CN101069069A - 利用密度信息测量流体压力的方法和装置 - Google Patents
利用密度信息测量流体压力的方法和装置 Download PDFInfo
- Publication number
- CN101069069A CN101069069A CNA2004800445090A CN200480044509A CN101069069A CN 101069069 A CN101069069 A CN 101069069A CN A2004800445090 A CNA2004800445090 A CN A2004800445090A CN 200480044509 A CN200480044509 A CN 200480044509A CN 101069069 A CN101069069 A CN 101069069A
- Authority
- CN
- China
- Prior art keywords
- pressure
- density
- coriolis flowmeter
- compressibility
- flowable materials
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 54
- 239000012530 fluid Substances 0.000 title description 15
- 239000000463 material Substances 0.000 claims description 90
- 230000000694 effects Effects 0.000 claims description 20
- 238000005259 measurement Methods 0.000 claims description 6
- 238000001739 density measurement Methods 0.000 claims description 2
- 230000009969 flowable effect Effects 0.000 claims 12
- 239000011435 rock Substances 0.000 claims 2
- 230000008676 import Effects 0.000 claims 1
- 238000004321 preservation Methods 0.000 claims 1
- 230000007704 transition Effects 0.000 claims 1
- 230000003014 reinforcing effect Effects 0.000 abstract 6
- 238000003466 welding Methods 0.000 abstract 2
- 230000002787 reinforcement Effects 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 32
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 10
- 239000000203 mixture Substances 0.000 description 5
- 239000003345 natural gas Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 230000010363 phase shift Effects 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/76—Devices for measuring mass flow of a fluid or a fluent solid material
- G01F1/78—Direct mass flowmeters
- G01F1/80—Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
- G01F1/84—Coriolis or gyroscopic mass flowmeters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/76—Devices for measuring mass flow of a fluid or a fluent solid material
- G01F1/78—Direct mass flowmeters
- G01F1/80—Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
- G01F1/84—Coriolis or gyroscopic mass flowmeters
- G01F1/845—Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
- G01F1/8468—Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
- G01F1/849—Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having straight measuring conduits
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/76—Devices for measuring mass flow of a fluid or a fluent solid material
- G01F1/78—Direct mass flowmeters
- G01F1/80—Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
- G01F1/84—Coriolis or gyroscopic mass flowmeters
- G01F1/8409—Coriolis or gyroscopic mass flowmeters constructional details
