏安曲线;Fig. 5 is the cyclic voltammetry curve of the SiC supercapacitor prepared in Example 2 of the present invention at different scan rates;
图6为本发明实施例二所制得的SiC超级电容器的恒电流充放电曲线;Fig. 6 is the constant current charge and discharge curve of the SiC supercapacitor prepared in Example 2 of the present invention;
具体实施方式Detailed ways
以下结合附图实施例对本发明作进一步的详细描述。The present invention will be further described in detail below with reference to the embodiments of the accompanying drawings.
实施例一Embodiment one
(1)首先采用化学气相沉积法在碳布上生长氮掺杂的碳化硅纳米线阵列,(2)并裁剪成合适的大小,作为正、负极,(2)配制PVA/H3PO3水凝胶溶液,然后将液滴滴在长有SiC纳米线的碳布上,旋涂一层该水凝胶溶液并干燥;(3)将水溶性隔膜置于上一步骤中得到的两片电极-固态电解质正负极材料中间,对称地贴合在一起,静置干燥后即完成器件组装。所制得的超级电容器在不同扫描速率下的循环伏安曲线如图2所示,从上到下,扫描速率依次为:30、20、10、5、2v/s;所制得的超级电容器恒电流充放电曲线如图3所示,从左到右的充放电电流密度依次为:28、14、7、2、1mA/cm-2,所制得的SiC超级电容器在不弯折和弯折90度、180度及扭曲60度、120度、240度情况下的循环伏安曲线如图4所示,可见此固态超级电容器在弯折和扭曲的情况下,性能没有明显变化。(1) First grow nitrogen-doped silicon carbide nanowire arrays on carbon cloth by chemical vapor deposition, (2) cut them into appropriate sizes, and use them as positive and negative electrodes, (2) prepare PVA/H 3 PO 3 water Gel solution, and then drop the drop on the carbon cloth with SiC nanowires, spin coat a layer of the hydrogel solution and dry; (3) place the water-soluble diaphragm on the two electrodes obtained in the previous step - Between the positive and negative materials of the solid electrolyte, they are symmetrically pasted together, and the device assembly is completed after standing and drying. The cyclic voltammetry curves of the prepared supercapacitors at different scan rates are shown in Figure 2. From top to bottom, the scan rates are: 30, 20, 10, 5, 2v/s; The constant current charge and discharge curves are shown in Figure 3. The charge and discharge current densities from left to right are: 28, 14, 7, 2, 1mA/cm -2 . The cyclic voltammetry curves of bending 90 degrees, 180 degrees and twisting 60 degrees, 120 degrees, 240 degrees are shown in Figure 4. It can be seen that the performance of this solid supercapacitor does not change significantly under the conditions of bending and twisting.
实施例二Embodiment two
(1)首先采用化学气相沉积法在碳布上生长铝掺杂的碳化硅纳米线阵列,(2)并裁剪成合适的大小,作为正、负极,(2)配制PVA/硫酸水凝胶溶液,然后将液滴滴在长有SiC纳米线的碳布上,旋涂一层该水凝胶溶液并干燥;(3)将水溶性隔膜置于上一步骤中得到的两片电极-固态电解质正负极材料中间,对称地贴合在一起,静置干燥后即完成器件组装。所制得的超级电容器在不同扫描速率下的循环伏安曲线如图5所示,从上到下,扫描速率依次为:20、10、5、2、1v/s;所制得的超级电容器恒电流充放电曲线如图6所示,从左到右的充放电电流密度依次为:70、35、15、5、2mA/cm-2。(1) First grow aluminum-doped silicon carbide nanowire arrays on carbon cloth by chemical vapor deposition, (2) and cut them into appropriate sizes, as positive and negative electrodes, (2) prepare PVA/sulfuric acid hydrogel solution , and then drop the drop on the carbon cloth with SiC nanowires, spin coat a layer of the hydrogel solution and dry; (3) put the water-soluble separator on the two electrodes obtained in the previous step-solid electrolyte In the middle of the positive and negative electrode materials, they are symmetrically attached together, and the device assembly is completed after standing and drying. The cyclic voltammetry curves of the prepared supercapacitors at different scan rates are shown in Figure 5. From top to bottom, the scan rates are: 20, 10, 5, 2, 1v/s; The constant current charge and discharge curves are shown in Figure 6, and the charge and discharge current densities from left to right are: 70, 35, 15, 5, 2mA/cm -2 .
