CN101032754B - Method for preparing nanometer metal by low temperature plasma reduction - Google Patents
Method for preparing nanometer metal by low temperature plasma reduction Download PDFInfo
- Publication number
- CN101032754B CN101032754B CN2007100571614A CN200710057161A CN101032754B CN 101032754 B CN101032754 B CN 101032754B CN 2007100571614 A CN2007100571614 A CN 2007100571614A CN 200710057161 A CN200710057161 A CN 200710057161A CN 101032754 B CN101032754 B CN 101032754B
- Authority
- CN
- China
- Prior art keywords
- plasma
- discharge
- metal
- gas
- nanometer metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 26
- 239000002184 metal Substances 0.000 title claims abstract description 26
- 238000000034 method Methods 0.000 title claims abstract description 19
- 230000009467 reduction Effects 0.000 title abstract description 19
- 239000002245 particle Substances 0.000 claims abstract description 32
- 239000002923 metal particle Substances 0.000 claims abstract description 19
- 238000004519 manufacturing process Methods 0.000 claims abstract description 9
- 150000003839 salts Chemical class 0.000 claims abstract description 8
- 239000007789 gas Substances 0.000 claims description 22
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 8
- 229910052737 gold Inorganic materials 0.000 claims description 8
- 239000010931 gold Substances 0.000 claims description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 5
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 4
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 4
- 229910052786 argon Inorganic materials 0.000 claims description 4
- 239000001307 helium Substances 0.000 claims description 4
- 229910052734 helium Inorganic materials 0.000 claims description 4
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 4
- 239000011261 inert gas Substances 0.000 claims description 4
- 229910052741 iridium Inorganic materials 0.000 claims description 4
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims description 4
- 229910052697 platinum Inorganic materials 0.000 claims description 4
- 229910052702 rhenium Inorganic materials 0.000 claims description 4
- 229910052703 rhodium Inorganic materials 0.000 claims description 4
- 239000010948 rhodium Substances 0.000 claims description 4
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 4
- 229910052707 ruthenium Inorganic materials 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 230000004888 barrier function Effects 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 239000004332 silver Substances 0.000 claims description 3
- 229910002651 NO3 Inorganic materials 0.000 claims description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 2
- 239000003570 air Substances 0.000 claims description 2
- 150000001805 chlorine compounds Chemical group 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 229910052763 palladium Inorganic materials 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 238000011084 recovery Methods 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 9
- 239000003638 chemical reducing agent Substances 0.000 abstract description 6
- 230000008901 benefit Effects 0.000 abstract description 4
- 238000009826 distribution Methods 0.000 abstract description 4
- 239000000126 substance Substances 0.000 abstract description 3
- 238000006555 catalytic reaction Methods 0.000 abstract description 2
- 230000005693 optoelectronics Effects 0.000 abstract description 2
- 230000007613 environmental effect Effects 0.000 abstract 1
- 238000006722 reduction reaction Methods 0.000 description 17
- 238000002003 electron diffraction Methods 0.000 description 10
- 239000002253 acid Substances 0.000 description 7
- 238000001420 photoelectron spectroscopy Methods 0.000 description 7
- 238000004627 transmission electron microscopy Methods 0.000 description 7
- 239000002105 nanoparticle Substances 0.000 description 5
