CN101060166A - An optically transparent electrode and its manufacture method - Google Patents
An optically transparent electrode and its manufacture method Download PDFInfo
- Publication number
- CN101060166A CN101060166A CNA2006100758378A CN200610075837A CN101060166A CN 101060166 A CN101060166 A CN 101060166A CN A2006100758378 A CNA2006100758378 A CN A2006100758378A CN 200610075837 A CN200610075837 A CN 200610075837A CN 101060166 A CN101060166 A CN 101060166A
- Authority
- CN
- China
- Prior art keywords
- layer
- light
- amorphous silicon
- substrate
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title description 5
- 238000004519 manufacturing process Methods 0.000 title 1
- 239000000758 substrate Substances 0.000 claims abstract description 23
- 229910021417 amorphous silicon Inorganic materials 0.000 claims abstract description 19
- 238000002360 preparation method Methods 0.000 claims abstract description 11
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 10
- 239000010703 silicon Substances 0.000 claims abstract description 10
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 24
- 229920005591 polysilicon Polymers 0.000 claims description 23
- 238000000151 deposition Methods 0.000 claims description 10
- 230000008021 deposition Effects 0.000 claims description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 5
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 3
- 229910017604 nitric acid Inorganic materials 0.000 claims description 3
- 238000004140 cleaning Methods 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims description 2
- 238000001755 magnetron sputter deposition Methods 0.000 abstract description 8
- 238000005566 electron beam evaporation Methods 0.000 abstract description 4
- 150000003377 silicon compounds Chemical class 0.000 abstract description 2
- 238000002834 transmittance Methods 0.000 description 14
- 239000010408 film Substances 0.000 description 9
- 238000001704 evaporation Methods 0.000 description 6
- 230000008020 evaporation Effects 0.000 description 6
- 239000011521 glass Substances 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 3
- 239000013077 target material Substances 0.000 description 3
- 238000005234 chemical deposition Methods 0.000 description 2
- 238000000407 epitaxy Methods 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Physical Vapour Deposition (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种透光电极及其制备方法。The invention relates to a light-transmitting electrode and a preparation method thereof.
背景技术Background technique
目前,常见的有机电致发光器件是以透明的导电玻璃为衬底的,光从底部射出;但在某些应用中要求光必须从顶部射出。即使有些以ITO为阳极的情况,也要求光从顶部出射。顶出光的有机发光二极管开辟了有机发光器件研究的新领域和更广阔的应用前景,例如,采用硅片作衬底时,可预先在Si上做好有机发光器件的驱动电路,然后制作有机发光层,最后制备顶出光电极,这样就实现了硅基的光电集成。硅基有机显示器件的分辨率、刷新速度和功耗一般都要优于现有基于ITO的有机发光器件。在光电转换,如太阳电池和光敏二极管中,也需要透光的电极。At present, the common organic electroluminescent devices are based on transparent conductive glass, and the light is emitted from the bottom; but in some applications, the light must be emitted from the top. Even in some cases where ITO is used as the anode, light is required to exit from the top. The organic light-emitting diodes that emit light have opened up a new field of research on organic light-emitting devices and broader application prospects. For example, when using silicon wafers as substrates, the driving circuits of organic light-emitting devices can be prepared on Si in advance, and then organic light-emitting devices can be fabricated. layer, and finally prepare the top-out photoelectrode, thus realizing silicon-based optoelectronic integration. The resolution, refresh rate and power consumption of silicon-based organic display devices are generally superior to existing ITO-based organic light-emitting devices. In photoelectric conversion, such as solar cells and photodiodes, light-transmitting electrodes are also required.
对于透光电极,可选择的材料比较多,但最终必须在透光率和导电性之间求得平衡。在有机发光方面,目前采用较多的有ITO和薄Al/Ag或LiF/Al/Ag复合层(Al常为nm量级),并多用作阴极。但是,前者因为淀积ITO很容易损坏有机发光层,对于设备与工艺有很高的要求;而后者导致器件内量子效率低,而且反射严重,透光率较低,另外稳定性也较差。For light-transmitting electrodes, there are many materials to choose from, but ultimately a balance must be struck between light transmittance and conductivity. In terms of organic luminescence, ITO and thin Al/Ag or LiF/Al/Ag composite layers (Al is usually on the order of nm) are mostly used at present, and are mostly used as cathodes. However, the former has high requirements for equipment and processes because the deposition of ITO is easy to damage the organic light-emitting layer; while the latter leads to low quantum efficiency in the device, severe reflection, low light transmittance, and poor stability.