- G01F1/8436—Coriolis or gyroscopic mass flowmeters constructional details signal processing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F15/00—Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
- G01F15/02—Compensating or correcting for variations in pressure, density or temperature
- G01F15/022—Compensating or correcting for variations in pressure, density or temperature using electrical means
- G01F15/024—Compensating or correcting for variations in pressure, density or temperature using electrical means involving digital counting
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F25/00—Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F25/00—Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
- G01F25/10—Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
- G01F25/15—Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters specially adapted for gas meters
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Measuring Volume Flow (AREA)
- Measuring Fluid Pressure (AREA)
- Flow Control (AREA)
Abstract
本发明公开了一种测量流经科里奥利流量计的物料密度的方法和装置。所述密度用来推断流动物料的压力。推断的压力可以用来修正在科里奥利流量计中的第二压力效应或者报告给外部装置。
Description
发明背景
1.发明领域
本发明涉及流体计领域,特别地是涉及科里奥利流量计。
2.背景技术
科里奥利流量计通过感测振动管道里的科里奥利力来测量质量流量。所述管道包括一个或多个歧管,并被驱动以谐振频率进行振动。所述歧管的谐振频率与流管里的流体的密度成比例。位于歧管入口和出口处的传感器测量歧管端部之间的相应振动。在流动期间,振动歧管和流动质量由于科里奥利力偶联在一起,在歧管的端部之间的振动产生一个相位移动,所述相位移动与质量流量成正比。
存在影响科里奥利传感器的流管的第二压力。压力的变化,质量流量不变,将改变在歧管上的弯曲压力的影响。当压力增加时,流管将变硬,由于不变质量流量的同样大小的科里奥利压力,将会使歧管产生微小的弯曲。当压力减小时,流管将变柔软,由于不变质量流量的同样大小的科里奥利压力,将会使歧管产生较大的弯曲。所述流动压力效应是线性的,代表性地表示了压力的每单位变化的流速的百分比。修正压力效应需要使用平均压力值或者测量实际压力。当在所述系统中操作压力存在较大的变化时,使用平均压力值会引起不能接受的误差,测量实际压力一般地需要压力感应端口,压力传感器,设计用来监视所述压力传感器的电子线路,和传输测得的压力到科里奥利流量计的一些装置。
因此需要一种更好的系统和方法来测量科里奥利流量计中的压力。
发明内容
公开一种方法和装置,测量流经科里奥利流量计的物料的密度。所述密度用来推断流动物料的压力。推断的压力可以用来修正在科里奥利流量计中的第二压力效应,或者报告给外部装置。
发明的几个方面
本发明的一个方面包括,一种方法,包括:
测量流经科里奥利流量计的物料的密度;
从测得的密度确定流动物料的压力。
优选地,所述方法进一步包括利用确定的流动压力修正从科里奥利流量计的质量流量测量的压力效应。
优选地,所述方法进一步包括:
(a)在等式
中将压缩性z值为1,计算压力P的值;
(b)利用压力P的计算值为超级压缩性z确定一个更精确的值;
(c)利用新的更精确的超级压缩性z的值来重新为压力P计算一个值;
(d)重复步骤b和c,直到压力的值会聚到预定的范围里。
优选地,所述方法进一步包括,利用美国天然气协会(AGA)第8号报告的信息来确定所述压缩性。
优选地,所述方法进一步包括,提示使用者输入流经流量计的物料的摩尔量(MW)。
优选地,所述方法进一步包括,提示使用者输入天然气类型,科里奥利流量计从天然气类型确定流经流量计的物料的摩尔量(MW)。
优选地,所述方法进一步包括,其中的压力利用下面的公式来确定:
优选地,所述方法进一步包括,其中科里奥利流量计为多种物料在高的压力点和低的压力点进行了校准。
优选地,所述方法进一步包括:
为当前的压力调整所述测定的压力Pdet er min ed。
优选地,所述方法进一步包括:
通过在每个所述的两个压力点由测得的压力修正所述测定的压力,在两个压力点校准压力和密度的关系。
优选地,所述方法进一步包括:
将测定的流动压力传送到外部设备。
本发明的另外一个方面包括:
(a)在低的压力点为物料校准科里奥利流量计的密度和压力关系;
(b)在高的压力点为所述物料校准科里奥利流量计的密度和压力关系;
(c)为所述物料保存所述两个校准的关系。
优选地,所述方法进一步包括,其中校准所述密度和压力关系包括:
使用科里奥利流量计测量物料的密度,同时测量在科里奥利流量计中的物料的压力,并将两个测量结果关联起来。
优选地,所述方法进一步包括:
为多种物料重复步骤(a)到步骤(c)。
优选地,所述方法进一步包括:
基于测得的当前密度和所述两个保存的校准关系来为所述物料测定当前的压力。
优选地,所述方法进一步包括:
基于物料的当前温度来为所述物料调整当前的压力。
优选地,所述方法进一步包括,其中基于温度来为所述物料调整当前的压力包括:
(a)为高的和低的压力点测定压缩性Z:
(b)为高的和低的压力点确定平均摩尔量;
(c)确定“最后压力估算值”
(d)利用“最后压力估算值”确定新的压缩性