- 101710134784 Agnoprotein Proteins 0.000 description 3
- 101150003085 Pdcl gene Proteins 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 238000009832 plasma treatment Methods 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000011882 ultra-fine particle Substances 0.000 description 2
- 229910019891 RuCl3 Inorganic materials 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000005381 magnetic domain Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000002082 metal nanoparticle Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- YBCAZPLXEGKKFM-UHFFFAOYSA-K ruthenium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Ru+3] YBCAZPLXEGKKFM-UHFFFAOYSA-K 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Images
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
本发明涉及材料科学技术领域的一种低温等离子体还原制备纳米金属的方法。其生产方法是将金属盐直接装入等离子体放电器的真空室中,将真空室抽真空,然后通入等离子体放电气体,气体压力保持在30~200Pa,利用高压电源在电极两端施加200~5000V的直流或交流电使放电气体放电,形成等离子体将金属盐还原,还原时间为5~120min,由此制备出纳米金属粒子。本发明装置简单,操作方便,节省能耗,处理的金属量大,不使用化学还原剂,对环境友好;所制得纳米金属粒子纯度高,粒度小,粒径分布区间窄、分散性好,具有优良的性能以及与其他材料复合时表现出来的独特性能,在分子器件、化学/生物传感器、催化、光电子材料等诸多领域具有广泛的应用前景。
The invention relates to a method for preparing nanometer metal by low-temperature plasma reduction in the technical field of material science. The production method is to put the metal salt directly into the vacuum chamber of the plasma discharger, evacuate the vacuum chamber, and then pass in the plasma discharge gas. The gas pressure is kept at 30-200 Pa, and 200 Pa is applied to both ends of the electrode by a high-voltage power supply. ~5000V DC or AC discharges the discharge gas to form plasma to reduce the metal salt. The reduction time is 5~120min, thereby preparing nanometer metal particles. The invention has the advantages of simple device, convenient operation, energy saving, large amount of processed metal, no chemical reducing agent, and environmental friendliness; the prepared nano-metal particles have high purity, small particle size, narrow particle size distribution range, and good dispersibility. It has excellent performance and unique performance when combined with other materials, and has broad application prospects in many fields such as molecular devices, chemical/biological sensors, catalysis, and optoelectronic materials.
Description
技术领域technical field
本发明涉及材料科学技术领域,尤其是一种低温等离子体还原制备纳米金属的方法。The invention relates to the technical field of material science, in particular to a method for preparing nanometer metal by low-temperature plasma reduction.
背景技术Background technique
纳米材料(nano material)又称为超微颗粒材料,由纳米粒子组成。纳米粒子(nano particle)也叫超微颗粒,一般是指尺寸在1~100nm间的粒子。纳米粒子有着许多优点:粒径小、比表面积大、催化效率高,另外它的光学、热学、电学、磁学、力学以及化学方面的性质和大块固体相比有显著的不同;而磁性纳米金属粒子,具有单磁畴结构,矫顽力很高,且利用纳米金属粒子的导电性,可以制成导电涂料、导电胶等。纳米金属粒子的潜在应用还有很多,例如在火箭助燃器、微孔气体分离膜、结构材料以及生物工程材料等方面。纳米金属粒子具有优良的性能以及与其他材料复合时表现出来的独特性能在分子器件、化学/生物传感器、催化、光电子材料等诸多领域具有广泛的应用前景。Nanomaterials, also known as ultrafine particle materials, are composed of nanoparticles. Nanoparticles, also called ultrafine particles, generally refer to particles with a size between 1 and 100 nm. Nanoparticles have many advantages: small particle size, large specific surface area, and high catalytic efficiency. In addition, their optical, thermal, electrical, magnetic, mechanical, and chemical properties are significantly different from those of bulk solids; Metal particles have a single magnetic domain structure and high coercive force, and can be made into conductive coatings, conductive adhesives, etc. by using the conductivity of nano-metal particles. There are many potential applications of nano-metal particles, such as rocket boosters, microporous gas separation membranes, structural materials, and bioengineering materials. Nano-metal particles have excellent properties and unique properties when combined with other materials, and have broad application prospects in many fields such as molecular devices, chemical/biological sensors, catalysis, and optoelectronic materials.
