CN101090033B - Symmetrical Differential Inductance Structure - Google Patents
Symmetrical Differential Inductance Structure Download PDFInfo
- Publication number
- CN101090033B CN101090033B CN2007101039865A CN200710103986A CN101090033B CN 101090033 B CN101090033 B CN 101090033B CN 2007101039865 A CN2007101039865 A CN 2007101039865A CN 200710103986 A CN200710103986 A CN 200710103986A CN 101090033 B CN101090033 B CN 101090033B
- Authority
- CN
- China
- Prior art keywords
- lead
- shielding layer
- layer
- winding layer
- symmetrical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004804 winding Methods 0.000 claims abstract description 78
- 239000004020 conductor Substances 0.000 claims abstract description 34
- 239000000758 substrate Substances 0.000 claims abstract description 32
- 230000015572 biosynthetic process Effects 0.000 claims 2
- 239000002184 metal Substances 0.000 description 14
- 229910052751 metal Inorganic materials 0.000 description 14
- 230000003071 parasitic effect Effects 0.000 description 10
- 238000000034 method Methods 0.000 description 8
- 230000005684 electric field Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000000873 masking effect Effects 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- WPPDFTBPZNZZRP-UHFFFAOYSA-N aluminum copper Chemical compound [Al].[Cu] WPPDFTBPZNZZRP-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Images
Landscapes
- Coils Or Transformers For Communication (AREA)
Abstract
Description
技术领域technical field
本发明是有关于一种电感结构,且特别是有关于一种对称式差动电感结构。The present invention relates to an inductor structure, and in particular to a symmetrical differential inductor structure.
背景技术Background technique
一般而言,由于电感是经由电磁的互相转换,拥有储存和释放能量的功能,因此电感可作为稳定电流的元件。此外,电感的应用范围相当地广泛,例如电感常被应用于无线射频(radio frequency,RF)电路。在集成电路中,电感为十分重要但是却极具挑战性的无源元件。就电感的效能而言,电感的品质越高,即代表电感具有较高的品质因子(quality factor),以Q值表示。Q值的定义如下:Generally speaking, since an inductor has the function of storing and releasing energy through electromagnetic mutual conversion, the inductor can be used as a component for stabilizing current. In addition, the application range of the inductor is quite wide, for example, the inductor is often used in radio frequency (radio frequency, RF) circuits. In an integrated circuit, an inductor is an important but challenging passive component. As far as the performance of the inductor is concerned, the higher the quality of the inductor, the higher the quality factor of the inductor, represented by the Q value. The Q value is defined as follows:
Q=ω×L/RQ=ω×L/R
其中,ω为角频率(angular frequency),L为线圈的电感值(inductance),而R为在特定频率下将电感损失列入考虑的电阻(resistance)。where ω is the angular frequency, L is the inductance of the coil, and R is the resistance to take the loss of inductance into account at a specific frequency.
就现今发展来说,将电感与集成电路工艺相结合,已有各种方法及技术。然而,在集成电路中,电感金属厚度的限制以及硅基底对电感的干扰都会导致电感的品质不佳。已知技术通过将较厚的金属配置在电感的最上层,来降低导体损耗(conductor loss),以提高电感的Q值。然而,当金属厚度增加到一定的程度之后,Q值的改善就变得不明显。由于电感配置的位置大都很接近硅基底,因此硅基底跟电感之间产生的寄生电容(parasitic capacitance)会增加,造成电感的电阻值增加,因而导致消耗大量的能量,使得电感的品质降低。所以,如何解决上述工艺中会遭遇的种种问题,并提升电感的Q值及降低导体损耗,是目前业界积极发展的重点。As far as current development is concerned, there are various methods and technologies for combining inductors with integrated circuit technology. However, in an integrated circuit, the limitations of the metal thickness of the inductor and the interference of the silicon substrate on the inductor will lead to poor quality of the inductor. In the known technology, thicker metal is arranged on the uppermost layer of the inductor to reduce the conductor loss and improve the Q value of the inductor. However, when the metal thickness increases to a certain extent, the improvement of Q value becomes insignificant. Since most inductors are placed close to the silicon substrate, the parasitic capacitance generated between the silicon substrate and the inductor will increase, resulting in an increase in the resistance of the inductor, resulting in a large amount of energy consumed and a decrease in the quality of the inductor. Therefore, how to solve the various problems encountered in the above-mentioned process, and how to improve the Q value of the inductor and reduce the conductor loss is the focus of active development in the industry at present.