(e)计算“新压力估算值”
(f)重复步骤(c)-(e),直到“新压力估算值”会聚到预定的范围内
本发明的另外一个方面包括一种科里奥利流量计,包括:
容纳流动物料的导管;
至少一个驱动装置,振动所述导管;
测量振动导管的活动的第一和第二传感器;
基于振动导管的活动确定流动物料的密度的处理器;
所述处理器设置为基于所述确定的密度来确定流动物料的压力。
特别地,所述方法进一步包括:
在两个不同压力点为流动物料保存压力和密度关系的存储区,其中,在所述两个压力点,利用流动物料的密度和所述压力和密度关系来确定流动物料的压力。
特别地,所述方法进一步包括,其中使用迭代方法确定流动物料的压力。
特别地,所述方法进一步包括,其中所述迭代方法利用物料的压力,物料的密度,和物料的压缩性之间的关系进行迭代。
特别地,所述方法进一步包括,其中所述流动物料的压力用来修正由科里奥利流量计测量的质量流量中的压力效应。
特别地,所述方法进一步包括,所述流动物料的压力被传输到外部设备上。
本发明的另外一个方面包括一种科里奥利流量计,包括:
振动容纳着流动物料的导管的装置;
测量振动导管的相位的装置;
将测得的相位转换成流动密度测量的装置;
基于所述密度确定流动物料的压力的装置。
附图说明
附图1是一个数据表,示出了多种不同的气体在恒定华氏70度时,在14磅/平方英寸到1464磅/平方英寸的不同压力下的气体压缩性。
附图2是一幅曲线图,示出了附图1中数据表的信息。
附图3是一幅曲线图,示出了从14磅/平方英寸到1464磅/平方英寸的压力范围里,墨西哥湾岸区天然气成分的理论线性压缩性和实际的压缩性的压力与压缩性之间的关系。
附图4是一个数据表,示出了在14磅/平方英寸到1464磅/平方英寸的压力范围里,多种其它气体的理论线性压缩性和实际压缩性之间的最大差。
附图5是根据本发明的一个实施例的科里奥利流量计的方框图。
附图6是根据本发明的一个实施例反复从流体密度测量流体压力的流程图。
附图7是一幅流程图,示出了根据本发明的一个实施例在两个压力点校准流量计的方法。
附图8是一幅曲线图,示出了在314磅/平方英寸到1014磅/平方英寸的压力范围里,Ekofish的密度/压力关系。
附图9是根据本发明的一个实施例利用高的和低的压力校准点测量流体流体压力,调整温度的流程图。
优选实施例的具体描述
附图1-9和下面的说明描述具体的例子,以教会本领域的技术人员如何使用本发明的最优模式。为了教授发明原则的目的,简化或删除了一些传统的方面。本领域的技术人员从这些例子里获得的一些变型也落在本发明的范围内。本领域的技术人员将会知道下面描述的特征可以以各种不同的方式合并到本发明的多种变型里。因此本发明并不局限于下面描述的专门例子,而只限于权利要求书和它们的等同技术方案。
气体的流动密度有非理想气体定律来表示,公式是:
其中ρ是流动气体的密度,P是流动气体的压力,M是气体的摩尔量,Z是气体的压缩性,R是气体常数,T是流动气体的温度,在很多情况下,流经科里奥利流量计的气体的温度和摩尔量是保持相对固定的。在流动气体的温度范围较宽时,可以测量流动气体的温度。当所述流动温度和摩尔量视为常数时,等式1可以写成:
其中ρ是流动气体的密度,P是流动气体的压力,N是一个常数,Z是所述气体的压缩性。等式2示出了流动密度的变化主要受流体压力和压缩性的影响。等式2还示出了流动密度与流动压力成正比,除去压缩性的影响。在大部分的气体测量应用中,流体压力的范围从标准大气压(大约14磅/平方英寸)到1464磅/平方英寸,大约105比1的变化。附图1是多种不同的气体在华氏70度时,在14磅/平方英寸到1464磅/平方英寸的不同压力下的气体压缩性数据表。这些气体的压缩性在现有技术中已知,获得这些信息的一个来源是美国天然气协会(AGA)第8号报告“天然气和相关烃类气体的压缩系数”(1994年第二版),这里作为参考引入进来。附图2是一幅曲线图,示出了附图1中数据表的信息。从附图1和2中可以看出,压缩性在14到1464磅/平方英寸的范围内具有最大约1.3∶1的差异。
附图3是一幅曲线图,示出了从14磅/平方英寸到1464磅/平方英寸的压力范围里,墨西哥湾岸区天然气成分的理论线性压缩性和实际的压缩性的压力与压缩性之间的关系。从附图3中可以看出,这种天然气成分的在压缩性和压力之间的理论线性变化和实际变化之间的差异是很小的。附图4是一个数据表,示出了多种其它气体的理论线性压缩性和实际压缩性之间的最大差。附图4表明在14磅/平方英寸到1464磅/平方英寸的压力范围里,在很宽范围的气体组分的中,存在几乎线性的压缩性和压力之间的关系。等式2说明在压力和密度之间具有线性关系。由于这些线性和几乎线性的关系,一个相关的方法可以用来流动密度等同压力。
附图5是科里奥利流量计的方框图。科里奥利流量计包括具有一个或多个管道的管道502,被配置用来容纳流动物料。配置有一个或多个驱动器504,以管道的固有弯曲振动频率振动所述管道。传感器506配置来测量振动管道502的运动。控制器508连接到驱动器504和传感器506上,控制科里奥利流量计的操作。控制器508可以是一个独立单元或者也可以分布成多个单元。例如,可以有一些电子仪器附接到科里奥利流量计上,这些电子仪器可以与外部电脑相连,这些电脑运行软件来帮助控制所述流量计。操作中,流动物料在振动管道里产生科里奥利压力,在管道的两端之间的振动中产生一个相位移动。传感器测量管道两个位置之间的相位移动,控制器从所述测得的相位差来确定物料的流动速度。所述科里奥利流量计可以具有内嵌测温探头(未示出),或者可以从外部传感器接收温度数据。科里奥利流量计还能够利用测得的管道的活动来确定流动物料的密度。
在本发明的一个典型实施例中,流动物料的密度用来推断所述物料的流体压力。附图6是反复从流动密度测量流体压力的流程图。在步骤602,流经科里奥利流量计的物料的密度是利用测得的振动管道的活动来确定的。测定科里奥利流量计中流动物料的密度的方法在现有技术中已经知道。在步骤604,气体的压缩性z在下面公式中被设为1:
其中P是流体压力,T是温度,M是流动在科里奥利流量计中的物料的摩尔量,第一压力被计算。在步骤步骤606,利用计算的压力P确定一个更好的z的值。在给定压力P下的气体压缩性z的值可以利用AGA第8号报告,压缩性查阅表,压缩性状态方程式,或其他类似来源中的信息来确定。在步骤608,利用新的压缩性z来重新计算压力。如果在步骤608中确定的压力值没有会聚到预定的阈值范围内,返回步骤606,其中气体压缩性更好的估算是利用最后计算的压力P的值来确定。当在步骤608中确定的压力值会聚到预定的阈值范围内,所述压力已经成功地从所述流动密度中推断出来。所述推断的压力可以利用在多种方式中。