当前制备金属纳米颗粒方法主要以化学还原法和溶胶凝胶法为主,两者都要在溶液中使用强还原性的化学试剂,如利用强还原剂NaBH4等将金属化合物还原为金属颗粒。该方法的不足之处在于:制备过程繁琐,操作复杂,条件苛刻,不易控制,而且上述还原剂对环境危害巨大;其中采用凝胶法在最后需要经烧结方能得到纳米粒子,所得纳米粒子容易团聚,粒径较大。The current methods for preparing metal nanoparticles are mainly chemical reduction method and sol-gel method, both of which need to use strong reducing chemical reagents in the solution, such as using strong reducing agent NaBH 4 to reduce metal compounds into metal particles. The disadvantages of this method are: the preparation process is cumbersome, the operation is complicated, the conditions are harsh, and it is not easy to control, and the above-mentioned reducing agent is harmful to the environment; wherein the gel method needs to be sintered to obtain nanoparticles at the end, and the obtained nanoparticles are easy to obtain. Agglomeration, larger particle size.
与本发明最为接近的公开技术是:在Langmuir(2006,11388-11394),Liu等人公开了一种还原负载型金属催化剂的新方法。该方法在不使用化学还原剂的条件下,采用辉光放电等离子体,在氩气气氛中还原了负载在二氧化钛等载体上的贵金属,其装置简单,操作方便,节省能耗,对环境友好,在催化剂制备领域有广泛应用前景。但也存在一定缺陷,如耗时长、处理的金属量小、得到的纳米金属颗粒分布不均。The closest published technique to the present invention is: In Langmuir (2006, 11388-11394), Liu et al. disclosed a new method for the reduction of supported metal catalysts. The method uses glow discharge plasma to reduce noble metals loaded on titanium dioxide and other carriers in an argon atmosphere without using a chemical reducing agent. The device is simple, easy to operate, energy saving, and environmentally friendly. It has wide application prospect in the field of catalyst preparation. But there are also certain defects, such as long time-consuming, small amount of processed metal, and uneven distribution of obtained nano-metal particles.
发明内容Contents of the invention
本发明的目的在于克服现有技术的不足,提供一种低温等离子体还原制备纳米金属的方法;该方法操作简便,对环境友好,所制得纳米金属粒子纯度高,粒度小,粒径分布区间窄、分散性好。The purpose of the present invention is to overcome the deficiencies of the prior art and provide a method for preparing nano-metals by low-temperature plasma reduction; the method is easy to operate and environmentally friendly, and the prepared nano-metal particles have high purity, small particle size, and a particle size distribution range Narrow and good dispersion.
本发明是通过以下技术方案来实现的:The present invention is achieved through the following technical solutions:
一种低温等离子体还原制备纳米金属的方法,该生产方法包括以下步骤:A method for preparing nano-metal by low-temperature plasma reduction, the production method comprising the following steps:
(1).将金属盐直接装入等离子体放电器的真空室中;(1). The metal salt is directly loaded into the vacuum chamber of the plasma discharger;
(2).将真空室抽真空,然后通入等离子体放电气体,气体压力保持在30~200Pa;(2). Vacuumize the vacuum chamber, and then pass in the plasma discharge gas, and keep the gas pressure at 30-200Pa;
(3).利用高压电源在电极两端施加200~5000V的直流或交流电使放电气体放电,形成的等离子体将金属盐还原,还原时间为5~120min,由此制备出纳米金属粒子。(3).Using a high-voltage power supply to apply 200-5000V DC or AC at both ends of the electrodes to discharge the discharge gas, and the formed plasma reduces the metal salt. The reduction time is 5-120 minutes, thereby preparing nano-metal particles.
而且,所述的金属盐为铂或钯或金或银或钌或铑或铼或铱所形成的盐。Moreover, the metal salt is a salt formed by platinum or palladium or gold or silver or ruthenium or rhodium or rhenium or iridium.
而且,所述的金属盐为氯化物或硝酸盐。Moreover, the metal salt is chloride or nitrate.
而且,所述的等离子体放电气体为惰性气体或空气或氧气,或者上述气体的混合物。Moreover, the plasma discharge gas is an inert gas or air or oxygen, or a mixture of the above gases.
而且,所述的惰性气体为氩气或氮气或氦气。Moreover, the inert gas is argon or nitrogen or helium.
而且,所述的气体放电的形式为辉光放电或介质阻挡放电或电晕放电。Moreover, the gas discharge is in the form of glow discharge or dielectric barrier discharge or corona discharge.
而且,所述的制备出的纳米金属粒子的粒径在2.5~20nm范围内。Moreover, the particle size of the prepared nano-metal particles is in the range of 2.5-20nm.
本发明的优点和有益效果是:Advantage and beneficial effect of the present invention are:
1.本发明涉及的等离子体法生产纳米金属是利用高压直流或交流电源放电产生的等离子体中的大量高能电子最先到达金属颗粒附近,其中一部分电子会被俘获,金属即被静电还原,从而生成纳米金属。用等离子体法制备的纳米金属具有产量大、粒度容易控制、性能好等优点。1. The plasma method that the present invention relates to produces nano-metal is to utilize a large amount of high-energy electrons in the plasma produced by high-voltage direct current or alternating current power discharge to arrive near the metal particle at first, and wherein a part of electrons can be captured, and metal is promptly reduced by electrostatic, thereby Generate nanometals. The nanometer metal prepared by the plasma method has the advantages of large output, easy control of particle size and good performance.
2.本发明采用的低温等离子体还原制备纳米金属方法能快速有效的制备纳米金属粒子,可在室温下进行,避免了高温下的不良热效应,且操作简单,节省能耗,处理的金属量大,不使用化学还原剂,对环境友好。2. The low-temperature plasma reduction method used in the present invention to prepare nano-metals can quickly and effectively prepare nano-metal particles, which can be carried out at room temperature, avoiding adverse thermal effects at high temperatures, and is simple to operate, saves energy consumption, and the amount of metal processed is large , does not use chemical reducing agents, and is environmentally friendly.
3.本发明所采用的等离子体中含有大量电子,使金属化合物很容易被还原;而且该电子附着在金属颗粒上互相排斥,可有效地阻止金属颗粒的聚集长大,从而形成细小均匀分布的晶粒,使所制得纳米金属粒子纯度高,粒度小,粒径分布区间窄、分散性好,纳米金属粒子的粒径在2.5~20nm范围内。3. The plasma used in the present invention contains a large number of electrons, so that the metal compound is easily reduced; and the electrons are attached to the metal particles and repel each other, which can effectively prevent the aggregation and growth of the metal particles, thereby forming a fine and uniform distribution Crystal grains, so that the prepared nano-metal particles have high purity, small particle size, narrow particle size distribution range, and good dispersion. The particle size of the nano-metal particles is in the range of 2.5-20nm.
附图说明Description of drawings
图1是氯金酸经低温等离子体处理还原后的光电子能谱图;Fig. 1 is the photoelectron energy spectrogram of chloroauric acid after low-temperature plasma treatment reduction;
图2是氯金酸经低温等离子体处理还原后的电子衍射谱图;Fig. 2 is the electron diffraction spectrogram of chloroauric acid after low-temperature plasma treatment reduction;
图3是氯金酸经低温等离子体处理还原后的高倍透射电镜图。Fig. 3 is a high-magnification transmission electron microscope image of chloroauric acid reduced by low-temperature plasma treatment.
具体实施方式Detailed ways
本发明通过以下实施例结合附图进一步详述,但本实施例所叙述的技术内容是说明性的,而不是限定性的,不应依此来局限本发明的保护范围。The present invention is further described in detail through the following embodiments in conjunction with the accompanying drawings, but the technical content described in this embodiment is illustrative rather than restrictive, and should not be used to limit the protection scope of the present invention.
实施例1Example 1
将氯金酸(HAuCl4)置于真空室内放电管的两个电极板之间,密闭,将真空室抽真空,然后充入氩气作放电气体,维持30Pa的压力,在电极上施加800V的直流电压,采用辉光放电等离子体还原氯金酸(HAuCl4),还原时间为100min,制备出纳米金粒子,其粒径为2.5~7nm。Put chloroauric acid (HAuCl 4 ) between the two electrode plates of the discharge tube in the vacuum chamber, seal it, evacuate the vacuum chamber, then fill it with argon as the discharge gas, maintain the pressure of 30Pa, and apply 800V on the electrode DC voltage, using glow discharge plasma to reduce chloroauric acid (HAuCl 4 ), the reduction time is 100min, and prepare nano-gold particles with a particle size of 2.5-7nm.
