CN101078615A - Precision determination method for angle between optical axis and mechanical axis of optical system - Google Patents
Precision determination method for angle between optical axis and mechanical axis of optical system Download PDFInfo
- Publication number
- CN101078615A CN101078615A CN 200710072380 CN200710072380A CN101078615A CN 101078615 A CN101078615 A CN 101078615A CN 200710072380 CN200710072380 CN 200710072380 CN 200710072380 A CN200710072380 A CN 200710072380A CN 101078615 A CN101078615 A CN 101078615A
- Authority
- CN
- China
- Prior art keywords
- optical axis
- angle
- axis
- optical
- flat mirror
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Instruments For Measurement Of Length By Optical Means (AREA)
Abstract
光学系统中的光学轴与机械轴之间夹角的精确测量方法,它涉及光学系统中的光学轴与机械轴之间夹角的测量技术领域。它的目的是为了解决现有技术无法对卫星光通信系统中的光学轴与机械轴间的夹角进行严格测量的问题。它的步骤为:第一步骤:借助干涉仪(1)调整高精度平面镜(3)的光轴与被测光学系统(2)的光轴相重合;第二步骤:自准直仪(4)测光轴与高精度平面镜(3)光轴的夹角α值;第三步骤:自准直仪(4)测光轴与被测光学系统(2)的机械基准面上的第二高精度平面镜(5)光轴的夹角β值;第四步骤:根据Δ=β-α公式,计算出光轴与机械轴之间夹角Δ值。本发明能对卫星光通信系统中的光学轴与机械轴间的夹角进行严格的测量,其光学轴与机械轴之间夹角的测量精度为0.2μrad。
A method for accurately measuring the angle between an optical axis and a mechanical axis in an optical system relates to the technical field of measuring the angle between an optical axis and a mechanical axis in an optical system. Its purpose is to solve the problem that the existing technology cannot strictly measure the angle between the optical axis and the mechanical axis in the satellite optical communication system. Its steps are: the first step: adjust the optical axis of the high-precision flat mirror (3) to coincide with the optical axis of the measured optical system (2) by means of the interferometer (1); the second step: the autocollimator (4) The angle α value between the optical axis and the optical axis of the high-precision flat mirror (3); the third step: the second high-precision measurement of the optical axis of the autocollimator (4) and the mechanical reference plane of the measured optical system (2) The angle β of the optical axis of the plane mirror (5); the fourth step: calculate the angle Δ between the optical axis and the mechanical axis according to the formula Δ=β-α. The invention can strictly measure the angle between the optical axis and the mechanical axis in the satellite optical communication system, and the measurement accuracy of the angle between the optical axis and the mechanical axis is 0.2μrad.
Description
技术领域technical field
本发明涉及的是光学系统中的光学轴与机械轴之间夹角的测量技术领域。The invention relates to the technical field of measuring the angle between an optical axis and a mechanical axis in an optical system.
背景技术Background technique
光学系统中的光学器件需要机械结构支撑,由于光学器件与机械结构的加工精度存在较大大差异,光学系统的光学轴与机械轴存在角度偏差。大多数光学系统对光学轴与机械轴间的角度差要求并不严格,不需要对其间的差异进行测量。但在卫星光通信系统中,光学轴与机械轴间的夹角需要严格精确测出,目前并无方法对其进行测量。The optical devices in the optical system need to be supported by a mechanical structure. Due to the large difference in the processing accuracy of the optical device and the mechanical structure, there is an angular deviation between the optical axis and the mechanical axis of the optical system. Most optical systems are not critical about the angular difference between the optical axis and the mechanical axis, and do not need to measure the difference. However, in the satellite optical communication system, the angle between the optical axis and the mechanical axis needs to be strictly and accurately measured, and there is currently no way to measure it.
发明内容Contents of the invention
本发明的目的是为了解决现有技术无法对卫星光通信系统中的光学轴与机械轴间的夹角进行严格精确测量的问题,进而提供了一种光学系统中的光学轴与机械轴之间夹角的精确测量方法。The purpose of the present invention is to solve the problem that the existing technology cannot strictly and accurately measure the angle between the optical axis and the mechanical axis in the satellite optical communication system, and then provide a kind of angle between the optical axis and the mechanical axis in the optical system Accurate method of measuring angles.