在本发明的一个典型实施例中,所述压力可以被显示或传输到科里奥利流量计以外的装置上。例如,所述压力值可以发送到安全装置上,所述安全装置监视管道内的压力以发现不安全的压力状况。在本发明的另一个典型实施例中,所述压力值可以用来修正在科里奥利流量计的质量流量测量中的压力效应。所述压力效应典型地指明了压力的每一单位变化时,流量的百分比。修正所述压力效应的一个方法是使用等式4:
其中Mcorrected是修正的质量流量,Mraw是测得原始质量流量,Pe是压力效应,Pstatic是流体压力,Pcal是压力,流量是现在计算的,Pe典型地是科里奥利流量计的几何功能,例如,是管道的直径,管道壁的厚度,管道的刚性,等等。等式4示出了当在流量计中的压力等于流量计校准的压力,修正的流量等于原始的流量。当流体压力高于校准的压力时,修正的流量将小于测得的流量。
当科里奥利流量计利用测得的密度推断流体压力时,就需要流经流量计的物料的摩尔量和温度。所述温度可以使用流量计中的传感器测量,或者由外部温度传感器提供。所述气体的摩尔量可以由使用者输入或者从远端源提供。当使用者输入所述物料的摩尔量,他们可以直接通过打一个值直接输入,或者他们可以通过用名字或气体组分识别流动物料间接输入,所述科里奥利流量计可以使用查阅表来确定物料相对应的摩尔量。
在本发明的另一个典型实施例中,测得的流动物料的密度通过使用在高压力点和在低压力点的校准的压力/密度关系被用来确定气流压力。由于压力/密度关系是几乎线性的,一旦所述流量计在两个不同压力点被校准,所述压力可以从当前密度不经过迭代就推定。在校准进程中,流量计里的压力必须被精确地测量。附图7是一幅流程图,示出了在两个压力点校准流量计的方法。在步骤702,在流量计中的物料被加压到第一级。在步骤704,使用流量计在第一压力下测量物料的密度。在步骤706,在流量计中的物料被加压到第二级。在步骤708,在第二压力下测量物料的密度。校准流量计的时候,所述物料可以流经所述流量计或者可以停留在所述流量计里。所述流量计可以为每种类型的物料流经科里奥利流量计进行校准。在本发明的一个典型实施例中,不同类型物料的高的和低的校准点可以保存在一个表中,可以用所述流量计来测量。当前流经所述流量计的物料类型进入到流量计的时候,所述流量计将查找校准点来确定物料的类型。
一旦流量计已经为一种物料进行了校准,所述物料的压力可以利用等式5从所述密度中被确定。
其中Pdet er min ed是测定的压力,Plow是低压力校准点的压力,Phigh是高压力校准点的压力,ρlow是在低压力校准点测得的密度,ρhigh是在高压力校准点测得的密度,ρcurrent是当前测得的流经流量计的物料的密度,附图8是一幅曲线图,示出了在314磅/平方英寸到1464磅/平方英寸的压力范围里,Ekofish的密度/压力关系。从附图8中可以看出,线性线和实际的曲线之间的吻合非常紧密。
在本发明的另外一个典型实施例中,所述高的和低的压力校准信息可以考虑流动物料的温度的变化进行调整。附图9是利用高的和低的压力校准点测量流体流体压力,调整温度的流程图。在步骤902,在每个高的和低的压力校准点测定压缩性,所述压缩性可以利用任何在AGA第8号报告披露的三种方法(AGA粗略方法1,方法2,或细致方法),压缩性查表,压缩性状态方程式,或其他类似方法来确定。在步骤904,确定高的和低的压力校准点的平局摩尔量。改写等式1以求出赋给的摩尔量:
其中M是所述物料的摩尔量,P是在低的和高的压力校准点测得的压力,Z是在步骤902确定的压缩性,T是在高的和低的校准点测得的温度,ρ是在高的和低的压力校准点测得的密度,R是个常数。高的压力校准点的摩尔量与低的压力校准点的摩尔量相平均,给出一个平均摩尔量。在步骤906,利用等式5确定一个当前压力P,存为“最后压力估算值”。在步骤908,利用“最后压力估算值”,当前的压力,所述物料的平均摩尔量,和当前的密度,确定一个新的压缩性值z,。在步骤910,用步骤908确定的压缩性,步骤904确定的平均摩尔量,当前的密度和当前的温度,由等式3计算出一个“新压力估算值”。在步骤912,所述“新压力估算值”用下面的不等式进行评价:
绝对值(“新压力估算值”-“最后压力估算值”)<=1 (7)
当不等式成立时,“新压力估算值”设置为当前的压力。当不等式不成立时,“新压力估算值”存为“最后压力估算值”并转到步骤906。利用这种迭代方法,当利用高的和低的压力校准点测定压力的时候,流动物料中的温度的变化的影响就可以考虑在内。
Claims (24)
1、一种方法,包括:
测量流经科里奥利流量计(602)的物料的密度;
从测得的密度确定流动物料的压力。
2、根据权利要求1所述的方法,进一步包括:
利用测得的流动压力修正科里奥利流量计的质量流量测量的压力效应。
3、根据权利要求1所述的方法,进一步包括:
(a)在等式
中将压缩性z磁为1,并计算压力P的值(604);
(b)利用压力P的计算值为压缩性z确定一个更精确的值(606);
(c)利用新的更精确的压缩性z的值来重新为压力P计算一个值(608);
(d)重复步骤b和c,直到压力的值会聚到预定的范围里。
4、根据权利要求3所述的方法,其中:
利用美国天然气协会(AGA)第8号报告的信息来确定所述压缩性。
5、根据权利要求3所述的方法,其中:
提示使用者输入流经流量计的物料的摩尔量(MW)。
6、根据权利要求3所述的方法,其中:
提示使用者输入天然气类型,科里奥利流量计从天然气类型确定流经流量计的物料的摩尔量(MW)。
7、根据权利要求1所述的方法,其中:压力利用下面的公式来确定:
8、根据权利要求7所述的方法,其中科里奥利流量计为多种物料在高的压力点和低的压力点进行了校准。
9、根据权利要求7所述的方法,进一步包括:
为当前的压力调整所述测定的压力Pdetermined。
10、根据权利要求1所述的方法,进一步包括:
通过在每个所述的两个压力点由测得的压力修正所述确定的压力,在两个压力点校准压力和密度的关系。
11、根据权利要求1所述的方法,进一步包括:
将测定的流动压力传送到外部设备。
12、一种方法,包括:
(a)在低的压力点为物料校准科里奥利流量计的密度和压力关系;
(b)在高的压力点为所述物料校准科里奥利流量计的密度和压力关系;
(c)为所述物料保存所述两个校准的关系。