所制得纳米金粒子经光电子能谱、电子衍射和透射电镜分析,可以得出以下分析结果:The prepared nano-gold particles are analyzed by photoelectron energy spectrum, electron diffraction and transmission electron microscope, and the following analysis results can be obtained:
如图1所示的光电子能谱图,从谱中可看出只出现了金元素的特征峰,显示氯金酸通过低温等离子体法还原为零价态金;As shown in Figure 1, the photoelectron energy spectrogram shows that only the characteristic peaks of gold elements appear in the spectrum, showing that chloroauric acid is reduced to zero-valent gold by the low-temperature plasma method;
如图2所示的电子衍射图,图中只有金单质的衍射峰,没有其它杂质衍射峰存在,显示氯金酸被完全还原;Electron diffraction figure as shown in Figure 2, only has the diffraction peak of simple gold in the figure, does not have other impurity diffraction peak to exist, shows that chloroauric acid is completely reduced;
如图3所示为高倍透射电镜图,从图中可以看到所制得的纳米金粒子,晶粒细小均匀,粒径为2.5~7nm。As shown in Fig. 3, it is a high-power transmission electron microscope image, from which it can be seen that the prepared nano-gold particles are fine and uniform, and the particle size is 2.5-7nm.
实施例2:Example 2:
将H2PtCl6置于真空室内放电管的两个电极板之间,密闭,将真空室抽真空,然后充入氦气作放电气体,维持50Pa的压力,在电极上施加200V的直流电压,采用电晕放电等离子体还原H2PtCl6,还原时间为120min,制备出纳米铂粒子。经光电子能谱、电子衍射和透射电镜证实H2PtCl6完全还原为单质铂,其粒径为2.5~10nm。Put H 2 PtCl 6 between the two electrode plates of the discharge tube in the vacuum chamber, seal it tightly, evacuate the vacuum chamber, then fill it with helium as the discharge gas, maintain the pressure of 50Pa, and apply a DC voltage of 200V on the electrodes, Using corona discharge plasma to reduce H 2 PtCl 6 , the reduction time is 120 min, and prepare nano-platinum particles. It was confirmed by photoelectron spectroscopy, electron diffraction and transmission electron microscopy that H 2 PtCl 6 was completely reduced to elemental platinum with a particle size of 2.5-10nm.
实施例3:Example 3:
将PdCl2置于真空室内放电管的两个电极板之间,密闭,将真空室抽真空,然后充入氧气作放电气体,维持90Pa的压力,在电极上施加1000V的交流电压,采用介质阻挡放电等离子体还原PdCl2,还原时间为40min,制备出纳米铅粒子。经光电子能谱、电子衍射和透射电镜证实PdCl2完全还原为单质铅,其粒径为3.0~15nm。Place PdCl 2 between the two electrode plates of the discharge tube in the vacuum chamber, seal it tightly, evacuate the vacuum chamber, then fill it with oxygen as the discharge gas, maintain the pressure of 90Pa, apply an AC voltage of 1000V on the electrode, and use a dielectric barrier The PdCl 2 was reduced by the discharge plasma, and the reduction time was 40 minutes to prepare nano-lead particles. It was confirmed by photoelectron spectroscopy, electron diffraction and transmission electron microscopy that PdCl 2 was completely reduced to elemental lead with a particle size of 3.0-15nm.