本发明的方法步骤为:Method steps of the present invention are:
第一步骤:干涉仪1发射的激光光束通过被测光学系统2后出入射到高精度平面镜3中,激光光束由高精度平面镜3反射后通过被测光学系统2入射干涉仪1中;调整高精度平面镜3方位角、俯仰角,使干涉仪1的条纹左右、上下对称,即高精度平面镜3的光轴与被测光学系统2的光轴相重合;The first step: the laser beam emitted by the interferometer 1 enters the high-precision
第二步骤:将自准直仪4设置在高精度平面镜3的前方,自准直仪4向高精度平面镜3发射激光光束,激光光束经高精度平面镜3反射后入射自准直仪4中,自准直仪4根据入射光点位置计算其光轴与高精度平面镜3光轴的夹角α值,即自准直仪4光轴与光学系统光轴夹角α值;The second step: the
第三步骤:在被测光学系统2的机械支撑的机械基准面上粘接第二高精度平面镜5,即第二高精度平面镜5的光轴与被测光学系统2的机械轴平行,自准直仪4以步骤二中的位置向第二高精度平面镜5发射激光光束,激光光束经第二高精度平面镜5反射后入射自准直仪4中,自准直仪4根据入射光点位置计算其光轴与第二高精度平面镜5光轴的夹角β值,即自准直仪4的光轴与被测光学系统2的机械轴夹角β值;The third step: bonding the second high-precision flat mirror 5 on the mechanical reference plane of the mechanical support of the measured
第四步骤:将步骤二中的夹角α值、步骤三中的夹角β值带入公式Δ=β-α中,即得出被测光学系统2的光轴与机械轴之间夹角Δ值。The fourth step: Bring the value of the angle α in
本发明能对卫星光通信系统中的光学轴与机械轴间之间的夹角进行严格精确的测量,其光学轴与机械轴之间夹角测量的精度为0.2μrad,并具有步骤简单、容易实现的优点。The invention can strictly and accurately measure the angle between the optical axis and the mechanical axis in the satellite optical communication system, the angle measurement accuracy between the optical axis and the mechanical axis is 0.2μrad, and has simple steps and easy realized advantages.
附图说明Description of drawings
图1是本发明的第一步骤的结构示意图,图2是本发明的第二步骤的结构示意图,图3是本发明的第三步骤的结构示意图。Fig. 1 is a structural schematic diagram of the first step of the present invention, Fig. 2 is a structural schematic diagram of the second step of the present invention, and Fig. 3 is a structural schematic diagram of the third step of the present invention.
具体实施方式Detailed ways
具体实施方式一:结合图1、图2、图3说明本实施方式,本具体实施方式的方法步骤为:Specific embodiment one: illustrate this embodiment in conjunction with Fig. 1, Fig. 2, Fig. 3, the method step of this specific embodiment is:
第一步骤:干涉仪1发射的激光光束通过被测光学系统2后出入射到高精度平面镜3中,激光光束由第一高精度平面镜3反射后通过被测光学系统2入射干涉仪1中;调整第一高精度平面镜3方位角、俯仰角,使干涉仪1的条纹左右、上下对称,即第一高精度平面镜3的光轴与被测光学系统2的光轴相重合;The first step: the laser beam emitted by the interferometer 1 enters the high-precision
第二步骤:将自准直仪4设置在高精度平面镜3的前方,自准直仪4向第一高精度平面镜3发射激光光束,激光光束经第一高精度平面镜3反射后入射自准直仪4中,自准直仪4根据入射光点位置计算其光轴与第一高精度平面镜3光轴的夹角α值,即自准直仪4光轴与光学系统光轴夹角α值;The second step: the
第三步骤:在被测光学系统2的机械支撑的机械基准面上粘接第二高精度平面镜5,即第二高精度平面镜5的光轴与被测光学系统2的机械轴平行,自准直仪4以步骤二中的位置向第二高精度平面镜5发射激光光束,激光光束经第二高精度平面镜5反射后入射自准直仪4中,自准直仪4根据入射光点位置计算其光轴与第二高精度平面镜5光轴的夹角β值,即自准直仪4的光轴与被测光学系统2的机械轴夹角β值;The third step: bonding the second high-precision flat mirror 5 on the mechanical reference plane of the mechanical support of the measured
第四步骤:将步骤二中的夹角α值、步骤三中的夹角β值带入公式Δ=β-α中,即得出被测光学系统2的光轴与机械轴之间夹角Δ值。The fourth step: Bring the value of the angle α in
第一高精度平面镜3、第二高精度平面镜5都选用口径为φ300的平面镜,面型精度为RMS为1/70λ。干涉仪1选用美国ZYGO公司生产的GHI-4”HS型干涉仪发射参考光束,并探测反射波阵面与参考波阵面的干涉条纹;ZYGO干涉仪具有CCD探测器,可将干涉条纹图像直接输入带有数据采集卡的计算机,进行图像处理;ZYGO干涉仪主要参数为:口径φ300mm,工作波长632.8nm。自准直仪4选用德国ELCCMAT公司生产的ELCCMAT3000自准直仪,测角精度为0.2μrad。采用方位、俯仰二维高精度调整架对第一高精度平面镜3角度进行调整。Both the first high-
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB200710072380XA CN100462674C (en) | 2007-06-22 | 2007-06-22 | Accurate Measurement Method of Angle Between Optical Axis and Mechanical Axis in Optical System |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB200710072380XA CN100462674C (en) | 2007-06-22 | 2007-06-22 | Accurate Measurement Method of Angle Between Optical Axis and Mechanical Axis in Optical System |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101078615A true CN101078615A (en) | 2007-11-28 |
CN100462674C CN100462674C (en) | 2009-02-18 |
Family
ID=38906213
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB200710072380XA Expired - Fee Related CN100462674C (en) | 2007-06-22 | 2007-06-22 | Accurate Measurement Method of Angle Between Optical Axis and Mechanical Axis in Optical System |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100462674C (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102095390A (en) * | 2010-12-29 | 2011-06-15 | 哈尔滨工业大学 | Method for accurately measuring included angles between optical axis of space optical communication terminal and positioning grinding surfaces on terminal |