13、根据权利要求12所述的方法,其中校准所述密度和压力的关系包括:
使用科里奥利流量计测量物料的密度,同时测量在科里奥利流量计
中的物料的压力,并将两个测量结果关联起来。
14、根据权利要求12所述的方法,进一步包括:
为多种物料重复步骤(a)到步骤(c)。
15、根据权利要求12所述的方法,进一步包括:
基于测得的当前密度和所述两个保存的校准关系来为所述物料测定当前的压力。
16、根据权利要求15所述的方法,进一步包括:
基于物料的当前温度来为所述物料调整当前的压力。
17、根据权利要求16述的方法,其中基于温度来为所述物料调整当前的压力包括以下步骤:
(a)为高的和低的压力点测定压缩性Z(902);
(b)为高的和低的压力点确定平均摩尔量;
(c)确定“最后压力估算值”;
(d)利用“最后压力估算值”确定新的压缩性;
(e)计算“新压力估算值”(910);
(f)重复步骤(c)-(e),直到“新压力估算值”会聚到预定的范围内。
18、一种科里奥利流量计,包括:
容纳流动物料的导管(502);
至少一个驱动装置(504),振动所述导管;
测量振动导管的活动的第一和第二传感器(506);
基于振动导管的活动确定流动物料的密度的处理器(508);
所述处理器设置为基于所述确定的密度来确定流动物料的压力。
19、根据权利要求18所述的科里奥利流量计,进一步包括:
在两个不同压力点为流动物料保存压力和密度关系的存储区,其中,在所述两个压力点,利用流动物料的密度和所述压力和密度关系来确定流动物料的压力。
20、根据权利要求18所述的科里奥利流量计,其中:使用迭代方法确定流动物料的压力。
21、根据权利要求20所述的科里奥利流量计,其中:所述迭代方法利用物料的压力、物料的密度和物料的压缩性之间的相互关系进行迭代。
22、根据权利要求18所述的科里奥利流量计,其中:所述流动物料的压力用来修正由科里奥利流量计测量的质量流量中的压力效应。
23、根据权利要求18所述的科里奥利流量计,其中:所述流动物料的压力被传输到外部设备上。
24、一种科里奥利流量计,包括:
振动容纳着流动物料的导管的装置;
测量振动导管的相位的装置;
将测得的相位转换成流动密度测量的装置;
基于所述密度确定流动物料的压力的装置。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2004/039960 WO2006059967A1 (en) | 2004-11-30 | 2004-11-30 | Method and apparatus for determining flow pressure using density information |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101069069A true CN101069069A (zh) | 2007-11-07 |
CN101069069B CN101069069B (zh) | 2010-04-14 |
Family
ID=34959672
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2004800445090A Expired - Lifetime CN101069069B (zh) | 2004-11-30 | 2004-11-30 | 利用密度信息测量流体压力的方法和装置 |
Country Status (15)
Country | Link |
---|---|
US (1) | US7597008B2 (zh) |
EP (1) | EP1817554B1 (zh) |
JP (1) | JP4673376B2 (zh) |
KR (1) | KR20090105979A (zh) |
CN (1) | CN101069069B (zh) |
AR (1) | AR052251A1 (zh) |
AT (1) | ATE545848T1 (zh) |
AU (1) | AU2004325253B2 (zh) |
BR (1) | BRPI0419215A (zh) |
CA (1) | CA2587175C (zh) |
DK (1) | DK1817554T3 (zh) |
HK (1) | HK1114665A1 (zh) |
MX (1) | MX2007006326A (zh) |
PL (1) | PL1817554T3 (zh) |
WO (1) | WO2006059967A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103411724A (zh) * | 2013-08-06 | 2013-11-27 | 三峡大学 | 一种定容快速充放气气腔压力的测量方法 |
CN108603778A (zh) * | 2016-02-04 | 2018-09-28 | 高准公司 | 用于振动流量计量器的压力补偿及相关方法 |
CN109029829A (zh) * | 2018-07-26 | 2018-12-18 | 中广核工程有限公司 | 一种核电厂蒸汽发生器上段内部压力的计算方法及系统 |
CN110553692A (zh) * | 2018-06-04 | 2019-12-10 | 高准有限公司 | 科里奥利质量流量计及使用其测量气体压力的方法 |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009012474A1 (de) | 2009-03-12 | 2010-09-16 | Endress + Hauser Flowtec Ag | Meßsystem mit einem Messwandler vom Vibrationstyp |
DE102009028006A1 (de) | 2009-07-24 | 2011-01-27 | Endress + Hauser Flowtec Ag | Meßwandler vom Vibrationstyp sowie Meßgerät mit einem solchen Meßwandler |
DE102009028007A1 (de) | 2009-07-24 | 2011-01-27 | Endress + Hauser Flowtec Ag | Meßumwandler vom Vibrationstyp sowie Meßgerät mit einem solchen Meßwandler |