发明内容Contents of the invention
本发明的目的是提供一种功函数可调、界面反射小、透光率高和化学稳定性好的透光电极及其制备方法。The object of the present invention is to provide a light-transmitting electrode with adjustable work function, small interface reflection, high light transmittance and good chemical stability and a preparation method thereof.
本发明所提供的透光电极,包括透明衬底和位于透明衬底上的多晶硅层。The light-transmitting electrode provided by the present invention includes a transparent substrate and a polysilicon layer on the transparent substrate.
为了提高电极的稳定性和电接触性能,多晶硅膜应在10nm的厚度以上。为保证较高的透光率,这个厚度应在100nm以下。如果用于红外波段,可以把厚度提高至微米量级。In order to improve the stability and electrical contact performance of the electrode, the polysilicon film should be more than 10nm in thickness. In order to ensure a high light transmittance, the thickness should be below 100nm. If it is used in the infrared band, the thickness can be increased to the order of microns.
在使用时可以根据需要,在上述顶电极加上任何图形的模版。During use, any graphic template can be added to the above-mentioned top electrode as required.
该电极可以采用如下两种方法制备:The electrode can be prepared by the following two methods:
第一种,直接在衬底上沉积多晶硅层;The first is to deposit a polysilicon layer directly on the substrate;
这里,直接沉积多晶硅层可以先在衬底上沉积非晶硅层,然后,非晶硅层在900-1100℃下退火形成多晶硅层;或者,在沉积非晶硅层的同时,在900-1100℃下加热使衬底上沉积的非晶硅层退火形成多晶硅层,得到所述透光电极。Here, the direct deposition of the polysilicon layer may first deposit an amorphous silicon layer on the substrate, and then anneal the amorphous silicon layer at 900-1100°C to form a polysilicon layer; or, while depositing the amorphous silicon layer, anneal at 900-1100 and heating at ℃ to anneal the amorphous silicon layer deposited on the substrate to form a polysilicon layer to obtain the light-transmitting electrode.
这里,沉积可以采用磁控溅蒸发,电子束蒸发,离子束蒸发,分子外延蒸发或气相化学沉积等方式。Here, deposition can be done by magnetron sputtering evaporation, electron beam evaporation, ion beam evaporation, molecular epitaxy evaporation or vapor phase chemical deposition.
第二种,是在透明衬底上沉积非晶硅层,然后在非晶硅层上沉积Ni层或Al层,接着在450-650℃下退火20min-48h形成多晶硅层,最后清洗去Ni层或Al层,得到所述透光电极。The second is to deposit an amorphous silicon layer on a transparent substrate, then deposit a Ni layer or an Al layer on the amorphous silicon layer, then anneal at 450-650°C for 20min-48h to form a polysilicon layer, and finally wash off the Ni layer or Al layer to obtain the light-transmitting electrode.
这里,沉积也可以采用磁控溅蒸发,电子束蒸发,离子束蒸发,分子外延蒸发或气相化学沉积等方式。Here, deposition can also be done by magnetron sputtering evaporation, electron beam evaporation, ion beam evaporation, molecular epitaxy evaporation or vapor phase chemical deposition.
非晶硅层厚度为10-100nm;所述Ni层或Al层的厚度为1-10nm。清洗可采用盐酸或硝酸溶液。The thickness of the amorphous silicon layer is 10-100 nm; the thickness of the Ni layer or Al layer is 1-10 nm. Cleaning can use hydrochloric acid or nitric acid solution.
本发明用多晶硅薄膜作为透光电极可以兼顾透光率、稳定性和低成本等基本要素。原料可以是非晶硅,单晶硅尾料,也是硅的其他化合物;制备工艺可以用成本很低的磁控溅射或电子束蒸发等,真空在10-5托以上即可。与采用薄金属透光电极相比,透光率高且稳定。与ITO薄膜相比,材料和工艺成本均较低。本发明的透光电极在无机薄膜,有机薄膜和半导体发光,以及光电器件和光探测器等方面也有广泛用途。The invention uses the polysilicon thin film as the light-transmitting electrode, which can take into account basic elements such as light transmittance, stability and low cost. The raw material can be amorphous silicon, single crystal silicon tailings, or other silicon compounds; the preparation process can be low-cost magnetron sputtering or electron beam evaporation, etc., and the vacuum can be above 10 -5 Torr. Compared with thin metal light-transmitting electrodes, the light transmittance is high and stable. Compared with ITO thin films, the material and process costs are lower. The light-transmitting electrode of the invention is also widely used in inorganic thin films, organic thin films and semiconductor luminescence, as well as photoelectric devices and photodetectors.
具体实施方式Detailed ways
实施例1、玻璃衬垫上用磁控溅射制备多晶硅薄膜Embodiment 1, prepare polysilicon thin film with magnetron sputtering on glass pad
用磁控溅射设备,在玻璃衬底上沉积非晶硅薄膜25nm,然后再沉积2nm Ni。要求真空度10-5托以上,材料纯度在99.99%以上,所用的硅靶材为单晶硅。取出样品在氮气保护下600℃退火(晶化)30分钟,然后,以稀硝酸清洗去Ni层,得到带有多晶硅薄膜层的电极。经测试,该电极的可见透光率为60%,红外透光率约为80%,导电性能稳定。A 25nm amorphous silicon film was deposited on a glass substrate with a magnetron sputtering device, and then 2nm Ni was deposited. It is required that the vacuum degree is above 10 -5 Torr, the material purity is above 99.99%, and the silicon target material used is single crystal silicon. The sample was taken out and annealed (crystallized) at 600° C. for 30 minutes under the protection of nitrogen, and then cleaned with dilute nitric acid to remove the Ni layer to obtain an electrode with a polysilicon film layer. After testing, the visible light transmittance of the electrode is 60%, the infrared light transmittance is about 80%, and the conductivity is stable.
实施例2、用化学气相沉积制备多晶硅薄膜Embodiment 2, prepare polysilicon film with chemical vapor deposition
用常规等离子增强化学气相沉积设备,衬底是玻璃,反应气体是硅烷,用Ar气稀释,在衬底上沉积70nm非晶硅薄膜,然后在真空中950℃退火120min,得到带有多晶硅薄膜层的电极。经测试,该电极的可见透光率为40%,红外透光率约为60%,导电性能稳定。Using conventional plasma-enhanced chemical vapor deposition equipment, the substrate is glass, the reaction gas is silane, diluted with Ar gas, a 70nm amorphous silicon film is deposited on the substrate, and then annealed at 950°C for 120min in a vacuum to obtain a polycrystalline silicon film layer the electrodes. After testing, the visible light transmittance of the electrode is 40%, the infrared light transmittance is about 60%, and the conductivity is stable.
实施例3、直接沉积制备多晶硅层Embodiment 3, direct deposition prepares polysilicon layer
用磁控溅射设备在石英衬底上进行沉积,在沉积同时,衬底原位加热至1050℃,真空度10-5托以上,硅单晶靶材料纯度在99.99%以上,在石英衬底上沉积25mm厚的多晶硅薄膜层,即得到带有多晶硅薄膜层的电极。经测试,该电极的可见透光率为60%,红外透光率约为80%,导电性能稳定。Use magnetron sputtering equipment to deposit on a quartz substrate. While depositing, the substrate is heated in situ to 1050°C, the vacuum degree is above 10 -5 Torr, and the purity of the silicon single crystal target material is above 99.99%. On the quartz substrate Deposit a polysilicon film layer with a thickness of 25 mm on it to obtain an electrode with a polysilicon film layer. After testing, the visible light transmittance of the electrode is 60%, the infrared light transmittance is about 80%, and the conductivity is stable.
实施例4、Embodiment 4,
用磁控溅射设备,在玻璃衬底上沉积非晶硅薄膜50nm,然后再沉积8nm Al。要求真空度10-5托以上,材料纯度在99.99%以上,所用的硅靶材为单晶硅。取出样品在氮气保护下500℃退火(晶化)1小时,然后,以稀盐酸清洗去Al层。此时,可见透光率为50%,红外透光率约为70%,导电性能稳定。A 50nm amorphous silicon film was deposited on a glass substrate with a magnetron sputtering device, and then 8nm Al was deposited. It is required that the vacuum degree is above 10 -5 Torr, the material purity is above 99.99%, and the silicon target material used is single crystal silicon. The sample was taken out and annealed (crystallized) at 500° C. for 1 hour under the protection of nitrogen, and then washed with dilute hydrochloric acid to remove the Al layer. At this time, the visible light transmittance is 50%, the infrared light transmittance is about 70%, and the conductivity is stable.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2006100758378A CN101060166A (en) | 2006-04-20 | 2006-04-20 | An optically transparent electrode and its manufacture method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2006100758378A CN101060166A (en) | 2006-04-20 | 2006-04-20 | An optically transparent electrode and its manufacture method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101060166A true CN101060166A (en) | 2007-10-24 |
Family
ID=38866138
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2006100758378A Pending CN101060166A (en) | 2006-04-20 | 2006-04-20 | An optically transparent electrode and its manufacture method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101060166A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019091919A (en) * | 2010-07-02 | 2019-06-13 | サンパワー コーポレイション | Manufacturing method of solar cell with tunnel dielectric layer |
-
2006
- 2006-04-20 CN CNA2006100758378A patent/CN101060166A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019091919A (en) * | 2010-07-02 | 2019-06-13 | サンパワー コーポレイション | Manufacturing method of solar cell with tunnel dielectric layer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105449106B (en) | A kind of transparent electrode and preparation method thereof based on super thin metal | |
US20120295087A1 (en) | Method for producing a structured tco-protective coating | |
CN102623604A (en) | ZnO nanorod light-emitting diode and manufacturing method thereof | |
CN102945828A (en) | Active matrix organic light emitting diode driving back plate and preparation method of active matrix organic light emitting diode driving back plate | |
JP2023036564A (en) | Perovskite solar cell, manufacturing method thereof, nickel oxide film with reduced defects at interface, and interface treatment method for nickel oxide film | |
CN103107286A (en) | Method of producing imaged indium tin oxides (ITO) electrode with non-photoetching technology | |
US10395845B2 (en) | Flexible Ti—In—Zn—O transparent electrode for dye-sensitized solar cell, and metal-inserted three-layer transparent electrode with high conductivity using same and manufacturing method therefor | |
Chen et al. | Improvement of electrical characteristics and wet etching procedures for InGaTiO electrodes in organic light-emitting diodes through hydrogen doping | |
KR20200140833A (en) | Method for manufacturing perovskite-based photovoltaic device, and the photovoltaic device | |
Iimori et al. | High photovoltage generation at minority-carrier controlled n-Si/p-CuI heterojunction with morphologically soft CuI | |
CN101060166A (en) | An optically transparent electrode and its manufacture method | |
JP2008077924A (en) | Photoelectric converter | |
CN102881563B (en) | Preparation method of polycrystalline silicon film component | |
CN111139449A (en) | Zinc oxide based transparent electrode photoelectric detector and preparation method thereof | |
US20080277654A1 (en) | Organic light emitting diode with fluorinion-doped anode and method for fabricating same | |
CN116397194A (en) | Preparation method of low temperature ITO thin film and ITO thin film | |
CN102222774A (en) | Organic or inorganic electroluminescent device, anode of device and manufacturing method of anode | |
JP4114398B2 (en) | Manufacturing method of substrate with ITO film | |
KR101634647B1 (en) | Polymer light emitting diode and method thereof | |
Schmidt et al. | Highly transparent and conductive ZTO/Ag/ZTO multilayer top electrodes for large area organic solar cells | |
CN101807623A (en) | Manufacturing method of solar cell | |
JP2011091063A (en) | Transparent electrode material which is improved for improvement of performance of oled device | |
CN103421494B (en) | Titanium magnesium codoped alumina luminescent thin film, preparation method and applications | |
CN108682747A (en) | A kind of double heterojunction perovskite photoelectric device and preparation method thereof | |
CN100463243C (en) | A kind of push-out photoelectrode and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20071024 |