发明内容Contents of the invention
本发明提供一种对称式差动电感结构,能够降低基底与电感之间所产生的寄生电容,并改善电感的导体损耗(conductor loss),以提升电感的Q值。The invention provides a symmetrical differential inductance structure, which can reduce the parasitic capacitance generated between the substrate and the inductance, and improve the conductor loss of the inductance, so as to increase the Q value of the inductance.
本发明提出一种对称式差动电感结构,其包括绕线层以及遮蔽层。绕线层配置于基底上。绕线层包括第一螺旋状导线与第二螺旋状导线。第一螺旋状导线具有第一端与第二端,其中第二端会旋入第一螺旋状导线的内侧。而第二螺旋状导线对称于一个对称平面与第一螺旋状导线相互缠绕。第二螺旋状导线具有第三端与第四端,其中第四端旋入第二螺旋状导线的内侧并与第一螺旋状导线的第二端相连接,以形成具有多圈绕线的绕线层。遮蔽层是对应于绕线层的最内圈的正投影,配置于绕线层与基底之间,而绕线层的最内圈以外的部分绕线层,其正投影落在遮蔽层上。遮蔽层以并联的方式,耦接至绕线层的最内圈。The invention proposes a symmetrical differential inductor structure, which includes a winding layer and a shielding layer. The winding layer is configured on the base. The winding layer includes a first helical wire and a second helical wire. The first helical wire has a first end and a second end, wherein the second end is screwed into the inner side of the first helical wire. The second helical wire is symmetrical to a symmetry plane and is intertwined with the first helical wire. The second helical wire has a third end and a fourth end, wherein the fourth end is screwed into the inner side of the second helical wire and connected with the second end of the first helical wire to form a winding with multiple turns of winding. line layer. The shielding layer is an orthographic projection corresponding to the innermost circle of the winding layer, and is arranged between the winding layer and the base, and the orthographic projection of the part of the winding layer outside the innermost circle of the winding layer falls on the shielding layer. The shielding layer is coupled to the innermost circle of the winding layer in parallel.
在本发明所提出的对称式差动电感结构中,利用遮蔽层来阻隔绕线层与基底之间,能够降低基底与金属之间产生的寄生电容,减少能量消耗,提高对称式差动电感的品质。In the symmetric differential inductance structure proposed by the present invention, the shielding layer is used to block between the winding layer and the substrate, which can reduce the parasitic capacitance generated between the substrate and the metal, reduce energy consumption, and improve the performance of the symmetric differential inductance. quality.
为让本发明的上述特征和优点能更明显易懂,下文特举优选实施例,并配合附图,作详细说明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, preferred embodiments will be described in detail below together with the accompanying drawings.
附图说明Description of drawings
图1A是依照本发明的一实施例的对称式差动电感结构的俯视示意图。FIG. 1A is a schematic top view of a symmetrical differential inductor structure according to an embodiment of the present invention.
图1B是依照本发明的一实施例的遮蔽层的俯视示意图。FIG. 1B is a schematic top view of a shielding layer according to an embodiment of the invention.
图1C为沿着图1A中的I-I’剖面线的剖面示意图。Fig. 1C is a schematic cross-sectional view along the line I-I' in Fig. 1A.
图1D为依照本发明另一实施例中沿着图1A中的I-I’剖面线的剖面示意图。FIG. 1D is a schematic cross-sectional view along line I-I' in FIG. 1A according to another embodiment of the present invention.
图1E是依照本发明又一实施例的对称式差动电感结构的俯视示意图。1E is a schematic top view of a symmetrical differential inductor structure according to yet another embodiment of the present invention.