CN102762960B (zh) * | 2009-12-01 | 2014-07-16 | 微动公司 | 振动流量计摩擦补偿 |
EP2519805B1 (de) | 2009-12-31 | 2018-10-10 | Endress+Hauser Flowtec AG | MEßSYSTEM MIT EINEM MEßWANDLER VOM VIBRATIONSTYP UND VERFAHREN ZUM MESSEN EINER DRUCKDIFFERENZ |
DE102010000760B4 (de) | 2010-01-11 | 2021-12-23 | Endress + Hauser Flowtec Ag | Meßsystem mit einem Meßwandler vom Vibrationstyp zum Messen eines statischen Drucks in einem strömenden Medium |
CN102686985B (zh) | 2009-12-31 | 2015-04-01 | 恩德斯+豪斯流量技术股份有限公司 | 具有振动型测量转换器的测量系统 |
DE102010000759A1 (de) | 2010-01-11 | 2011-07-14 | Endress + Hauser Flowtec Ag | Meßsystem mit einem Meßwandler vom Vibrationstyp |
EP2519804B1 (de) | 2009-12-31 | 2019-08-28 | Endress+Hauser Flowtec AG | Mess-system mit einem messwandler vom vibrationstyp |
DE102010000761A1 (de) | 2010-01-11 | 2011-07-28 | Endress + Hauser Flowtec Ag | Meßsystem mit einem Meßwandler vom Vibrationstyp |
GB201001948D0 (en) * | 2010-02-06 | 2010-03-24 | Mobrey Ltd | Improvements in or relating to vibrating tube densitometers |
US8606521B2 (en) * | 2010-02-17 | 2013-12-10 | Halliburton Energy Services, Inc. | Determining fluid pressure |
DE102010039543A1 (de) | 2010-08-19 | 2012-02-23 | Endress + Hauser Flowtec Ag | Meßsystem mit einem Meßwandler vom Vibrationstyp |
AU2011326332A1 (en) * | 2010-11-08 | 2013-06-27 | Mezurx Pty Ltd | Re-calibration of instruments |
DE102010044179A1 (de) | 2010-11-11 | 2012-05-16 | Endress + Hauser Flowtec Ag | Meßsystem mit einem Meßwandler von Vibrationstyp |
CN103765171B (zh) * | 2011-06-08 | 2016-09-14 | 微动公司 | 用于通过振动计来确定和控制流体静压的方法和设备 |
US10126266B2 (en) | 2014-12-29 | 2018-11-13 | Concentric Meter Corporation | Fluid parameter sensor and meter |
US10107784B2 (en) | 2014-12-29 | 2018-10-23 | Concentric Meter Corporation | Electromagnetic transducer |
WO2016109447A1 (en) | 2014-12-29 | 2016-07-07 | Concentric Meter Corporation | Fluid parameter sensor and meter |
CN105675436A (zh) * | 2016-01-07 | 2016-06-15 | 安徽华润金蟾药业股份有限公司 | 一种华蟾素单效浓缩过程密度检测系统及方法 |
KR101651800B1 (ko) * | 2016-01-19 | 2016-08-29 | (주)리가스 | 비접촉식 기체 압력측정기 |
MX2019002360A (es) * | 2016-10-04 | 2019-06-17 | Micro Motion Inc | Metodo de calibracion de medidor de flujo y aparato relacionado. |
MX2020009297A (es) * | 2018-04-02 | 2020-09-28 | Micro Motion Inc | Metodo para compensar flujo masico usando densidad conocida. |
MX2022008577A (es) * | 2020-01-31 | 2022-08-10 | Micro Motion Inc | Metodo para la correccion de una variable de un medidor de flujo. |
EP4168752A1 (de) | 2020-06-18 | 2023-04-26 | Endress + Hauser Flowtec AG | VIBRONISCHES MEßSYSTEM |
DE102020131649A1 (de) | 2020-09-03 | 2022-03-03 | Endress + Hauser Flowtec Ag | Vibronisches Meßsystem |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5497665A (en) | 1991-02-05 | 1996-03-12 | Direct Measurement Corporation | Coriolis mass flow rate meter having adjustable pressure and density sensitivity |
JPH0783721A (ja) | 1993-09-20 | 1995-03-31 | Tokico Ltd | 振動式測定装置 |
US5753827A (en) * | 1995-10-17 | 1998-05-19 | Direct Measurement Corporation | Coriolis meteR having a geometry insensitive to changes in fluid pressure and density and method of operation thereof |
WO1997026509A1 (en) * | 1996-01-17 | 1997-07-24 | Micro Motion, Inc. | Bypass type coriolis effect flowmeter |
US5734112A (en) | 1996-08-14 | 1998-03-31 | Micro Motion, Inc. | Method and apparatus for measuring pressure in a coriolis mass flowmeter |
US6301973B1 (en) * | 1999-04-30 | 2001-10-16 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Non-intrusive pressure/multipurpose sensor and method |
US6502466B1 (en) * | 1999-06-29 | 2003-01-07 | Direct Measurement Corporation | System and method for fluid compressibility compensation in a Coriolis mass flow meter |
US6318156B1 (en) * | 1999-10-28 | 2001-11-20 | Micro Motion, Inc. | Multiphase flow measurement system |
WO2001067052A1 (en) * | 2000-03-07 | 2001-09-13 | Micro Motion, Inc. | Density compensation for volume flow measured with a coriolis mass flow meter |
JP3655569B2 (ja) * | 2001-09-06 | 2005-06-02 | 大陽日酸株式会社 | ガス成分濃度測定方法及び装置 |
US6865957B1 (en) * | 2002-04-17 | 2005-03-15 | Nathaniel Hughes | Adaptable fluid mass flow meter device |
US7134320B2 (en) * | 2003-07-15 | 2006-11-14 | Cidra Corporation | Apparatus and method for providing a density measurement augmented for entrained gas |
US7150201B2 (en) * | 2004-12-15 | 2006-12-19 | Celerity, Inc. | System and method for measuring flow |
-
2004
- 2004-11-30 DK DK04812482.0T patent/DK1817554T3/da active
- 2004-11-30 PL PL04812482T patent/PL1817554T3/pl unknown
- 2004-11-30 BR BRPI0419215-0A patent/BRPI0419215A/pt active IP Right Grant
- 2004-11-30 KR KR1020097019345A patent/KR20090105979A/ko not_active Application Discontinuation
- 2004-11-30 MX MX2007006326A patent/MX2007006326A/es active IP Right Grant
- 2004-11-30 JP JP2007544318A patent/JP4673376B2/ja not_active Expired - Fee Related
- 2004-11-30 US US11/720,262 patent/US7597008B2/en not_active Expired - Lifetime
- 2004-11-30 AU AU2004325253A patent/AU2004325253B2/en not_active Expired
- 2004-11-30 AT AT04812482T patent/ATE545848T1/de active
- 2004-11-30 WO PCT/US2004/039960 patent/WO2006059967A1/en active Application Filing
- 2004-11-30 EP EP04812482A patent/EP1817554B1/en not_active Expired - Lifetime
- 2004-11-30 CA CA2587175A patent/CA2587175C/en not_active Expired - Lifetime
- 2004-11-30 CN CN2004800445090A patent/CN101069069B/zh not_active Expired - Lifetime
-
2005