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510513078.8A CN105826086B (en) | 2015-08-20 | 2015-08-20 | Flexible all-solid-state supercapacitor and preparation method thereof based on SiC nanowire array |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510513078.8A CN105826086B (en) | 2015-08-20 | 2015-08-20 | Flexible all-solid-state supercapacitor and preparation method thereof based on SiC nanowire array |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105826086A CN105826086A (en) | 2016-08-03 |
CN105826086B true CN105826086B (en) | 2018-08-24 |
Family
ID=56514677
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510513078.8A Active CN105826086B (en) | 2015-08-20 | 2015-08-20 | Flexible all-solid-state supercapacitor and preparation method thereof based on SiC nanowire array |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105826086B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107833755A (en) * | 2017-08-28 | 2018-03-23 | 青岛科技大学 | A kind of high-performance SiC@Fe2O3Hybrid supercapacitor negative material |
CN109904004B (en) * | 2019-01-30 | 2020-10-09 | 宁波工程学院 | A kind of preparation method of SiC nanowire array film and its application in supercapacitor electrode |
CN111710534B (en) * | 2020-06-24 | 2021-12-21 | 青岛大学 | Preparation method of asymmetric solid-state supercapacitor based on flexible silicon carbide/porous graphene/manganese dioxide porous nanocomposite |
CN112614705B (en) * | 2020-11-03 | 2022-07-01 | 宁波工程学院 | Preparation method of zigzag nitrogen-doped SiC nanowires growing on carbon fiber cloth |
CN112614699B (en) * | 2020-11-03 | 2022-06-17 | 宁波工程学院 | A zigzag nitrogen-doped SiC nanowire-based high-temperature supercapacitor |
CN114783781B (en) * | 2022-05-30 | 2023-07-21 | 武汉楚能电子有限公司 | Hybrid supercapacitor based on silicon carbide unit layer material |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102509635A (en) * | 2011-10-31 | 2012-06-20 | 华中科技大学 | Preparation method of flexible super capacitor based on carbon cloth |
CN103219164A (en) * | 2013-04-19 | 2013-07-24 | 中国科学院物理研究所 | Ultra-thin, self-supporting, flexible and all-solid-state super capacitor and manufacturing method thereof |
CN103337376A (en) * | 2013-05-06 | 2013-10-02 | 中国科学院物理研究所 | All-solid-state winding type supercapacitor and production method thereof |
KR20140011485A (en) * | 2012-05-30 | 2014-01-29 | 고려대학교 산학협력단 | Flexible supercapacitor containing bacteria nanocellulose paper with coating carbonnanotube and solid electrolyte and the preparation thereof |
-
2015
- 2015-08-20 CN CN201510513078.8A patent/CN105826086B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102509635A (en) * | 2011-10-31 | 2012-06-20 | 华中科技大学 | Preparation method of flexible super capacitor based on carbon cloth |
KR20140011485A (en) * | 2012-05-30 | 2014-01-29 | 고려대학교 산학협력단 | Flexible supercapacitor containing bacteria nanocellulose paper with coating carbonnanotube and solid electrolyte and the preparation thereof |
CN103219164A (en) * | 2013-04-19 | 2013-07-24 | 中国科学院物理研究所 | Ultra-thin, self-supporting, flexible and all-solid-state super capacitor and manufacturing method thereof |
CN103337376A (en) * | 2013-05-06 | 2013-10-02 | 中国科学院物理研究所 | All-solid-state winding type supercapacitor and production method thereof |
Non-Patent Citations (1)
Title |
---|
Performance characteristics of supercapacitor electrodes made of silicon carbide nanowires grown on carbon fabric;Lin Gu, et al;《Journal of Power Sources》;20130618;第243卷;摘要,文章第649-650页 * |
Also Published As
Publication number | Publication date |
---|---|
CN105826086A (en) | 2016-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105826086B (en) | Flexible all-solid-state supercapacitor and preparation method thereof based on SiC nanowire array | |
CN105047423B (en) | A kind of flexibility symmetric form fake capacitance ultracapacitor and preparation method thereof | |
CN107634184B (en) | Flexible all-solid-state polymer lithium battery and preparation method thereof | |
Lu et al. | Flexible solid-state supercapacitors: design, fabrication and applications | |
Hu et al. | Flexible, in-plane, and all-solid-state micro-supercapacitors based on printed interdigital Au/polyaniline network hybrid electrodes on a chip | |
Senthilkumar et al. | Advances and prospects of fiber supercapacitors | |
Liu et al. | Integrated solar capacitors for energy conversion and storage | |
CN104538202B (en) | A kind of two-way stretchable ultracapacitor and preparation method thereof | |
CN107919233B (en) | A kind of high voltage flexible solid-state supercapacitor and preparation method thereof | |
Zhang et al. | Flexible and all-solid-state supercapacitors with long-time stability constructed on PET/Au/polyaniline hybrid electrodes | |
Sun et al. | Integrating photovoltaic conversion and lithium ion storage into a flexible fiber | |
CN106449166B (en) | Ultracapacitor preparation method based on single-walled carbon nanotube/tungsten oxide nano composite film electrode | |
CN101162650A (en) | Flexible thin film type solid-state super capacitor and its manufacture process | |
CN108933254A (en) | A kind of preparation method of negative electrode of lithium ion battery binder and the method for preparing lithium ion battery negative material | |
CN105047927A (en) | Aligned carbon nano tube/molybdenum disulfide composite fiber and preparation method and application thereof | |
CN103714978B (en) | Electrode slice and preparation method thereof, ultracapacitor | |
CN103093972B (en) | Be applied to the preparation method of the compound film electrode material of MEMS supercapacitor | |
CN106128799A (en) | A kind of preparation method based on Graphene/polypyrrole nanotube composite film ultracapacitor | |
CN104992844A (en) | Supercapacitor which can be spliced and preparation method thereof | |
CN109637846A (en) | A kind of high voltage plane supercapacitor and preparation method thereof | |
Tian et al. | Flexible in-plane zinc-ion hybrid capacitors with synergistic electrochemical behaviors for self-powered energy systems | |
Lee et al. | A micromachined photo-supercapacitor integrated with CdS-sensitized solar cells and buckypaper | |
CN110808180B (en) | Preparation method of miniature asymmetric super capacitor, miniature asymmetric super capacitor and application thereof | |
CN107045948A (en) | NaxMnO2Positive electrode, preparation method and applications | |
CN109755027A (en) | Composite graphene films, high-energy supercapacitors and smart flexible devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP02 | Change in the address of a patent holder |
Address after: 266071 Shandong city of Qingdao province Ningxia City Road No. 308 Patentee after: Qingdao University Address before: 266071 Ningxia Road, Shandong, China, No. 308, No. Patentee before: Qingdao University |
|
CP02 | Change in the address of a patent holder |