图1F是依照本发明又一实施例的遮蔽层的俯视示意图。FIG. 1F is a schematic top view of a shielding layer according to yet another embodiment of the present invention.
图2A至图2C分别为依照本发明其他实施例中沿着图1A中的I-I’剖面线的剖面示意图。2A to 2C are schematic cross-sectional views along line I-I' in FIG. 1A according to other embodiments of the present invention.
图3为本发明的对称式差动电感结构与已知的电感结构的Q值比较曲线图。FIG. 3 is a graph comparing Q values between the symmetrical differential inductor structure of the present invention and the known inductor structure.
【主要元件符号说明】[Description of main component symbols]
100、200:对称式差动电感结构100, 200: Symmetrical differential inductance structure
102:基底102: Base
104:介电层104: Dielectric layer
106:绕线层106: winding layer
108:遮蔽层108: masking layer
108a、108b、130、132:末端108a, 108b, 130, 132: ends
109:遮蔽图案109: Masking pattern
110、112:螺旋状导线110, 112: spiral wire
110a、112a:外导线110a, 112a: Outer wires
110b、112b:内导线110b, 112b: inner wire
110c、112c:连接导线110c, 112c: connecting wires
111a:第一端111a: first end
111b:第二端111b: second end
113a:第三端113a: third end
113b:第四端113b: fourth terminal
114、122a、122b、126a、126b:介层窗114, 122a, 122b, 126a, 126b: vias
116:增益导线116: Gain wire
120:对称平面120: Symmetry plane
124a、124b、128a、128b:接合导线124a, 124b, 128a, 128b: bonding wires
具体实施方式Detailed ways
图1A是依照本发明的一实施例的对称式差动电感结构的俯视示意图。图1B是依照本发明的一实施例的遮蔽层的俯视示意图。图1C为沿着图1A中的I-I’剖面线的剖面示意图。图1D为依照本发明另一实施例中沿着图1A中的I-I’剖面线的剖面示意图。FIG. 1A is a schematic top view of a symmetrical differential inductor structure according to an embodiment of the present invention. FIG. 1B is a schematic top view of a shielding layer according to an embodiment of the invention. Fig. 1C is a schematic cross-sectional view along the line I-I' in Fig. 1A. FIG. 1D is a schematic cross-sectional view along line I-I' in FIG. 1A according to another embodiment of the present invention.
请同时参照图1A、图1B与图1C,对称式差动电感结构100包括绕线层106与遮蔽层108。绕线层106配置于基底102上的介电层104中。遮蔽层108则配置于绕线层106与基底102之间的介电层104中。由于对称式差动电感结构100可通过半导体工艺实现,基底102可以是硅基材。介电层104的材料例如是氧化硅或其他介电材料。绕线层106的材料可以是金属,其例如是铜、铝铜合金等材料。而遮蔽层108的材料可以是导电材料,其例如是多晶硅或金属等材料。此外,在本实施例中,对称式差动电感结构100的配置为八边形(如图1A所示),然而本发明的对称式差动电感结构并不局限于实施例中所绘示的配置方式。Please refer to FIG. 1A , FIG. 1B and FIG. 1C at the same time. The symmetrical