CN102141386A (en) * | 2010-12-29 | 2011-08-03 | 哈尔滨工业大学 | Method for measuring included angle between optical axis and reference plane of satellite optical communication terminal |
CN102818542A (en) * | 2012-08-16 | 2012-12-12 | 中国科学院光电技术研究所 | Method for measuring cone angle of cone mirror |
CN103064195A (en) * | 2011-12-17 | 2013-04-24 | 中国航空工业集团公司洛阳电光设备研究所 | Adjustment method of non-coaxial optical system |
CN103267497A (en) * | 2013-05-23 | 2013-08-28 | 哈尔滨理工大学 | Method based on optical fiber coupling for measuring included angle of mechanical axis and optical axis of optical fiber rotating collimator |
CN103968783A (en) * | 2013-01-31 | 2014-08-06 | 北京智朗芯光科技有限公司 | Method for measuring optical axis deviation angle in double-plate wave plate compensator |
CN106338261A (en) * | 2016-09-13 | 2017-01-18 | 湖北航天技术研究院总体设计所 | Angle deviation calibration method between two interferometer emergence plane wave light beams |
CN107941469A (en) * | 2017-10-27 | 2018-04-20 | 南京理工大学 | A kind of equilateral prism apex angle bias measurement method |
CN108709515A (en) * | 2018-07-23 | 2018-10-26 | 中国工程物理研究院激光聚变研究中心 | Pivoting angle measurement method |
CN110887637A (en) * | 2019-11-11 | 2020-03-17 | 中国科学院上海技术物理研究所 | A device and method for extracting the optical axis of a coaxial collimator |
CN114739323A (en) * | 2022-03-30 | 2022-07-12 | 长光卫星技术股份有限公司 | System and method for testing deviation between optical axis and mechanical axis of optical element and deviation correction method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108955580A (en) * | 2018-08-27 | 2018-12-07 | 中山大学 | A kind of method of the outer vertical angle measurement of high-precision |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11281863A (en) * | 1998-03-31 | 1999-10-15 | Nippon Signal Co Ltd:The | Optical axis adjusting device |
EP2306229A1 (en) * | 1998-05-25 | 2011-04-06 | Panasonic Corporation | Range finder device and camera |
CN2622670Y (en) * | 2003-05-30 | 2004-06-30 | 成都太科光电技术有限责任公司 | Globoid interfrometer |
JP2006234489A (en) * | 2005-02-23 | 2006-09-07 | Casio Comput Co Ltd | Optical sensor, tilt calculation device, acceleration calculation device, photographing device, display device, and display program |
-
2007
- 2007-06-22 CN CNB200710072380XA patent/CN100462674C/en not_active Expired - Fee Related
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102095390A (en) * | 2010-12-29 | 2011-06-15 | 哈尔滨工业大学 | Method for accurately measuring included angles between optical axis of space optical communication terminal and positioning grinding surfaces on terminal |
CN102141386A (en) * | 2010-12-29 | 2011-08-03 | 哈尔滨工业大学 | Method for measuring included angle between optical axis and reference plane of satellite optical communication terminal |
CN102141386B (en) * | 2010-12-29 | 2012-11-28 | 哈尔滨工业大学 | Method for measuring included angle between optical axis and reference plane of satellite optical communication terminal |
CN103064195A (en) * | 2011-12-17 | 2013-04-24 | 中国航空工业集团公司洛阳电光设备研究所 | Adjustment method of non-coaxial optical system |
CN102818542A (en) * | 2012-08-16 | 2012-12-12 | 中国科学院光电技术研究所 | Method for measuring cone angle of cone mirror |
CN103968783B (en) * | 2013-01-31 | 2016-08-17 | 北京智朗芯光科技有限公司 | Method for measuring optical axis deviation angle in double-plate wave plate compensator |
CN103968783A (en) * | 2013-01-31 | 2014-08-06 | 北京智朗芯光科技有限公司 | Method for measuring optical axis deviation angle in double-plate wave plate compensator |
CN103267497B (en) * | 2013-05-23 | 2015-12-02 | 哈尔滨理工大学 | Based on the fiber spinning collimating apparatus mechanical axis of coupling fiber and the measuring method of optical axis included angle |
CN103267497A (en) * | 2013-05-23 | 2013-08-28 | 哈尔滨理工大学 | Method based on optical fiber coupling for measuring included angle of mechanical axis and optical axis of optical fiber rotating collimator |
CN106338261A (en) * | 2016-09-13 | 2017-01-18 | 湖北航天技术研究院总体设计所 | Angle deviation calibration method between two interferometer emergence plane wave light beams |
CN106338261B (en) * | 2016-09-13 | 2018-12-25 | 湖北航天技术研究院总体设计所 | A kind of two beam interferometer instrument exit plane glistening light of waves interfascicular angular deviation scaling methods |
CN107941469A (en) * | 2017-10-27 | 2018-04-20 | 南京理工大学 | A kind of equilateral prism apex angle bias measurement method |
CN107941469B (en) * | 2017-10-27 | 2019-11-15 | 南京理工大学 | A Method for Measuring Vertex Angle Deviation of Equilateral Triangular Prism |
CN108709515A (en) * | 2018-07-23 | 2018-10-26 | 中国工程物理研究院激光聚变研究中心 | Pivoting angle measurement method |
CN110887637A (en) * | 2019-11-11 | 2020-03-17 | 中国科学院上海技术物理研究所 | A device and method for extracting the optical axis of a coaxial collimator |
CN114739323A (en) * | 2022-03-30 | 2022-07-12 | 长光卫星技术股份有限公司 | System and method for testing deviation between optical axis and mechanical axis of optical element and deviation correction method |
CN114739323B (en) * | 2022-03-30 | 2024-09-17 | 长光卫星技术股份有限公司 | Optical axis and mechanical axis deviation testing system, testing method and deviation correcting method for optical element |
Also Published As
Publication number | Publication date |
---|---|
CN100462674C (en) | 2009-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101078615A (en) | Precision determination method for angle between optical axis and mechanical axis of optical system | |
CN104713473B (en) | Laser mixes grating interferometer and its measuring method certainly | |
CN100535767C (en) | Focusing leveling measuring method and device | |
CN110207588B (en) | A method for assembling and adjusting the optical vertex aiming device of a corner cube prism | |
CN104634280B (en) | The measuring method of general level turntable absolute angle and the anglec of rotation | |
CN1304879C (en) | Bidimension photoelectric self collimating device based on optical length multiplication compensation method and its measuring method | |
CN105424322A (en) | Self-calibration optical axis parallelism detector and detection method | |
CN106840001A (en) | The non-contact measurement apparatus and measuring method of optical lens center thickness | |
CN1831469A (en) | Dynamic photoelectric autocollimator based on PSD | |
CN101614523B (en) | A Multi-beam Long Track Interferometer for Detecting Glancing Cylindrical Off-Axis Aspheric Mirrors | |
CN102176087B (en) | Polarized light combined target common-path compensated two-dimensional photoelectric auto-collimation method and device | |
CN110082071A (en) | A kind of measuring device and method of right-angle prism optical parallelism error | |
WO2007130158A2 (en) | Interferometers for the measurement of large diameter thin wafers | |
CN101672726B (en) | Space optical communication terminal communication detector positioning test device and method | |
JP7458666B2 (en) | Vertical laser pointing correction device and method using wavefront homodyne interference | |
CN100462773C (en) | A Method of Accurately Determining the Coaxial Reference of Laser Transceiver by Using Zernike Coefficient | |
CN105737759A (en) | Long trace profile measurement device | |
CN113310434B (en) | Method for measuring perpendicularity of two-dimensional linear motion platform | |
CN105758333B (en) | A kind of long-range Optical Surface detector | |
CN107677219A (en) | A kind of plane parallelism measurement device and measuring method | |
CN105444998B (en) | Device and method for measuring visual magnification of telescopic system | |
CN104034266A (en) | Surface microstructure based high-accuracy length detection method | |
CN116772747A (en) | A method for monitoring verticality error during the gluing process of flat mirrors | |
CN205580406U (en) | Autocollimator | |
CN103278475A (en) | Measuring device and method of transparent medium refractive index |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090218 Termination date: 20200622 |
|
CF01 | Termination of patent right due to non-payment of annual fee |