实施例4:Example 4:
将AgNO3置于真空室内放电管的两个电极板之间,密闭,将真空室抽真空,然后充入氮气作放电气体,维持120Pa的压力,在电极上施加1500V的交流电压,采用辉光放电等离子体还原AgNO3,还原时间为60min,制备出纳米银粒子。经光电子能谱、电子衍射和透射电镜证实AgNO3完全还原为单质银,其粒径为3.0~20nm。Put AgNO 3 between the two electrode plates of the discharge tube in the vacuum chamber, seal it tightly, evacuate the vacuum chamber, then fill it with nitrogen as the discharge gas, maintain the pressure of 120Pa, apply an AC voltage of 1500V on the electrodes, and use glow AgNO 3 was reduced by discharge plasma, and the reduction time was 60 minutes to prepare nano-silver particles. It was confirmed by photoelectron spectroscopy, electron diffraction and transmission electron microscopy that AgNO 3 was completely reduced to elemental silver with a particle size of 3.0-20nm.
实施例5:Example 5:
将H2IrCl6置于真空室内放电管的两个电极板之间,密闭,将真空室抽真空,然后充入空气作放电气体,维持150Pa的压力,在电极上施加2000V的交流电压,采用辉光放电等离子体还原H2IrCl6,还原时间为80min,制备出纳米铱粒子。经光电子能谱、电子衍射和透射电镜证实H2IrCl6完全还原为单质铱,其粒径为4.0~18nm。Place H 2 IrCl 6 between the two electrode plates of the discharge tube in the vacuum chamber, seal it, evacuate the vacuum chamber, then fill it with air as the discharge gas, maintain the pressure of 150Pa, apply an AC voltage of 2000V on the electrodes, and use The glow discharge plasma reduces H 2 IrCl 6 , and the reduction time is 80 minutes, and the nanometer iridium particles are prepared. It was confirmed by photoelectron spectroscopy, electron diffraction and transmission electron microscopy that H 2 IrCl 6 was completely reduced to elemental iridium with a particle size of 4.0-18nm.
实施例6:Embodiment 6:
将ReCl5置于真空室内放电管的两个电极板之间,密闭,将真空室抽真空,然后充入氩气作放电气体,维持180Pa的压力,在电极上施加3000V的直流电压,采用辉光放电等离子体还原ReCl5,还原时间为20min,制备出纳米铼粒子。经光电子能谱、电子衍射和透射电镜证实ReCl5完全还原为单质铼,其粒径为3.5~20nm。Place ReCl 5 between the two electrode plates of the discharge tube in the vacuum chamber, seal it tightly, evacuate the vacuum chamber, then fill it with argon as the discharge gas, maintain a pressure of 180Pa, apply a DC voltage of 3000V to the electrodes, and use a glow Photodischarge plasma reduces ReCl 5 , the reduction time is 20min, and prepares nano-rhenium particles. It was confirmed by photoelectron spectroscopy, electron diffraction and transmission electron microscopy that ReCl 5 was completely reduced to elemental rhenium with a particle size of 3.5-20nm.
实施例7:Embodiment 7:
将H3RhCl6置于真空室内放电管的两个电极板之间,密闭,将真空室抽真空,然后充入氦气作放电气体,维持200Pa的压力,在电极上施加4000V的直流电压,采用辉光放电等离子体还原H3RhCl6,还原时间为10min,制备出纳米铑粒子。经光电子能谱、电子衍射和透射电镜证实ReCl5完全还原为单质铑,其粒径为2.5~20nm。Place H 3 RhCl 6 between the two electrode plates of the discharge tube in the vacuum chamber, seal it tightly, evacuate the vacuum chamber, then fill it with helium as the discharge gas, maintain the pressure of 200Pa, and apply a DC voltage of 4000V on the electrodes, Using glow discharge plasma to reduce H 3 RhCl 6 , the reduction time is 10 minutes, and prepare nanometer rhodium particles. Photoelectron spectroscopy, electron diffraction and transmission electron microscopy confirmed that ReCl 5 was completely reduced to elemental rhodium with a particle size of 2.5-20nm.