绕线层106包括螺旋状导线110与螺旋状导线112,其中螺旋状导线110与螺旋状导线112例如是配置于同一高度平面上。绕线层106例如是具有多圈绕线的对称螺旋回圈结构,也就是说螺旋状导线110以及螺旋状导线112例如是对应于对称平面120,呈镜像配置而相互缠绕,其中对称平面120的延伸方向例如是朝向页面内。The winding
螺旋状导线110至少包括外导线110a与内导线110b,其中外导线110a与内导线110b串联。螺旋状导线110具有第一端111a及第二端111b。第一端111a例如是外导线110a的端点,第二端则例如是内导线110b的端点。也就是说,第一端111a配置于螺旋状导线110的外侧,而第二端111b旋入螺旋状导线110的内侧。The
螺旋状导线112以对应于对称平面120的方式而与螺旋状导线110相互缠绕。螺旋状导线112至少包括外导线112a与内导线112b,且外导线112a与内导线112b之间是以串联的方式相连接。螺旋状导线112具有第三端113a与第四端113b。第三端113a例如是外导线112a的端点,第四端113b例如是内导线112的端点。第三端113a例如是对应于第一端111a的位置,配置于螺旋状导线112的外侧。而第四端113b例如是对应于第二端111b的位置,旋入螺旋状导线112的内侧,且第二端111b与第四端113b交会于对称平面120上相连接。也就是说,螺旋状导线110与螺旋状导线112交会连接于绕线层106的最内圈。The
如图1A所示,在本实施例中,对称式差动电感结构100的绕线层106例如是三圈的绕线结构,因此,螺旋状导线110与螺旋状导线112还可以分别包括连接导线110c与连接导线112c。外导线110a与内导线110b的连接方式例如是通过连接导线110c将外导线110a与内导线110b进行串联。而外导线112a与内导线112b之间则例如是通过连接导线112c进行串联。然而,绕线层106的圈数并不局限于实施例中所绘示的三圈,上述的连接方式并不用以限制本发明。As shown in FIG. 1A, in this embodiment, the winding
在绕线层106的结构为两圈绕线的情况下,外导线110a与内导线110b可以直接进行串联,而外导线112a与内导线112b亦是如此。当然,绕线层106还可以于外导线110a与内导线110b之间配置多圈的连接导线110c,且相对应地于外导线112a与内导线112b之间配置多圈的连接导线112c,使绕线层106为大于三圈绕线的结构,在本领域的普通技术人员可视其需求进行调整。When the structure of the winding
请继续参照图1A,螺旋状导线110及螺旋状导线112相互缠绕的方式例如是使螺旋状导线110与螺旋状导线112交错于对称平面120上。且螺旋状导线110与螺旋状导线112于交错位置互不接触,以避免短路的情况发生。举例来说,在螺旋状导线112中,外导线112a例如是通过介层窗122a向下连接至接合导线124a,再通过介层窗122b连接至连接导线112c,使得螺旋状导线112可以在交错位置上从螺旋状导线110的下方通过,避免螺旋状导线110以及112接触。至于外导线110a与连接导线110c则由位于相同高度平面的接合导线124b进行连接。另一方面,在螺旋状导线110中,连接导线110c与内导线110b之间例如是通过介层窗126a、126b以及接合导线128a连接,使螺旋状导线110在交错位置上从螺旋状导线112的下方通过。至于连接导线112c与内导线112b则由位于相同高度平面的接合导线128b进行连接。Please continue to refer to FIG. 1A , the manner in which the
承上述,操作对称式差动电感结构100时,例如是同时施加操作电压于第一端111a及第三端113a。由于施加于第一端111a上的电压与施加于第三端113a上的电压为绝对值相等且电性相反的电压,因此从第一端111a与第三端113a起,越往螺旋状导线110与螺旋状导线112的内部,电压的绝对值会逐渐递减。在内导线110b的第二端111b与内导线112b的第四端113b的交会连接处的电压值会为0,也就是在绕线层106的最内圈会发生虚拟接地的情形。Based on the above, when operating the symmetrical
请继续参照图1A、图1B以及图1C,遮蔽层108则对应于绕线层106的最内圈的正投影,配置于绕线层106与基底102之间,在本实施例中,内导线110b与内导线112b的正投影会落在遮蔽层108上。遮蔽层108例如是具有一个缺口,而非完整的环状结构。遮蔽层108于缺口处具有末端108a与末端108b。此外,遮蔽层108与绕线层106的最内圈电性耦接,而电性耦接的方式例如是并联。在本实施例中,在绕线层106与遮蔽层108之间例如是配置至少两个介层窗114,将遮蔽层108的末端108a与末端108b分别耦接至内导线110b的末端130与内导线112b的末端132。如此,遮蔽层108可作为对称式差动电感结构100的自我遮蔽结构。Please continue to refer to FIG. 1A, FIG. 1B and FIG. 1C, the
承上述,请同时参照图1C与图1D,除了最内圈的正投影(内导线110b与内导线112b的正投影)落在遮蔽层108上之外,其他的绕线层106其至少一部份的正投影亦会落在遮蔽层108上。也就是说,整个绕线层106的正投影可以完全落在遮蔽层108上(如图1C所示);抑或绕线层106的最内侧两圈的正投影会落在遮蔽层108上(如图1D所示)。更进一步而言,遮蔽层108只要能遮蔽部份绕线层106,即可降低基底102与绕线层106之间产生的寄生电容,改善对称式差动电感的品质。如图1C所示,在绕线层106的正投影完全落在遮蔽层108上的情况下,遮蔽层108能够于对称式差动电感结构100以及基底102之间产生更佳的遮蔽效果。Bearing the above, please refer to FIG. 1C and FIG. 1D at the same time, except that the orthographic projection of the innermost circle (the orthographic projection of the
图1E是依照本发明又一实施例的对称式差动电感结构的俯视示意图。图1F是依照本发明又一实施例的遮蔽层的俯视示意图。在图1E至图1F中,与图1A至图1B相同的构件则使用相同的标号并省略其说明。1E is a schematic top view of a symmetrical differential inductor structure according to yet another embodiment of the present invention. FIG. 1F is a schematic top view of a shielding layer according to yet another embodiment of the present invention. In FIGS. 1E to 1F , the same components as those in FIGS. 1A to 1B use the same reference numerals and their descriptions are omitted.
请同时参照图1E与图1F,遮蔽层108也可以例如是由两个以上的遮蔽图案109所构成。如图1F所示,遮蔽层108包括四个遮蔽图案109,且遮蔽图案109的配置方式例如是于对称平面120的两侧呈镜像配置。此外,每个遮蔽图案109会个别与绕线层106的最内圈并联,并联的方式例如是通过至少两个介层窗114将各个遮蔽图案109的两末端,分别连接至相对应位置之内导线110b或是内导线112b。上述实施例是以具有四个遮蔽图案109的遮蔽层108为例来进行说明,然而本发明不限于此。在其他实施例中,遮蔽层108可包含一个以上的遮蔽图案109对称配置,只要每个遮蔽图案109分别与绕线层106的最内圈并联即可。Please refer to FIG. 1E and FIG. 1F at the same time, the
特别说明的是,在绕线层106中,越往绕线层106的内部,其电压的绝对值会逐渐递减。也就是说,绕线层106的最内圈具有较小的电场。由于遮蔽层108是与绕线层106的最内圈并联,因此遮蔽层108会具有与绕线层106的最内圈相似的电场特性。所以,遮蔽层108与基底102之间所产生的寄生电容足以被忽略。而具有较大电压因而产生较大电场的绕线层106的最外圈,即可以被设置于绕线层106与基底102之间的遮蔽层108所阻隔,减少能量的损耗。因此,本发明可以降低基底102与对称式差动电感结构100之间的寄生电容发生,以降低由基底102造成的电阻值,进而提升对称式差动电感结构100的Q值。It is particularly noted that, in the winding
图2A至图2C分别为依照本发明其他实施例中沿着图1A中的I-I’剖面线的剖面示意图。在图2A至图2C中,与图1A至图1C相同的构件则使用相同的标号并省略其说明。2A to 2C are schematic cross-sectional views along line I-I' in FIG. 1A according to other embodiments of the present invention. In FIGS. 2A to 2C , the same components as those in FIGS. 1A to 1C are assigned the same reference numerals and their descriptions are omitted.
本发明再提出一种对称式差动电感结构。请参照图2A,对称式差动电感结构200例如是配置于基底102上方的介电层104中。在其他实施例中,组成对称式差动电感结构200的构件与组成对称式差动电感结构100的构件大致相同,其中主要的差异在于:对称式差动电感结构200进一步包括至少一条增益导线116。增益导线116例如是对应于绕线层106的最内图配置于绕线层106与遮蔽层108之间。The present invention further proposes a symmetrical differential inductance structure. Referring to FIG. 2A , the symmetrical
承上述,增益导线116例如是分别与绕线层106的最内圈、遮蔽层108耦接。耦接方式例如是通过至少两个介层窗114将增益导线116的两末端分别并联至内导线110b的末端130与内导线112b的末端132;并通过至少两个介层窗114将增益导线的两末端并联至遮蔽层108的末端108a与末端108b。此外,在具有多条增益导线116的情况下(如图2A所绘示的三条),上下相邻的增益导线116彼此之间例如是通过多个介层窗114进行并联。增益导线116的材料可以是金属,其例如是铜、铝铜合金等材料。According to the above, for example, the
请同时参照图2B与图2C,上述的增益导线116亦可以是对应于绕线层106的最内圈配置于遮蔽层108与基底102之间(如图2B所示),或是增益导线116可以同时配置于绕线层106与遮蔽层108之间以及遮蔽层108与基底102之间(如图2C所示)。Please refer to FIG. 2B and FIG. 2C at the same time. The above-mentioned
在此说明的是,在绕线层106与基底102之间配置增益导线116,可以通过堆叠的增益导线116来增加对称式差动电感结构200中的金属截面积,有效地改善导体损耗的问题。此外,由于增益导线116是与绕线层106的最内圈并联,增益导线116会具有类似遮蔽层106的最内圈的电场特性。也就是说,增益导线116的电场很小,能够在提高金属截面积的同时,而不会使得金属与金属之间所产生的寄生电容增加。因此,对称式差动电感结构200可以具有优选的品质。It is explained here that the
图3为本发明的对称式差动电感结构与已知的电感结构的Q值比较曲线图。FIG. 3 is a graph comparing Q values between the symmetrical differential inductor structure of the present invention and the known inductor structure.
请参照图3,由实际测试的结果可知:在频率从0至20GHz的范围内,本发明的对称式差动电感都比已知的对称式差动电感具有较高的Q值。因此,无论在低频或者高频的频率范围中,本发明确实能够显著地提升对称式差动电感的品质,且更进一步地扩大使用的频率范围。Referring to FIG. 3 , it can be seen from the actual test results that the symmetrical differential inductor of the present invention has a higher Q value than the known symmetrical differential inductor in the frequency range from 0 to 20 GHz. Therefore, no matter in the low-frequency or high-frequency range, the present invention can indeed significantly improve the quality of the symmetrical differential inductor, and further expand the frequency range used.
综上所述,在本发明所提出的对称式差动电感结构中,利用遮蔽层来阻隔绕线层与基底之间,能够降低基底与金属之间产生的寄生电容,减少能量消耗,提高对称式差动电感的品质。此外,由于遮蔽层并联至绕线层中具有较低电场的最内圈,因此遮蔽层与基底之间所产生的寄生效应亦可以被忽略。In summary, in the symmetrical differential inductance structure proposed by the present invention, the shielding layer is used to block between the winding layer and the substrate, which can reduce the parasitic capacitance generated between the substrate and the metal, reduce energy consumption, and improve symmetry. Type differential inductance quality. In addition, since the shielding layer is connected in parallel to the innermost circle with a lower electric field in the winding layer, the parasitic effect generated between the shielding layer and the substrate can also be ignored.
再者,若本发明的对称式差动电感结构于绕线层与基底之间配置有增益导线,则可以通过金属截面积的增加,来降低对称式差动电感的导体损耗,使对称式差动电感的效能得以提升。而且,通过增益导线与绕线层的最内圈并联,亦可以避免金属与金属之间产生寄生电容,进而提升电感的Q值Furthermore, if the symmetrical differential inductor structure of the present invention is provided with a gain wire between the winding layer and the substrate, the conductor loss of the symmetrical differential inductor can be reduced by increasing the metal cross-sectional area, making the symmetrical differential inductor Kinetic performance has been improved. Moreover, by connecting the gain wire in parallel with the innermost coil of the winding layer, it is also possible to avoid the generation of parasitic capacitance between metal and metal, thereby improving the Q value of the inductor
另一方面,本发明的对称式差动电感结构可应用的频率范围可以保持在无线射频电路所使用的范围内,并可以将电感的制造过程整合于现行的工艺中,可有助于降低工艺所需的成本。On the other hand, the applicable frequency range of the symmetrical differential inductance structure of the present invention can be kept within the range used by radio frequency circuits, and the manufacturing process of the inductance can be integrated into the current process, which can help reduce the process required cost.
虽然本发明已以优选实施例披露如上,然其并非用以限定本发明,任何所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作些许的更动与润饰,因此本发明的保护范围当视权利要求所界定者为准。Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Any person with ordinary knowledge in the technical field may make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention should be defined by the claims.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007101039865A CN101090033B (en) | 2007-05-17 | 2007-05-17 | Symmetrical Differential Inductance Structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007101039865A CN101090033B (en) | 2007-05-17 | 2007-05-17 | Symmetrical Differential Inductance Structure |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101090033A CN101090033A (en) | 2007-12-19 |
CN101090033B true CN101090033B (en) | 2010-06-02 |
Family
ID=38943323
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2007101039865A Active CN101090033B (en) | 2007-05-17 | 2007-05-17 | Symmetrical Differential Inductance Structure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101090033B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5831331A (en) * | 1996-11-22 | 1998-11-03 | Philips Electronics North America Corporation | Self-shielding inductor for multi-layer semiconductor integrated circuits |
CN1241794A (en) * | 1998-07-06 | 2000-01-19 | Tdk株式会社 | Inductor device and process of production thereof |
CN1405801A (en) * | 2002-10-30 | 2003-03-26 | 威盛电子股份有限公司 | Multilayer balanced inductor |
US6867677B2 (en) * | 2001-05-24 | 2005-03-15 | Nokia Corporation | On-chip inductive structure |
US6972658B1 (en) * | 2003-11-10 | 2005-12-06 | Rf Micro Devices, Inc. | Differential inductor design for high self-resonance frequency |
-
2007
- 2007-05-17 CN CN2007101039865A patent/CN101090033B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5831331A (en) * | 1996-11-22 | 1998-11-03 | Philips Electronics North America Corporation | Self-shielding inductor for multi-layer semiconductor integrated circuits |
CN1241794A (en) * | 1998-07-06 | 2000-01-19 | Tdk株式会社 | Inductor device and process of production thereof |
US6867677B2 (en) * | 2001-05-24 | 2005-03-15 | Nokia Corporation | On-chip inductive structure |
CN1405801A (en) * | 2002-10-30 | 2003-03-26 | 威盛电子股份有限公司 | Multilayer balanced inductor |
US6972658B1 (en) * | 2003-11-10 | 2005-12-06 | Rf Micro Devices, Inc. | Differential inductor design for high self-resonance frequency |
Also Published As
Publication number | Publication date |
---|---|
CN101090033A (en) | 2007-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8183970B2 (en) | Integrated high frequency BALUN and inductors | |
US7382219B1 (en) | Inductor structure | |
US7612645B2 (en) | Integrated inductor | |
CN207558514U (en) | Inductor components | |
KR101843283B1 (en) | Coil Electronic Component | |
US7579923B2 (en) | Laminated balun transformer | |
US7750784B2 (en) | Inductor structure | |
KR20190021686A (en) | Coil component and method of manufacturing the same | |
US7420452B1 (en) | Inductor structure | |
CN100481283C (en) | Inductance element and symmetrical inductance element | |
TW200805442A (en) | Symmetrical inductor | |
US10716212B2 (en) | LC device and method of manufacturing LC device | |
CN101145435B (en) | Inductive structure | |
CN100442507C (en) | Symmetrical inductance element | |
JP2021052105A (en) | Inductor parts | |
JPH0389548A (en) | semiconductor integrated circuit | |
CN101034614B (en) | Symmetrical Differential Inductance Structure | |
US7504923B1 (en) | Inductor structure | |
JP2008047718A (en) | Semiconductor device | |
CN101090033B (en) | Symmetrical Differential Inductance Structure | |
CN100578696C (en) | Inductance structure | |
JP2012182286A (en) | Coil component | |
CN101051548B (en) | Inductive structure | |
CN101090025B (en) | A spiral inductance element with multi-layer structure | |
CN1929134B (en) | Chip built-in inductance element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |