CN101048530A - 涂层产品及其制造方法 - Google Patents
涂层产品及其制造方法 Download PDFInfo
- Publication number
- CN101048530A CN101048530A CNA2005800370188A CN200580037018A CN101048530A CN 101048530 A CN101048530 A CN 101048530A CN A2005800370188 A CNA2005800370188 A CN A2005800370188A CN 200580037018 A CN200580037018 A CN 200580037018A CN 101048530 A CN101048530 A CN 101048530A
- Authority
- CN
- China
- Prior art keywords
- coating
- matrix
- composition
- compound coating
- prod
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/56—Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0641—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0676—Oxynitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0688—Cermets, e.g. mixtures of metal and one or more of carbides, nitrides, oxides or borides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/221—Ion beam deposition
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C30/00—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/26—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
- Y10T428/266—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension of base or substrate
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31678—Of metal
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
- Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
- Laminated Bodies (AREA)
Abstract
本发明涉及一种具有涂层的产品,其包含金属基体及一种复合涂层,其中,该复合涂层中至少一个成分为MAX材料类型。而且,本发明还涉及在连续卷式工艺中利用气相沉积法制造该具有涂层的产品的方法。
Description
技术领域
本发明涉及一种涂层产品,其包含金属基体及含有所述的MAX材料的复合涂层。而且,本发明还涉及此种涂层产品的制造方法。
背景技术
MAX材料是一种化学式为Mn+1AzXn的三元化合物。M是选自Ti、Sc、V、Cr、Zr、Nb、Ta组的至少一种过渡金属;A是选自Si、Al、Ge和/或Sn的至少一种元素,以及X是非金属元素C和/或N中的至少一种。单相材料不同组分的含量范围由n和z确定,其中,n介于0.8-3.2之间,z介于0.8-1.2之间。因此,MAX材料的组成为Ti3SiC2、Ti2AlC、Ti3AlN和Ti3SnC。
MAX材料可用于许多不同的领域。这些材料具有良好的导电性能,良好的抗高温性能,良好的抗腐蚀性能以及低的摩擦系数和相对延展性。有些MAX材料还已知是生物相容的。因此,MAX材料和涂覆在金属基质上的MAX材料涂层非常适用于例如:腐蚀环境和高温环境中的电接触材料,耐磨接触材料,具有滑动接触中的低摩擦系数表面,燃料电池中的互联件,植入片上的涂层,装饰涂层以及不粘附表面,这里仅举一些。
参见例如WO03/046247A1,其中记载了成批生产具有MAX材料涂层的物品的方法。然而,此种工艺采用相对比较先进的生产工艺,例如利用一种种子层,却生产不出符合成本效益的产品。因此,需要一种生产出符合成本效益的、具有致密的MAX材料涂层的基体材料的工艺。
有时,可能会需要提高MAX材料的性能,例如:提高其导电性能,降低其接触电阻和/或提高其耐磨性能。
因此,本发明涉及一种以符合成本效益方式生产具有含MAX材料的复合涂层的基体的工艺,同时实现同基体良好结合的致密涂层。
本发明的另一个目的就是在该符合成本效益的工艺过程中,以一种简单的形式来提高MAX材料的至少一种性能,优选地提高其导电性能。
具体实施方式
在连续卷式工艺(roll to roll process)中,生产涂覆了含有MAX材料的复合材料的基体,同时该涂层同基体的整个表面良好结合。此处所说的良好结合是指:产品能够以基体厚度为半径弯曲至少90度,而其涂层不会趋于发生剥落、胀裂或者类似的现象。
基体材料的组分可以是任何金属材料。根据实施例,基体材料从包括Fe、Cu、Al、Ti、Ni、Co和基于这些元素中的任意元素的合金在内的组中选择。适合用作基体的材料有,如型号为AISI400系的铁素体铬钢、型号为300系的奥氏体不锈钢、可淬硬铬钢、双相不锈钢、析出硬化钢、钴合金钢、Ni基合金或具有高含量的Ni的合金以及Cu基合金。根据优选实施例,基体是不锈钢,且其具有重量百分比至少为10%的铬。
该基体可以处于任何条件下,如软化退火、冷轧或淬硬,只要该基体能够承受生产线轧辊上的卷绕。
该基体是呈带状、薄片状、线状、纤维状、管状或类似形态的金属基体材料。根据本发明的优选实施例,该基体为带状或薄片状。
该基体可以具有任何尺寸。然而,至少10米的基体长度确保能够得到符合成本效益的涂层产品。根据实施例,该长度至少为50米。根据另一实施例,该基体的长度至少为100米。事实上,其长度可达20km,而且对于特定的产品形式,如纤维状的,其长度可以甚至更长。
当该基体为带状或薄片状时,其厚度通常至少为0.015mm,优选地至少为0.03mm,且可达3.0mm厚,优选最大为2mm。其最优选的厚度范围为0.03mm-1mm。带材的宽度一般在1mm至1500mm之间。然而,根据实施例,其宽度至少为5mm,但最大为1m。
涂层为含有至少两种不同成分的复合涂层,其中至少一种为MAX材料。该涂层也可含有其它成分。此处所说的成分被认为表示一种相,一种组织,一种复合物或类似物。该复合涂层的微观组织可能为多成分单层,或者可能是不同成分的多层涂层或上述情况的任意结合。
复合物中MAX材料的组分为Mn+1AzXn,M是选自Ti、Sc、V、Cr、Zr、Nb、Ta组中的至少一种过渡金属;A是选自Si、Al、Ge和/或Sn组中的至少一种元素,X是非金属元素C和/或N中的至少一种。单相材料的不同组分的范围由n和z确定,其中,n介于0.8-3.2之间,z介于0.8-1.2之间。
该复合涂层中的MAX材料的结晶度可以从非晶态或纳米晶态变化至完全结晶态以及近似单晶态材料。在涂层的生长过程中,即在沉积过程中,通过控制温度或其它工艺参数,便能够得到不同的结晶形式。例如,在涂层的沉积过程中,高温下会生成高结晶度的涂层。
如上所述,除了MAX材料,该复合材料包含至少一种组分。此种组分可以是能够提高其所要优化的性能的任何一种成分。如:如果所要提高的是导电性能,则该复合涂层的其它成分就可以例如是金属,如:Ag、Au、Cu、Ni、Sn、Pt、Mo或Co。然而,也可以是其它的元素,如:非金属元素C。在需要提高的是耐磨性能的实例中,此时复合涂层的其它成分就可以例如是TiC、TiN或Al2O3。根据一个实施例,该涂层含有至少两种不同的MAX材料。
涂层中MAX材料的量可以主要随着涂层产品意于应用的领域的不同而变化,即复合物中的成分之间的比率是可变化的,以使涂层具有适当的所希望的性能,如抗磨性能、导电性能和/或抗腐蚀性能。然而,根据实施例,复合涂层基于MAX材料的,即单位容积中的MAX材料的含量高于涂层中每一种其它成分的含量。根据另一实施例,复合物中MAX材料的含量至少为70%的体积百分比,优选的,复合物中MAX材料的含量至少为90%的体积百分比。根据又一实施例,复合涂层仅仅含有少量的MAX材料,即其体含量少于20%的体积百分比,优选少于10%的体积百分比。
涂层的厚度适合于涂层产品的用途。根据实施例,该复合涂层的厚度至少为5nm,优选为至少10nm;而且不大于25μm,优选不大于10μm,最优选不大于5μm。合适的涂层厚度通常落在50nm-2μm的范围内。
利用任意能够生成致密且附着的涂层的方法,可以为该基体提供复合涂层,如:电化学沉积法或气相沉积法。然而,为了生产一种符合成本效益的涂层产品,需要在连续卷式工艺中利用气相沉积法来形成涂层。气相沉积技术可以是PVD法,如磁控溅射法或电子束蒸发法。为了形成一层致密且结合良好涂层,如果需要的话,则电子束蒸发法可以为等离子激活法和/或反应法。该复合涂层可以通过有序地使用多个沉积室而逐步生产,但也可在单个的沉积室中生产出。
通常情况下,在涂覆之前,基体表面优选地以适当的方式进行清洁,例如要去除基体表面残留的油和/或本身的氧化层。
应用PVD法的一个优点是:不用将基体材料加热到在例如CVD法中所需要的温度。因此,在涂覆过程中,减小了基体材料恶化的风险。在涂覆过程中,通过控制基体的冷却,能够进一步避免基体的恶化。
在采用连续的涂覆工艺时,涂覆时的基体速度至少为1m/min。根据实施例,基体速度为至少3m/min,而在某些情况下为至少10m/min。高速度保证了涂层产品的符合成本效益的生产。而且,高速度还减小了基体材料恶化的风险,由此可以生产出高质量的产品。
当基体为带状或薄片状时,可以在其一面或双面上均涂覆涂层。当带材的两个面均涂覆涂层时,带材每侧上的涂层成分可以是相同的,但也可以根据该涂层产品的应用领域而变化。可以对带材的两侧同时进行涂覆,也可以一次对一面进行涂覆。
复合涂层的MAX相例如可这样生成:通过蒸发MAX材料目标,并根据上述说明将其沉积在基体上。
含有复合涂层的MAX相例如可这样产生:通过蒸发含有至少两部分的目标,其中一个为MAX材料,另一个为复合材料的至少一种其它的组分,例如,它可以为如下所述金属的一种:Ag、Au、Ni、Cu、Sn、Pt、Mo、Co或以基于以上金属的合金。另一可行的生产方法为:在一个沉积腔中利用MAX材料目标,并且在另一沉积腔利用涂层中的至少一种其他组分进行涂覆。