实施例8:Embodiment 8:
将RuCl3置于真空室内放电管的两个电极板之间,密闭,将真空室抽真空,然后充入空气作放电气体,维持90Pa的压力,在电极上施加5000V的交流电压,采用电晕放电等离子体还原RuCl3,还原时间为5min,制备出纳米钌粒子。经光电子能谱、电子衍射和透射电镜证实RuCl3完全还原为单质钌,其粒径为2.5~20nm。Put RuCl3 between the two electrode plates of the discharge tube in the vacuum chamber, seal it tightly, evacuate the vacuum chamber, then fill it with air as the discharge gas, maintain the pressure of 90Pa, apply an AC voltage of 5000V on the electrodes, and use corona RuCl 3 was reduced by discharge plasma, and the reduction time was 5 minutes, to prepare nanometer ruthenium particles. It was confirmed by photoelectron spectroscopy, electron diffraction and transmission electron microscopy that RuCl 3 was completely reduced to elemental ruthenium with a particle size of 2.5-20nm.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007100571614A CN101032754B (en) | 2007-04-18 | 2007-04-18 | Method for preparing nanometer metal by low temperature plasma reduction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007100571614A CN101032754B (en) | 2007-04-18 | 2007-04-18 | Method for preparing nanometer metal by low temperature plasma reduction |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101032754A CN101032754A (en) | 2007-09-12 |
CN101032754B true CN101032754B (en) | 2010-06-16 |
Family
ID=38729606
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2007100571614A Expired - Fee Related CN101032754B (en) | 2007-04-18 | 2007-04-18 | Method for preparing nanometer metal by low temperature plasma reduction |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101032754B (en) |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102151586B (en) * | 2011-05-13 | 2013-04-24 | 天津大学 | Method for preparing thermal-instability material supported catalyst by using low-temperature plasma and application of catalyst |
CN102671850B (en) * | 2011-08-10 | 2014-05-28 | 天津大学 | Method for preparing membrane materials through biomolecular self assembly under the condition of cold plasma |
CN102581300A (en) * | 2012-03-23 | 2012-07-18 | 武汉大学 | Gold nano particle preparation method |
CZ306742B6 (en) * | 2012-04-23 | 2017-06-07 | Vakos Xt, A. S. | A method of preparation of nanometric metallic silver particles and a device for implementation of this method |
CN103331455B (en) * | 2013-07-19 | 2016-04-13 | 四川大学 | A kind of metal nano material continuous production method that microplasma that discharges is auxiliary |
CN103862031B (en) * | 2014-02-20 | 2017-01-18 | 天津大学 | Composite nano metal materials prepared in combination with ordered porous support or rough surface and method thereof |
CN104046966A (en) * | 2014-06-19 | 2014-09-17 | 天津大学 | Method for preparing nano-metallic film on surface of liquid phase and application of method in recovery of metal in wastewater |
WO2016095035A1 (en) * | 2014-12-17 | 2016-06-23 | UNIVERSITé LAVAL | Dielectric barrier discharge plasma method and apparatus for synthesizing metal particles |
CN105032408A (en) * | 2015-09-07 | 2015-11-11 | 黑龙江省科学院石油化学研究院 | Preparation method of load type nano catalyst for catalyzing Suzuki coupling reaction |
CN105127437B (en) * | 2015-09-29 | 2017-04-05 | 安徽工业大学 | A kind of preparation method of nucleocapsid structure silver iron clad nano-powder material |
CN106637931A (en) * | 2016-10-10 | 2017-05-10 | 天津大学 | A method of preparing a multi-functional textile through combination with a nanometer metal material |
CN109759602A (en) * | 2018-11-20 | 2019-05-17 | 天津大学 | A method for preparing nano-metal hydrogel composites by electron reduction |
CN112442594A (en) * | 2019-08-30 | 2021-03-05 | 中国石油化工股份有限公司 | Method for recovering rhodium from rhodium-containing wastewater |
CN112439900A (en) * | 2019-08-30 | 2021-03-05 | 中国石油化工股份有限公司 | Preparation method of rhodium metal nanoparticles |
CN112442593A (en) * | 2019-08-30 | 2021-03-05 | 中国石油化工股份有限公司 | Method for recovering rhodium from waste rhodium catalyst residues |
CN111215636B (en) * | 2020-01-17 | 2022-07-12 | 西北师范大学 | A kind of preparation method of Ag nanoparticles |