- 2005-11-28 AR ARP050104961A patent/AR052251A1/es active IP Right Grant
-
2008
- 2008-04-22 HK HK08104456.1A patent/HK1114665A1/xx not_active IP Right Cessation
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103411724A (zh) * | 2013-08-06 | 2013-11-27 | 三峡大学 | 一种定容快速充放气气腔压力的测量方法 |
CN108603778A (zh) * | 2016-02-04 | 2018-09-28 | 高准公司 | 用于振动流量计量器的压力补偿及相关方法 |
CN110553692A (zh) * | 2018-06-04 | 2019-12-10 | 高准有限公司 | 科里奥利质量流量计及使用其测量气体压力的方法 |
CN109029829A (zh) * | 2018-07-26 | 2018-12-18 | 中广核工程有限公司 | 一种核电厂蒸汽发生器上段内部压力的计算方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CA2587175C (en) | 2013-02-26 |
JP2008522186A (ja) | 2008-06-26 |
AR052251A1 (es) | 2007-03-07 |
JP4673376B2 (ja) | 2011-04-20 |
EP1817554B1 (en) | 2012-02-15 |
CA2587175A1 (en) | 2006-06-08 |
BRPI0419215A (pt) | 2007-12-18 |
WO2006059967A1 (en) | 2006-06-08 |
AU2004325253A1 (en) | 2006-06-08 |
MX2007006326A (es) | 2007-07-09 |
DK1817554T3 (da) | 2012-04-02 |
US7597008B2 (en) | 2009-10-06 |
PL1817554T3 (pl) | 2012-07-31 |
ATE545848T1 (de) | 2012-03-15 |
AU2004325253B2 (en) | 2010-07-22 |
CN101069069B (zh) | 2010-04-14 |
HK1114665A1 (en) | 2008-11-07 |
EP1817554A1 (en) | 2007-08-15 |
US20080034893A1 (en) | 2008-02-14 |
KR20090105979A (ko) | 2009-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101069069A (zh) | 利用密度信息测量流体压力的方法和装置 | |
CN1087422C (zh) | 用于科里奥利效应质量流量计中的故障检测和校正的方法和装置 | |
CN1211641C (zh) | 超声波流量计及其驱动方法 | |
CN108603777B (zh) | 确定含气液体的物理参数的方法 | |
CN1285906C (zh) | 利用超声波测定气体浓度和流量的装置及方法 | |
CN1105301C (zh) | 振动管密度计 | |
CN1227514C (zh) | 用于当材料密度引起流速中不可接受误差时补偿材料质量流速的装置和方法 | |
CN1860350A (zh) | 用于科里奥利流量计的诊断装置及方法 | |
CN1097722C (zh) | 用简化过程提供表示经差压发生器的流量信号的变送器 | |
CN1371470A (zh) | 直管科里奥利流量计 | |
CN110073177B (zh) | 根据科里奥利原理的质量流量计和用于确定质量流量的方法 | |
CN1714279A (zh) | 超声波流量计及利用超声波的流量计测方法 | |
CN104390680B (zh) | 时差式超声波热量表流量误差修正方法 | |
RU2665350C1 (ru) | Устройство для применения изменяемого алгоритма обнуления в вибрационном расходомере и связанный способ | |
JP2010505114A (ja) | 流量計における幾何学的熱補償のための計器電子装置及び方法 | |
CN1272681C (zh) | 故障预测支援装置 | |
CN1419648A (zh) | 在低温下操作科里奥利流量计的方法及其装置 | |
CN1549918A (zh) | 确定科里奥利流量计内流管和流体的特性 | |
CN114599941A (zh) | 利用振动传感器的增强的超临界流体测量 | |
CN1856697A (zh) | 用于检测振动元件密度计和科里奥利流量计上的腐蚀、侵蚀或产品集结的方法和校准确认 | |
CN1808077A (zh) | 流量计现场校准检验系统 | |
CN101076710A (zh) | 多相哥氏流量计 | |
KR20070074673A (ko) | 밀도 정보를 이용하여 유량 압력을 측정하기 위한 방법 및장치 | |
CN1926406A (zh) | 流量测定方法以及流量测定装置 | |
CN111380598A (zh) | 一种超声波流量计标定装置及其标定方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 1114665 Country of ref document: HK |
|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: GR Ref document number: 1114665 Country of ref document: HK |
|
CX01 | Expiry of patent term |
Granted publication date: 20100414 |
|
CX01 | Expiry of patent term |