MAX材料可作为单独层位于具有至少一个其它涂层成分的叠层结构的涂层中,该叠层状结构可具有两层或更多层。然而在涂层的至少一个其它成分的基体中,其也可以呈颗粒、薄片或其他类似的形式。
在某些情况下,为了进一步提高涂层的结合,可以在金属基体和复合涂层之间设置一层任意薄的结合层。该结合层可以是例如基于来自MAX材料的金属中的一种,或复合涂层中其它组分的一种,但其它金属材料也可用作结合层。根据实施例,该结合层应当尽可能薄,不大于50nm,优选地不大于10nm。
在该基体为带或薄片的情况下,其也许可用于特定的应用领域,该基体的一面涂覆有含有MAX材料的复合材料,而其另一面则涂覆有不同的材料,如非导电材料或能够提高焊接性能的材料,如Sn或Ni,在这些情况下,该复合涂层可以涂覆在基体的一侧,而如Al2O3或SiO2这样的电绝缘材料则可以涂覆在基体的另一侧。这可以在独立的沉积室中有序涂覆复合材料,或者可以在独立的场合完成。
Claims (18)
1.利用气相沉积技术涂覆金属基体的方法,其特征在于:复合涂层包含至少两种成分,其中至少一种具有Mn+1AzXn的成分,其中,M是选自Ti、Sc、V、Cr、Zr、Nb、Ta组中的至少一种金属;A是选自Si、Al、Ge和/或Sn组中的至少一种元素,以及X是非金属元素C和/或N中的至少一种,n介于0.8-3.2之间的范围内,z介于0.8-1.2之间的范围内,该复合涂层被涂覆在基体表面上。
2.根据权利要求1所述的方法,其特征在于,所述涂覆在连续过程中进行。
3.根据权利要求1所述的方法,其特征在于,所述的气相沉积技术为磁控溅射法。
4.根据权利要求1所述的方法,其特征在于,所述的气相沉积技术为电子束蒸发法。
5.根据权利要求4所述的方法,其特征在于,所述的电子束蒸发法为等离子激活法和/或反应法。
6.根据权利要求1或2所述的方法,其特征在于,所述涂覆过程在连续卷式工艺中进行。
7.根据权利要求1所述的方法,其特征在于,所述基体的长度至少为10米。
8.根据权利要求1所述的方法,其特征在于,制造具有下述成分Mn+1AzXn的目标,其中,M是选自Ti、Sc、V、Cr、Zr、Nb、Ta组中的至少一种过渡金属;A是选自Si、Al、Ge和/或Sn组中的至少一种元素,以及X是非金属元素C和/或N中的至少一种,n介于0.8-3.2之间的范围内,z介于0.8-1.2之间的范围内,并且将该目标插入至少一个涂层沉积室中,继而对其进行蒸发,从而生产出至少一部分成分为Mn+1AzXn的复合涂层。
9.根据权利要求1所述的方法,其特征在于,在利用复合涂层进行涂覆之前,在基体上设置结合层。
10.根据权利要求1所述的方法,其特征在于,所述的复合涂层基于Mn+1AzXn成分。
11.根据权利要求1所述的方法,其特征在于,所述的复合涂层最多含有20%的Mn+1AzXn成分。
12.由金属基体和复合涂层组成的涂层产品,其特征在于,该复合涂层包含至少两种成分,其中至少一种成分具有成分Mn+1AzXn,其中,M是选自Ti、Sc、V、Cr、Zr、Nb、Ta组中的至少一种过渡金属;A是选自Si、Al、Ge和/或Sn组中的至少一种元素,以及X是非金属元素C和/或N中的至少一种,其中n介于0.8-3.2之间,z介于0.8-1.2之间。
13.根据权利要求12所述的涂层产品,其特征在于,所述的金属基体的长度至少为10米。
14.根据权利要求12所述的涂层产品,其特征在于,所述的复合涂层中的一种成分为金属,如:Ag、Au、Ni、Cu、Sn、Pt、Mo、Co或基于以上所述元素中任意元素的合金。
15.根据权利要求12所述的涂层产品,其特征在于,所述的复合涂层的一种成分为非金属元素,如C。
16.根据权利要求12所述的涂层产品,其特征在于,所述的复合涂层的一种成分为碳化物、氮化物、氧化物或其任意组合。
17.根据权利要求12所述的涂层产品,其特征在于,结合层位于基体和涂层之间。
18.将如权利要求12所述的涂层产品用作电接触材料、抗磨损接触面、低摩擦表面、互联件、植入片、装饰表面或不粘附表面。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE04029047 | 2004-11-26 | ||
SE0402904A SE0402904L (sv) | 2004-11-26 | 2004-11-26 | Belagd produkt och produktionsmetod för denna |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101048530A true CN101048530A (zh) | 2007-10-03 |
Family
ID=33538404
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2005800370188A Pending CN101048530A (zh) | 2004-11-26 | 2005-11-28 | 涂层产品及其制造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20090047510A1 (zh) |
EP (1) | EP1851353A2 (zh) |
JP (1) | JP2008522026A (zh) |
KR (1) | KR20070083961A (zh) |
CN (1) | CN101048530A (zh) |