CN111170296B (en) * | 2020-03-30 | 2022-07-15 | 天津大学 | Method for preparing carbon spheres by using low-temperature plasma to carbonize monosaccharides |
CN111569903B (en) * | 2020-05-29 | 2023-03-21 | 常熟理工学院 | Method for preparing ruthenium-based catalyst by directly utilizing arsenic ruthenium ore, product and application thereof |
CN114505488A (en) * | 2020-10-26 | 2022-05-17 | 中国石油化工股份有限公司 | Method for preparing copper nanoparticles, copper nanoparticles obtained by method and application of copper nanoparticles |
CN112548089B (en) * | 2020-11-04 | 2022-03-29 | 华南理工大学 | Application of discharge plasma modification method in treatment of spherical/quasi-spherical metal powder prepared by atomization method |
CN114232019B (en) * | 2021-11-26 | 2023-01-03 | 南华大学 | Ag nanoparticle-loaded copper-based nano array catalyst and preparation method and application thereof |
CN119411173B (en) * | 2025-01-09 | 2025-07-01 | 江苏港虹纤维有限公司 | A catalyst and its preparation method and application |
-
2007
- 2007-04-18 CN CN2007100571614A patent/CN101032754B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN101032754A (en) | 2007-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101032754B (en) | Method for preparing nanometer metal by low temperature plasma reduction | |
CN103862031B (en) | Composite nano metal materials prepared in combination with ordered porous support or rough surface and method thereof | |
Zhang et al. | Synthesis of a nanocomposite composed of reduced graphene oxide and gold nanoparticles | |
CN102151586B (en) | Method for preparing thermal-instability material supported catalyst by using low-temperature plasma and application of catalyst | |
US20130224452A1 (en) | Metal nanoparticle-graphene composites and methods for their preparation and use | |
EP2769967A1 (en) | Dense material including carbon nanohorns and use thereof | |
KR102512338B1 (en) | Carbon nanotube film and method for producing same | |
CN102909388A (en) | Gold-silver alloy nano particle prepared with assistant of atmospheric pressure micro-plasma fluid phase | |
CN111940757B (en) | Device and method for continuous preparation of noble metal and its alloy nanoparticles | |
JPWO2009119059A1 (en) | Method for producing graphene | |
CN107775014B (en) | Method for preparing noble metal/graphene composite nano material by using atmospheric pressure cold plasma | |
JP6177132B2 (en) | Porous material containing carbon nanohorn and use thereof | |
US9187823B2 (en) | High electric field fabrication of oriented nanostructures | |
Li et al. | The role of reducing agent in perylene tetracarboxylic acid coating on graphene sheets enhances Pd nanoparticles-electrocalytic ethanol oxidation | |
CN106637931A (en) | A method of preparing a multi-functional textile through combination with a nanometer metal material | |
JP5647827B2 (en) | Carbon nanomaterials and their use | |
CN111687425B (en) | Core-shell structure nano material and preparation method thereof | |
CN111215636A (en) | A kind of preparation method of Ag nanoparticles | |
CN114289711A (en) | A kind of preparation method of graphene-coated metal material and preparation system thereof | |
Liao et al. | Effects of catalysts state on the synthesis of MWCNTs modified expanded graphite through microwave-assisted pyrolysis of ethanol | |
Mahajan et al. | Electrophoretic deposition and characterization of Eu2O3 nanocrystal—Carbon nanotube heterostructures | |
CN1955113A (en) | Carbon nanotube preparation device and method | |
CN101992104B (en) | Method of preparing single-wall carbon nanotube loaded with noble metal nanoparticle | |
CN115845752A (en) | Device and method for continuously preparing core-shell structure composite nanoparticles | |
CN110314641B (en) | A kind of preparation method of lanthanum hydroxide nanoparticle phosphorus adsorption material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100616 Termination date: 20210418 |