SE (1) | SE0402904L (zh) |
WO (1) | WO2006057618A2 (zh) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102054497B (zh) * | 2009-11-06 | 2013-01-02 | 中国科学院上海硅酸盐研究所 | 磁头衬底材料及其制备方法 |
KR20140098826A (ko) * | 2011-11-28 | 2014-08-08 | 페더럴-모걸 코오포레이숀 | 탄소 퇴적 방지 코팅물질을 가진 피스톤 및 그 구성 방법 |
CN106083117A (zh) * | 2016-06-21 | 2016-11-09 | 中国科学院宁波材料技术与工程研究所 | 具有三元层状max相界面层的纤维增韧陶瓷基复合材料及其制备方法 |
CN107217231A (zh) * | 2017-05-16 | 2017-09-29 | 福建新越金属材料科技有限公司 | 基于磁控共同溅射技术在铝基材上制备的装饰性涂层 |
CN109722637A (zh) * | 2018-12-24 | 2019-05-07 | 中国科学院宁波材料技术与工程研究所 | 润滑涂层及其制备方法 |
CN112695282A (zh) * | 2020-12-15 | 2021-04-23 | 中国科学院宁波材料技术与工程研究所 | 一种抗中高温水蒸气腐蚀的防护涂层及其制备方法与应用 |
CN114450380A (zh) * | 2019-07-30 | 2022-05-06 | 德雷塞尔大学 | Max相-金复合材料及其制造方法 |
CN115896726A (zh) * | 2023-02-22 | 2023-04-04 | 中国科学院宁波材料技术与工程研究所 | 一种MAX-Ag相复合涂层及其制备方法和应用 |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE0402865L (sv) * | 2004-11-04 | 2006-05-05 | Sandvik Intellectual Property | Belagd produkt och framställningsmetod för denna |
SE530443C2 (sv) * | 2006-10-19 | 2008-06-10 | Totalfoersvarets Forskningsins | Mikrovågsabsorbent, speciellt för högtemperaturtillämpning |
US20080131686A1 (en) * | 2006-12-05 | 2008-06-05 | United Technologies Corporation | Environmentally friendly wear resistant carbide coating |
SE531749C2 (sv) * | 2007-09-17 | 2009-07-28 | Seco Tools Ab | Metod att utfälla slitstarka skikt på hårdmetall med bågförångning och katod med Ti3SiC2 som huvudbeståndsdel |
US9023493B2 (en) * | 2010-07-13 | 2015-05-05 | L. Pierre de Rochemont | Chemically complex ablative max-phase material and method of manufacture |
CN103770397B (zh) * | 2012-10-26 | 2016-04-27 | 南昌航空大学 | 一种(Ti,Al,Si)N-Mo(S,N)2-Ag/TiAlN纳米多层涂层 |
KR20140090754A (ko) * | 2013-01-10 | 2014-07-18 | 부산대학교 산학협력단 | Max 상 박막의 제조방법 |
WO2014149097A2 (en) * | 2013-03-15 | 2014-09-25 | United Technologies Corporation | Maxmet composites for turbine engine component tips |
EP3074619B1 (en) | 2013-11-26 | 2024-04-10 | RTX Corporation | Method of providing a self-healing coating |
EP2944624A1 (en) | 2014-05-14 | 2015-11-18 | Haldor Topsøe A/S | MAX phase materials free of the elements Al and Si |
EP2945207A1 (en) | 2014-05-14 | 2015-11-18 | Haldor Topsøe A/S | MAX phase materials for use in solid oxide fuel cells and solid oxide electrolysis cells |
FR3032449B1 (fr) | 2015-02-09 | 2017-01-27 | Office Nat D'etudes Et De Rech Aerospatiales (Onera) | Materiaux en cermet et procede de fabrication de tels materiaux |
CN104805327B (zh) * | 2015-04-17 | 2017-01-25 | 安徽工程大学 | 一种铜‑碳化锡钛自润滑导电涂层及其制备方法 |
US10199788B1 (en) * | 2015-05-28 | 2019-02-05 | National Technology & Engineering Solutions Of Sandia, Llc | Monolithic MAX phase ternary alloys for sliding electrical contacts |
CA2939288A1 (en) | 2015-08-28 | 2017-02-28 | Rolls-Royce High Temperature Composites, Inc. | Ceramic matrix composite including silicon carbide fibers in a ceramic matrix comprising a max phase compound |
DE102016216428A1 (de) | 2016-08-31 | 2018-03-01 | Federal-Mogul Burscheid Gmbh | Gleitelement mit MAX-Phasen-Beschichtung |
CN111286701B (zh) * | 2018-12-07 | 2022-03-15 | 中国科学院宁波材料技术与工程研究所 | 一种宽温域耐磨润滑涂层及其制备方法与应用 |
CN115961259B (zh) * | 2022-12-09 | 2024-05-03 | 中国科学院宁波材料技术与工程研究所 | 一种强韧耐蚀max相多层复合涂层及其制备方法与应用 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR920701520A (ko) * | 1989-05-10 | 1992-08-11 | 도모마쯔 겐고 | 전기접점 재료와 그 제조방법 및 이를 이용한 전기접점 |
JPH04365854A (ja) * | 1991-06-11 | 1992-12-17 | Ulvac Japan Ltd | イオンプレーティング装置 |
JPH05239630A (ja) * | 1992-02-28 | 1993-09-17 | Nkk Corp | イオンプレーティング方法及び装置 |
US5942455A (en) * | 1995-11-14 | 1999-08-24 | Drexel University | Synthesis of 312 phases and composites thereof |
ATE224344T1 (de) * | 1997-01-10 | 2002-10-15 | Univ Drexel | Oberflächenbehandlung eines 312 ternären keramikmaterials und daraus hergestelltes produkt |
US6231969B1 (en) * | 1997-08-11 | 2001-05-15 | Drexel University | Corrosion, oxidation and/or wear-resistant coatings |
SE9902411L (sv) * | 1999-06-24 | 2000-07-31 | Henrik Ljungcrantz | Slityta och förfarande för framställande av densamma |
US6461989B1 (en) * | 1999-12-22 | 2002-10-08 | Drexel University | Process for forming 312 phase materials and process for sintering the same |
US6544674B2 (en) * | 2000-08-28 | 2003-04-08 | Boston Microsystems, Inc. | Stable electrical contact for silicon carbide devices |
JP2002356751A (ja) * | 2001-05-29 | 2002-12-13 | Kawasaki Steel Corp | 超低鉄損一方向性珪素鋼板およびその製造方法 |
SE521882C2 (sv) * | 2001-06-21 | 2003-12-16 | Sandvik Ab | Förfarande för framställning av en enfassammansättning innefattande metall |
DE60223587T2 (de) * | 2001-11-30 | 2008-09-18 | Abb Ab | VERFAHREN ZUR SYNTHESE EINER VERBINDUNG DER FORMEL M sb n+1 /sb AX sb n /sb, FILM AUS DER VERBINDUNG UND VERWENDUNG DAVON |
SE526336C2 (sv) * | 2002-07-01 | 2005-08-23 | Seco Tools Ab | Skär med slitstark refraktär beläggning av MAX-fas |
WO2005038985A2 (en) * | 2003-10-16 | 2005-04-28 | Abb Research Ltd. | COATINGS OF Mn+1AXn MATERIAL FOR ELECTRICAL CONTACT ELEMENTS |
US7572313B2 (en) * | 2004-05-26 | 2009-08-11 | Drexel University | Ternary carbide and nitride composites having tribological applications and methods of making same |
-
2004
- 2004-11-26 SE SE0402904A patent/SE0402904L/xx not_active Application Discontinuation
-
2005
- 2005-11-28 KR KR1020077010139A patent/KR20070083961A/ko not_active Application Discontinuation
- 2005-11-28 CN CNA2005800370188A patent/CN101048530A/zh active Pending
- 2005-11-28 JP JP2007542987A patent/JP2008522026A/ja active Pending
- 2005-11-28 US US11/664,495 patent/US20090047510A1/en not_active Abandoned
- 2005-11-28 WO PCT/SE2005/001792 patent/WO2006057618A2/en active Application Filing
- 2005-11-28 EP EP05810974A patent/EP1851353A2/en not_active Withdrawn
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102054497B (zh) * | 2009-11-06 | 2013-01-02 | 中国科学院上海硅酸盐研究所 | 磁头衬底材料及其制备方法 |
KR20140098826A (ko) * | 2011-11-28 | 2014-08-08 | 페더럴-모걸 코오포레이숀 | 탄소 퇴적 방지 코팅물질을 가진 피스톤 및 그 구성 방법 |
CN104081030A (zh) * | 2011-11-28 | 2014-10-01 | 费德罗-莫格尔公司 | 具有防积碳的涂层的活塞及其制造方法 |
KR101981565B1 (ko) | 2011-11-28 | 2019-06-04 | 테네코 인코퍼레이티드 | 탄소 퇴적 방지 코팅물질을 가진 피스톤 및 그 구성 방법 |
CN106083117A (zh) * | 2016-06-21 | 2016-11-09 | 中国科学院宁波材料技术与工程研究所 | 具有三元层状max相界面层的纤维增韧陶瓷基复合材料及其制备方法 |
CN107217231A (zh) * | 2017-05-16 | 2017-09-29 | 福建新越金属材料科技有限公司 | 基于磁控共同溅射技术在铝基材上制备的装饰性涂层 |
CN109722637A (zh) * | 2018-12-24 | 2019-05-07 | 中国科学院宁波材料技术与工程研究所 | 润滑涂层及其制备方法 |
CN109722637B (zh) * | 2018-12-24 | 2021-09-07 | 中国科学院宁波材料技术与工程研究所 | 润滑涂层及其制备方法 |
CN114450380A (zh) * | 2019-07-30 | 2022-05-06 | 德雷塞尔大学 | Max相-金复合材料及其制造方法 |
CN112695282A (zh) * | 2020-12-15 | 2021-04-23 | 中国科学院宁波材料技术与工程研究所 | 一种抗中高温水蒸气腐蚀的防护涂层及其制备方法与应用 |
CN115896726A (zh) * | 2023-02-22 | 2023-04-04 | 中国科学院宁波材料技术与工程研究所 | 一种MAX-Ag相复合涂层及其制备方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
KR20070083961A (ko) | 2007-08-24 |
SE0402904L (sv) | 2006-05-27 |
WO2006057618A2 (en) | 2006-06-01 |
WO2006057618A3 (en) | 2006-10-26 |
SE0402904D0 (sv) | 2004-11-26 |
EP1851353A2 (en) | 2007-11-07 |
JP2008522026A (ja) | 2008-06-26 |
US20090047510A1 (en) | 2009-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101048530A (zh) | 涂层产品及其制造方法 | |
CN108220880B (zh) | 一种高硬度高耐蚀性高熵合金氮化物涂层及其制备方法 | |
Yang et al. | Microstructure, hardness, and wear resistance of sputtering TaN coating by controlling RF input power | |
US4556607A (en) | Surface coatings and subcoats | |
US20060204672A1 (en) | Coated product and method of production thereof | |
EP1937873B1 (en) | Substrate coated with a layered structure comprising a tetrahedral carbon coating | |
US6287711B1 (en) | Wear-resistant coating and component | |
US6887562B2 (en) | Surface coating of a carbide or a nitride | |
US8025991B2 (en) | Cutting tool with oxide coating | |
CN100529157C (zh) | 硬涂层,形成硬涂层用的靶和形成硬涂层的方法 | |
EP1918422B1 (en) | Coated cutting tool | |
Lewis et al. | The effect of (Ti+ Al): V ratio on the structure and oxidation behaviour of TiAlN/VN nano-scale multilayer coatings | |
Cavaleiro et al. | TiSiN (Ag) films deposited by HiPIMS working in DOMS mode: Effect of Ag content on structure, mechanical properties and thermal stability | |
Pfeiler et al. | Arc evaporation of Ti–Al–Ta–N coatings: The effect of bias voltage and Ta on high-temperature tribological properties | |
CN105518178A (zh) | 切削工具用硬涂膜 | |
JP2008522026A5 (zh) | ||
CN104002516A (zh) | 一种具有高硬度和低摩擦系数的CrAlN/MoS2多层涂层及其制备方法 | |
Zhang et al. | Structural and mechanical properties of compositionally gradient CrNx coatings prepared by arc ion plating | |
Teppernegg et al. | Arc evaporated Ti-Al-N/Cr-Al-N multilayer coating systems for cutting applications | |
Mei et al. | Effect of Cu content on high-temperature tribological properties and oxidation behavior of Al-Ti-V-Cu-N coatings deposited by HIPIMS | |
Luo et al. | TEM studies of the wear of TiAlN/CrN superlattice coatings | |
Polcar et al. | Effects of carbon content on the high temperature friction and wear of chromium carbonitride coatings | |
Yeh-Liu et al. | Improvement of CrMoN/SiNx coatings on mechanical and high temperature Tribological properties through biomimetic laminated structure design | |
CN101048529A (zh) | 涂层产品及其制造方法 | |
Zhang et al. | Microstructure, mechanical and corrosion behavior of CrNx/Al2O3 multilayer films deposited by magnetron sputtering |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |