CN111215636B - A kind of preparation method of Ag nanoparticles - Google Patents
A kind of preparation method of Ag nanoparticles Download PDFInfo
- Publication number
- CN111215636B CN111215636B CN202010049907.2A CN202010049907A CN111215636B CN 111215636 B CN111215636 B CN 111215636B CN 202010049907 A CN202010049907 A CN 202010049907A CN 111215636 B CN111215636 B CN 111215636B
- Authority
- CN
- China
- Prior art keywords
- capillary
- solution
- tube
- liquid
- graphite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002105 nanoparticle Substances 0.000 title claims abstract description 39
- 238000002360 preparation method Methods 0.000 title claims abstract description 27
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 60
- 239000007788 liquid Substances 0.000 claims abstract description 52
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 39
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 35
- 239000010439 graphite Substances 0.000 claims abstract description 35
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 29
- 230000002572 peristaltic effect Effects 0.000 claims abstract description 23
- 239000002245 particle Substances 0.000 claims abstract description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000012153 distilled water Substances 0.000 claims abstract description 6
- 101710134784 Agnoprotein Proteins 0.000 claims abstract description 5
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 39
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 claims description 25
- 230000008569 process Effects 0.000 claims description 12
- 239000010453 quartz Substances 0.000 claims description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 12
- 229910001961 silver nitrate Inorganic materials 0.000 claims description 11
- 238000005868 electrolysis reaction Methods 0.000 claims description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 239000004332 silver Substances 0.000 claims description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims 1
- 229910017604 nitric acid Inorganic materials 0.000 claims 1
- 238000005054 agglomeration Methods 0.000 abstract description 3
- 230000002776 aggregation Effects 0.000 abstract description 3
- 239000007772 electrode material Substances 0.000 abstract description 2
- 238000006555 catalytic reaction Methods 0.000 abstract 1
- 230000005611 electricity Effects 0.000 abstract 1
- 230000000149 penetrating effect Effects 0.000 abstract 1
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 16
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 7
- 238000006722 reduction reaction Methods 0.000 description 6
- 238000000295 emission spectrum Methods 0.000 description 5
- 239000002086 nanomaterial Substances 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 238000000634 powder X-ray diffraction Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 238000002211 ultraviolet spectrum Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000003223 protective agent Substances 0.000 description 2
- 230000010349 pulsation Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 238000005169 Debye-Scherrer Methods 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000006136 alcoholysis reaction Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005285 chemical preparation method Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 238000000724 energy-dispersive X-ray spectrum Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002073 nanorod Substances 0.000 description 1
- 239000002077 nanosphere Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000004416 surface enhanced Raman spectroscopy Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 1
- 238000002371 ultraviolet--visible spectrum Methods 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/14—Making metallic powder or suspensions thereof using physical processes using electric discharge
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
本发明提供了一种Ag纳米粒子的制备方法,以高压直流电源提供电能,铂针为阳极,AgNO3溶液在蠕动泵带动下流经缓冲瓶,从穿入石墨碳棒的毛细管顶端溢出,以溢出的溶液作为放电阴极。当两极间施加足够高电压时,溢出液体产生辉光形成等离子体,利用液体阴极辉光放电等离子体产生的活性粒子与溶液中的Ag+发生反应,生成的Ag纳米粒子浊液沿石墨碳棒壁流入收集器。最后将浊液超声分散,离心分离,蒸馏水洗涤,干燥至恒重,研磨,得Ag纳米粒子。该制备方法合成的Ag纳米粒子结构均匀,分散性良好,团聚程度低,在催化、传感器、电极材料等方面具有广阔的应用前景。
The invention provides a preparation method of Ag nano-particles. Electricity is provided by a high voltage direct current power supply, a platinum needle is used as an anode, and the AgNO 3 solution is driven by a peristaltic pump to flow through a buffer bottle, and overflows from the top of a capillary penetrating a graphite carbon rod to overflow. solution as the discharge cathode. When a high enough voltage is applied between the two poles, the overflowing liquid will generate a glow to form a plasma, and the active particles generated by the liquid cathode glow discharge plasma will react with Ag + in the solution, and the generated Ag nanoparticle turbid liquid will flow along the graphitic carbon rod. The wall flows into the collector. Finally, the turbid liquid is ultrasonically dispersed, centrifuged, washed with distilled water, dried to constant weight, and ground to obtain Ag nanoparticles. The Ag nanoparticles synthesized by the preparation method have uniform structure, good dispersibility and low degree of agglomeration, and have broad application prospects in catalysis, sensors, electrode materials and the like.
Description
技术领域technical field
本发明属于纳米材料制备技术领域,涉及一种Ag纳米粒子的制备方法,尤其涉及一种利用液体阴极辉光放电等离子体技术由AgNO3溶液直接制备Ag纳米粒子的方法。The invention belongs to the technical field of nanomaterial preparation, and relates to a preparation method of Ag nanoparticles, in particular to a method for directly preparing Ag nanoparticles from AgNO3 solution by utilizing liquid cathode glow discharge plasma technology.
背景技术Background technique
银(Ag)纳米材料因优异的催化、光学和电学性能,使其在表面增强拉曼光谱、发光与显示装置、高效催化剂、生物传感器、高性能电极材料等方面得到广泛应用。银纳米粒子的形貌、分布以及尺寸大小都会影响其性能,因此制备各种具有不同形状的银纳米粒子对其应用起关键作用,同时这也是近年来纳米材料研究的热点。Silver (Ag) nanomaterials have been widely used in surface-enhanced Raman spectroscopy, luminescence and display devices, high-efficiency catalysts, biosensors, and high-performance electrode materials due to their excellent catalytic, optical, and electrical properties. The morphology, distribution and size of silver nanoparticles will affect their properties, so the preparation of various silver nanoparticles with different shapes plays a key role in its application, and this is also a hot spot in nanomaterials research in recent years.
银纳米粒子的制备方法主要有:还原法、超声辅助法、溶胶-凝胶法、微波法、沉淀法、醇解法等。其中,还原法制备银纳米粒子是一种相对简单且有效的方法,包括化学还原法和电化学还原法,化学还原法一般采用简单而纯度较高的银盐,使用还原剂如硼氢化钠、甲醛、二甲基乙酰胺、柠檬酸盐等还原制备银纳米粒子,且制备银纳米粒子的过程中一般需加入稳定剂(PVP、CTAB或者硅烷偶联剂等)以阻止纳米粒子的团聚,进而控制生成的微粒大小在纳米级。但化学还原法过程繁琐,且产生废液、废气,污染环境,增加成本,制成的银纳米粒子形貌不规则,粒径分布广。电化学法则是在温和的条件下,经强力电解作用来制备纳米材料,该方法具有设备简易、操作简单、条件温和等优点,不足之处是必须加入保护剂,不然很难形成银纳米粒子。例如廖学红等(高等学校化学学报,2000,21(12):1837-1839)利用电化学法,通过加入EDTA保护剂,在超声波作用下合成了不同尺寸的银纳米球和树枝状的银纳米粒子。该方法具有耗时短、步骤简单、无污染等优点。The preparation methods of silver nanoparticles mainly include: reduction method, ultrasonic-assisted method, sol-gel method, microwave method, precipitation method, alcoholysis method, etc. Among them, the preparation of silver nanoparticles by reduction method is a relatively simple and effective method, including chemical reduction method and electrochemical reduction method. Formaldehyde, dimethylacetamide, citrate, etc. are reduced to prepare silver nanoparticles, and stabilizers (PVP, CTAB or silane coupling agents, etc.) are generally added in the process of preparing silver nanoparticles to prevent the agglomeration of nanoparticles, and then Control the particle size generated at the nanoscale. However, the chemical reduction process is cumbersome, and generates waste liquid and waste gas, pollutes the environment, increases costs, and the resulting silver nanoparticles have irregular morphology and wide particle size distribution. The electrochemical principle is to prepare nanomaterials by strong electrolysis under mild conditions. This method has the advantages of simple equipment, simple operation and mild conditions. The disadvantage is that a protective agent must be added, otherwise it is difficult to form silver nanoparticles. For example, Liao Xuehong et al. (Journal of Chemistry from Higher Education Institutions, 2000, 21(12): 1837-1839) synthesized silver nanospheres and dendritic silver nanoparticles of different sizes under the action of ultrasonic waves by adding EDTA protective agent by electrochemical method. . The method has the advantages of short time consumption, simple steps and no pollution.
随着人们环境保护意识的提高,研究方法简便、形貌可控、低能耗、低污染的银纳米粒子的绿色化学制备方法越来越引起重视。近年来,出现了一种液相隔膜等离子法制备银纳米粒子的方法,例如马得莉等以银片为阳极,不锈钢为阴极,电解液为Na2SO4溶液,在不断搅拌下,利用牺牲阳极的液体隔膜放电等离子体制备了银纳米粒子(一种利用液相隔膜放电等离子体制备银纳米粒子的方法,申请号201710829462.8)。With the improvement of people's awareness of environmental protection, the green chemical preparation method of silver nanoparticles with simple research methods, controllable morphology, low energy consumption and low pollution has attracted more and more attention. In recent years, there has been a method for preparing silver nanoparticles by liquid - phase diaphragm plasma method . The anode liquid diaphragm discharge plasma prepares silver nanoparticles (a method for preparing silver nanoparticles by liquid diaphragm discharge plasma, application number 201710829462.8).
目前,液体阴极辉光放电等离子体多与光谱结合用于检测溶液中金属元素含量方面的报道较多(Yu J, et al. SpectrochimicaActa Part B, 2018, 145: 64-70; C.Yang, et al. Talanta, 2016, 155: 314-320; 张真, 等. 分析化学, 2013, 41(10):1606-1613),然而,用这种技术制备纳米材料的研究国内外报道较少。At present, there are many reports on the combination of liquid cathode glow discharge plasma and spectroscopy to detect the content of metal elements in solution (Yu J, et al. SpectrochimicaActa Part B, 2018, 145: 64-70; C. Yang, et al. al. Talanta, 2016, 155: 314-320; Zhang Zhen, et al. Analytical Chemistry, 2013, 41(10):1606-1613), however, there are few reports at home and abroad on the preparation of nanomaterials by this technique.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于针对现有技术中Ag纳米粒子制备过程复杂、生产成本偏高、污染环境等问题,提供一种简单、快捷、绿色合成Ag纳米粒子的方法,即用液体阴极辉光放电等离子体法直接由pH=1的硝酸银溶液制备Ag纳米粒子。The object of the present invention is to provide a simple, fast, green method for synthesizing Ag nanoparticles, namely, using liquid cathode glow discharge plasma to solve the problems of complex preparation process of Ag nanoparticles, high production cost and environmental pollution in the prior art. Ag nanoparticles were directly prepared from a pH=1 silver nitrate solution by bulk method.
为实现上述目的,本发明所采用的技术方案是:一种Ag纳米粒子的制备方法,采用液体阴极辉光放电等离子体发生装置,以高压直流电源提供电能,封存在石英管中的铂针为阳极,pH=1的AgNO3溶液在蠕动泵带动下流经缓冲瓶,从插入石墨碳棒的毛细管顶端溢出,以溢出的溶液作为放电阴极,当两极间施加足够高电压时,铂针阳极与毛细管之间溢出的液体产生辉光放电等离子体,利用液体阴极辉光放电等离子体产生的活性粒子与溶液中的Ag+发生反应,制备出银纳米粒子。In order to achieve the above object, the technical scheme adopted in the present invention is: a preparation method of Ag nanoparticles, a liquid cathode glow discharge plasma generating device is used, electric energy is provided by a high-voltage direct current power supply, and the platinum needle sealed in the quartz tube is The anode, the AgNO 3 solution with pH=1 flows through the buffer bottle driven by the peristaltic pump, and overflows from the top of the capillary inserted into the graphite carbon rod. The overflowed solution is used as the discharge cathode. When a high enough voltage is applied between the two electrodes, the platinum needle anode and the capillary The liquid overflowing between them generates glow discharge plasma, and the active particles generated by the liquid cathode glow discharge plasma react with Ag + in the solution to prepare silver nanoparticles.
该制备方法具体为:取图1所示的液体阴极辉光放电等离子体发生装置,该发生装置包括溶液池3、液体收集器9和三维移动平台15,液体收集器9底部通过输液管与产品池7连通;液体收集器9上安装有端盖10,端盖10上设有排气管11和石墨管12,石墨管12竖直设置,石墨管12和端盖之间有不连续的缝隙,石墨管12内设有毛细管8,毛细管8的顶端从石墨管12顶端伸出,毛细管8顶面与石墨管12顶面之间的距离为2~4mm,毛细管8下端通过蠕动泵胶管5与蠕动泵4连通,蠕动泵胶管5上设有容积为3~7mL的缓冲瓶6,蠕动泵4通过蠕动泵胶管2与溶液池3连通;石墨管12与直流稳压稳流电源1的负极连通;三维移动平台15上竖直安装有石英管16,石英管16内封存有铂针电极14,铂针电极14的两端均伸出石英管16外,其中一端朝向毛细管8,另一端与直流稳压稳流电源1的正极连通。铂针电极14的直径为0.3~0.7mm,铂针电极14朝向毛细管8的一端露出石英管16的长度为1mm,毛细管8的内径为0.5~1.2mm。The preparation method is as follows: take the liquid cathode glow discharge plasma generating device shown in FIG. 1, the generating device includes a
制备时,调节三维移动平台15,使铂针电极14下端与毛细管8顶端之间的距离为1~3mm;将pH值为1、摩尔体积浓度为0.05~0.15mol/L的硝酸银溶液注入溶液池3内,启动蠕动泵4,使溶液池3内的硝酸银溶液以1~6mL/min流速匀速进入毛细管8内,从毛细管8顶端溢出,并与铂针电极14的下端相接触;开启直流稳压稳流电源1,控制阴阳极间的电压为480~600V、电流为28~58mA;直流稳压稳流电源1、铂针电极14和石墨管12形成闭合回路;通电过程中,从毛细管8顶端溢出的溶液经放电后沿石墨管12外壁向下流动,并通过石墨管12与端盖10之间的不连续缝隙流入液体收集器9内,再进入产品池7内,持续通电3~5h后,得到黑色的浊液,将该浊液超声分散10~15min,以6000~10000r/min的转速离心分离,蒸馏水洗涤数次,以除去Ag+,40~60℃下真空干燥至恒重,研磨,制得Ag纳米粒子。During preparation, the three-
由于蠕动泵4本身的脉动,导致毛细管8溢出的溶液产生波动,造成产生的放电等离子体波动,缓冲瓶6不仅可以消除蠕动泵4给溶液造成的脉动,而且缓冲瓶6中的稳定气压也可辅助蠕动泵4对毛细管8匀速供液,达到提高放电稳定性的目的。毛细管8流出的多余液体充当导线实现与石墨管12的连接。Due to the pulsation of the
液体阴极辉光放电是一种新型的产生非平衡低温等离子体的方法。在制备过程中,石墨管与电源负极相连,毛细管嵌入石墨管中,Pt针尖与电源正极相连,毛细管溢出液与Pt针尖端接触,在大气压空气环境中,当两电极间施加一定的电压时,发出稳定的辉光,产生紫外光、冲击波、高能辐射以及高活性粒子如HO∙、H∙、O∙、HO2∙和H2O2。Liquid cathode glow discharge is a novel method to generate non-equilibrium low temperature plasma. In the preparation process, the graphite tube is connected to the negative electrode of the power supply, the capillary is embedded in the graphite tube, the tip of the Pt needle is connected to the positive electrode of the power supply, and the overflow of the capillary tube is in contact with the tip of the Pt needle. In an atmospheric pressure air environment, when a certain voltage is applied between the two electrodes, Emits a stable glow, producing UV light, shock waves, high-energy radiation, and highly reactive particles such as HO∙, H∙, O∙, HO 2 ∙ and H 2 O 2 .
纳米粒子的制备原理The principle of preparation of nanoparticles
1、电流-电压曲线1. Current-voltage curve
用北京大华无线电公司的DH1722A-6直流稳压稳流电源(电压 0~1000 V,电流 0~500 mA)对不同电压下的电流进行测定。图2是对pH值为1、摩尔体积浓度为0.05 mol/L的AgNO3电解液进行电解时,通过调节不同电压,绘制的液体阴极辉光放电等离子体的电流-电压曲线图。由图2可知,整个放电过程分为4段:AB(0~200V)段,电流与电压基本呈线性关系,发生普通电解;BC(200~400V)段,随电压升高,电流波动下降;CD(400~470V)段,电流较为稳定,有不连续火花产生;DE(大于480V以后)段,随电压的增大辉光逐渐增强。由于电压过高,能耗较大,且辉光太强对毛细管以及铂针电极损害过大。因此本发明制备方法选用电压为480~600V。由于制备Ag纳米粒子的电压范围为480~600 V,此范围产生稳定辉光,形成稳定的等离子体,因而通过电流-电压曲线说明本发明制备方法中的放电过程不是普通的电解过程,而是辉光放电过程。图2内插图为电压分别为480V、550V和600V时的辉光照片,随电压的增大,辉光增强,产生的等离子体体积越大,进一步说明采用本发明方法制备Ag纳米粒子是在等离子体状态下的反应。The DH1722A-6 DC voltage stabilized power supply (voltage 0-1000 V, current 0-500 mA) of Beijing Dahua Radio Company was used to measure the current under different voltages. Figure 2 shows the current-voltage curves of liquid cathode glow discharge plasma drawn by adjusting different voltages when electrolyzing AgNO 3 electrolyte with pH value of 1 and molar volume concentration of 0.05 mol/L. It can be seen from Figure 2 that the entire discharge process is divided into 4 sections: AB (0~200V) section, the current and voltage are basically linear, and common electrolysis occurs; BC (200~400V) section, as the voltage increases, the current fluctuation decreases; In the CD (400~470V) section, the current is relatively stable, and there are discontinuous sparks; in the DE (over 480V) section, the glow gradually increases with the increase of the voltage. Because the voltage is too high, the energy consumption is large, and the glow is too strong, and the damage to the capillary and the platinum needle electrode is too large. Therefore, the voltage selected in the preparation method of the present invention is 480-600V. Since the voltage range for preparing Ag nanoparticles is 480-600 V, stable glow is generated in this range and stable plasma is formed. Therefore, the current-voltage curve shows that the discharge process in the preparation method of the present invention is not an ordinary electrolysis process, but a Glow discharge process. The insets in Fig. 2 are the glow photos when the voltages are 480V, 550V and 600V respectively. As the voltage increases, the glow increases and the generated plasma volume is larger, which further illustrates that the preparation of Ag nanoparticles by the method of the present invention is in the plasma reactions in the body state.
2、发射光谱分析2. Emission spectrum analysis
用八通道高分辨CCD光纤光谱仪(AvaSpec-ULS 2048,荷兰AvaSpec公司)测定液体阴极辉光放电的发射光谱,图3为600 V电压下(实施例3)制备Ag纳米粒子的pH值为1、摩尔体积浓度0.05mol/L 的AgNO3溶液的发射光谱。波长为306.0~309.0nm的谱线为HO(A2Ʃ+→X2Π) ((1,0)和(0.0))的跃迁谱带,486.1nm和656.3nm处为氢原子的H β (4d 2D→2p 2P0)和H α (3d 2D→2p 2P0)谱线,716.1nm、763.5nm和845.6nm处为激发态O(3p 5P→3s 5S0)和(3p 3P→3s 3S0)原子的跃迁谱线。这是由于高能电子激发汽化的水分子产生大量HO·,H·,O·。589nm和589.9nm处为Na的原子线,说明电解液中含有微量的Na+。在327.9nm和338.3nm处产生的谱线对应于Ag的原子发射谱线。以上结果表明,通过液体阴极辉光放电制备纳米Ag的过程中,溶液中有HO·,H·,O·产生。结合电流电压曲线和发射光谱分析,提出液体阴极辉光放电等离子体制备Ag纳米粒子的机理为:液体阴极辉光放电等离子体技术在外加电压作用下,首先使等离子体-溶液界面的H2O受高能电子(e*)的轰击,分解生成HO·,O·,H·,eaq −等,反应如下:The emission spectrum of the liquid cathode glow discharge was measured with an eight-channel high-resolution CCD fiber optic spectrometer (AvaSpec-ULS 2048, AvaSpec, The Netherlands). Figure 3 shows the pH value of Ag nanoparticles prepared at a voltage of 600 V (Example 3). Emission spectra of AgNO 3 solution with a molar volume concentration of 0.05 mol/L. The spectral lines with wavelengths from 306.0 to 309.0 nm are the transition bands of HO(A 2 Ʃ + →X 2 Π) ((1,0) and (0.0)), and the H β ( 4d 2 D→2p 2 P 0 ) and H α (3d 2 D→2p 2 P 0 ) lines, excited states O (3p 5 P→3s 5 S 0 ) and ( 3p 3 P→3s 3 S 0 ) atomic transition line. This is because the high-energy electrons excited the vaporized water molecules to generate a large amount of HO·, H·, O·. The atomic lines of Na at 589nm and 589.9nm indicate that the electrolyte contains a trace amount of Na + . The lines generated at 327.9 nm and 338.3 nm correspond to the atomic emission lines of Ag. The above results show that HO·, H·, O· are generated in the solution during the preparation of nano-Ag by liquid cathode glow discharge. Combined with the analysis of current - voltage curve and emission spectrum, the mechanism of preparation of Ag nanoparticles by liquid cathode glow discharge plasma is put forward. Bombarded by high-energy electrons (e*), it decomposes to generate HO , O , H , e aq − etc. The reaction is as follows:
H2O+e*→H· + OH· + O· + H2O· + H2 + O2 + H2O2 +eaq − +H3O+(1)H 2 O+e*→H + OH + O + H 2 O + H 2 + O 2 + H 2 O 2 +e aq − +H 3 O + (1)
溶液中Ag+存在时,可与H·或eaq −发生还原反应:In the presence of Ag + in solution, it can undergo a reduction reaction with H or e aq − :
Ag++eaq −= Ag (2)Ag + +e aq − = Ag (2)
Ag++H·=Ag+H+ (3)Ag + +H·=Ag+H + (3)
通过控制放电电压,可以控制溶液中H·和eaq −的产生速度和浓度,从而推动(2)式和(3)式向右进行,进而控制Ag纳米粒子的形貌。By controlling the discharge voltage, the generation speed and concentration of H and e aq − in the solution can be controlled, thereby pushing the equations (2) and (3) to the right, and then controlling the morphology of Ag nanoparticles.
本发明制备方法具有以下有益效果:The preparation method of the present invention has the following beneficial effects:
1.构建了等离子体-液体界面,在两电极间形成稳定的辉光放电等离子体来制备银纳米粒子,为制备过程提供了一个独特的条件。1. A plasma-liquid interface is constructed, and a stable glow discharge plasma is formed between the two electrodes to prepare silver nanoparticles, which provides a unique condition for the preparation process.
2.具有条件温和(室温,无惰性气体保护,功耗低),设备简单,操作方便,过程可控(改变参数如电解液浓度、放电电压、放电时间等,可以获得不同粒径的Ag纳米粒子),绿色环保等优点。2. With mild conditions (room temperature, no inert gas protection, low power consumption), simple equipment, easy operation, and controllable process (change parameters such as electrolyte concentration, discharge voltage, discharge time, etc., Ag nanometers with different particle sizes can be obtained. particles), green environmental protection and other advantages.
3.所用的化学试剂种类少,用量低,无二次污染,是一种环境友好的绿色制备技术。3. The chemical reagents used are few, the dosage is low, and there is no secondary pollution. It is an environmentally friendly green preparation technology.
4.产物杂质少、纯度高、分散性好,便于分离。4. The product has less impurities, high purity, good dispersibility, and is easy to separate.
附图说明Description of drawings
图1是本发明制备方法中使用的液体阴极辉光放电等离子体发生装置的示意图。FIG. 1 is a schematic diagram of a liquid cathode glow discharge plasma generating device used in the preparation method of the present invention.
图2是本发明液体阴极辉光放电等离子体的电流-电压曲线。Figure 2 is a current-voltage curve of the liquid cathode glow discharge plasma of the present invention.
图3为600 V下的发射光谱。Figure 3 is the emission spectrum at 600 V.
图4为不同电压下制备得到的Ag纳米粒子的XRD图谱(a 480V、28mA,b 550V、32mA,c 600V、58mA)。Figure 4 shows the XRD patterns of Ag nanoparticles prepared at different voltages (a 480V, 28mA,
图5为不同电压下制备得到的Ag纳米棒的SEM形貌(a480V、28mA,b550V、32mA,c600V、58mA)。Figure 5 shows the SEM morphologies of Ag nanorods prepared at different voltages (a480V, 28mA, b550V, 32mA, c600V, 58mA).
图6为550 V电压条件下制得的Ag纳米粒子的EDS谱图。Figure 6 is the EDS spectrum of Ag nanoparticles prepared under the condition of 550 V voltage.
图7为550 V电压条件下制得的Ag纳米粒子的紫外光谱图。Figure 7 is the UV spectrum of Ag nanoparticles prepared under the condition of 550 V voltage.
图1中:1.直流稳压稳流电源,2.第一蠕动泵胶管,3.溶液池,4.蠕动泵,5.第二蠕动泵胶管,6.缓冲瓶,7.产品池,8.毛细管,9.液体收集器,10.端盖,11.排气管,12.石墨管,13.溢出液体,14.铂针电极,15.三维移动平台,16.石英管。In Figure 1: 1. DC stabilized power supply, 2. First peristaltic pump hose, 3. Solution pool, 4. Peristaltic pump, 5. Second peristaltic pump hose, 6. Buffer bottle, 7. Product pool, 8 .Capillary tube, 9. Liquid collector, 10. End cap, 11. Exhaust pipe, 12. Graphite tube, 13. Spilled liquid, 14. Platinum needle electrode, 15. Three-dimensional mobile platform, 16. Quartz tube.
具体实施方式Detailed ways
下面结合具体实施例对本发明作进一步说明。The present invention will be further described below in conjunction with specific embodiments.
实施例1Example 1
使用图1所示的液体阴极辉光放电等离子体发生装置。调节三维移动平台15,使铂针电极14的下端与毛细管8顶端之间的距离为1mm;将pH=1、摩尔体积浓度为0.05mol/L的硝酸银溶液注入溶液池3内,启动蠕动泵4,使溶液池3内的硝酸银溶液以1mL/min流速匀速进入毛细管8内,从毛细管8顶端溢出,并与铂针电极14的下端相接触;开启直流稳压稳流电源1,控制阴阳极间的电压为480V、电流为28mA;直流稳压稳流电源1、铂针电极14和石墨管12形成闭合回路;通电过程中,从毛细管8顶端溢出的溶液经电解后沿石墨管12外壁向下流动,并通过石墨管12与端盖10之间的不连续缝隙流入液体收集器9内,再进入产品池7内,持续通电5h后,得到黑色的浊液,将该浊液超声分散10min,以10000r/min的转速离心分离,蒸馏水洗涤数次,以除去溶Ag+,40℃温度下真空干燥至恒重,研磨,制得产物。The liquid cathode glow discharge plasma generator shown in FIG. 1 was used. Adjust the three-
实施例2Example 2
取图1所示的液体阴极辉光放电等离子体发生装置。调节三维移动平台15,使铂针电极14的下端与毛细管8顶端之间的距离为2mm;将pH=1、摩尔体积浓度为0.10mol/L的硝酸银溶液注入溶液池3内,启动蠕动泵4,使溶液池3内的硝酸银溶液以3.5mL/min流速匀速进入毛细管8内,从毛细管8顶端溢出,并与铂针电极14的下端相接触;开启直流稳压稳流电源1,控制阴阳极间的电压为550V、电流为32mA;直流稳压稳流电源1、铂针电极14和石墨管12形成闭合回路;通电过程中,从毛细管8顶端溢出的溶液经电解后沿石墨管12外壁向下流动,并通过石墨管12与端盖10之间的不连续缝隙流入液体收集器9内,再进入产品池7内,持续通电4h后,得到黑色的浊液,将该浊液超声分散12min,以10000r/min的转速离心分离,蒸馏水洗涤数次,以除去溶Ag+,60℃温度下真空干燥至恒重,研磨,制得产物。Take the liquid cathode glow discharge plasma generator shown in FIG. 1 . Adjust the three-
实施例3Example 3
取图1所示的液体阴极辉光放电等离子体装置。调节三维移动平台15,使铂针电极14的下端与毛细管8顶端之间的距离为3mm;将pH=1、摩尔体积浓度为0.15mol/L的硝酸银溶液注入溶液池3内,启动蠕动泵4,使溶液池3内的硝酸银溶液以6mL/min流速匀速进入毛细管8内,从毛细管8顶端溢出,并与铂针电极14的下端相接触;开启直流稳压稳流电源1,控制阴阳极间的电压为600V、电流为58mA;直流稳压稳流电源1、铂针电极14和石墨管12形成闭合回路;通电过程中,从毛细管8顶端溢出的溶液经电解后沿石墨管12外壁向下流动,并通过石墨管12与端盖10之间的不连续缝隙流入液体收集器9内,再进入产品池7内,持续通电3h后,得到黑色的浊液,将该浊液超声分散15min,以6000r/min的转速离心分离,蒸馏水洗涤数次,以除去溶Ag+,50℃温度下真空干燥至恒重,研磨,制得产物。Take the liquid cathode glow discharge plasma device shown in Figure 1. Adjust the three-
下面通过X射线粉末衍射(XRD)、扫描电镜(SEM)、X射线能量色散谱(EDS)和紫外光谱(UV-vis)对实施例中制得产物的结构和形貌进行表征。The structure and morphology of the products prepared in the examples are characterized by X-ray powder diffraction (XRD), scanning electron microscope (SEM), X-ray energy dispersive spectroscopy (EDS) and ultraviolet spectroscopy (UV-vis).
1、XRD测试1. XRD test
用Rigaku D/max-2400型X-射线粉末衍射仪对实施例1~3中制得的产物进行测试。图4为不同放电电压下制得产物的XRD图谱(其中,a为实施例1,b为实施例2,c为实施例3),由图4可以看出,在2θ= 5~90°范围内有5个衍射峰,分别位于38.1°, 44.2°, 64.4°,77.3°, 81.5°,经过与标准谱图JCPDS(No. 04-0783)卡片对照,发现所有衍射峰位和标准卡片峰位吻合较好,这5个衍射峰分别对应于面心立方晶系Ag的(111)、(200)、(220)、(311)和(222)晶面的衍射。表明所制备的产物为立方结构的金属Ag。从图4也可以看出,所有衍射峰都有非常明显的宽化,由于X射线衍射峰宽化是纳米粒子的特性之一,表明所制备的产物粒径小。由图4还可以看出,不同电压下制备得到的Ag的衍射谱图中没有其他衍射峰产生,表明制备出了较高纯度的Ag纳米粒子。依据Debye-Scherrer公式D=kλ/(βcosθ)(其中k=0.89,λ=0.1542nm,β为半宽度),在主峰(111)处计算得到Ag纳米粒子的晶粒尺寸为60.23nm(图4a), 33.67nm(图4b)和47.62 nm((图4c)。The products prepared in Examples 1 to 3 were tested with a Rigaku D/max-2400 X-ray powder diffractometer. Figure 4 shows the XRD patterns of the products prepared under different discharge voltages (where a is Example 1, b is Example 2, and c is Example 3). It can be seen from Figure 4 that at 2 θ = 5 to 90° There are 5 diffraction peaks in the range, located at 38.1°, 44.2°, 64.4°, 77.3°, 81.5° respectively. After comparing with the standard spectrum JCPDS (No. 04-0783) card, all diffraction peak positions and standard card peaks were found The alignment is good, and the five diffraction peaks correspond to the diffraction of (111), (200), (220), (311) and (222) crystal planes of face-centered cubic Ag, respectively. It is indicated that the prepared product is metallic Ag with cubic structure. It can also be seen from Fig. 4 that all diffraction peaks have very obvious broadening, since X-ray diffraction peak broadening is one of the characteristics of nanoparticles, indicating that the prepared products have small particle size. It can also be seen from Fig. 4 that there are no other diffraction peaks in the diffraction spectra of Ag prepared under different voltages, indicating that Ag nanoparticles with higher purity are prepared. According to the Debye-Scherrer formula D = kλ /( β cos θ ) (where k =0.89, λ =0.1542nm, β is the half width), the grain size of Ag nanoparticles calculated at the main peak (111) is 60.23nm ( Fig. 4a), 33.67 nm (Fig. 4b) and 47.62 nm ((Fig. 4c).
2、扫描电镜测试2. Scanning electron microscope test
采用捷克FEI公司的Quanta2000型扫描电子显微镜(SEM)对实施例1~3中制得的Ag纳米粒子进行扫描,以观察样品的大小及形貌。观察前样品在60℃真空干燥后喷金。不同放电电压下样品的SEM见图5(其中,a为实施例1,b为实施例2,c为实施例3),可以看出,制备得到的Ag纳米粒子主要呈现棒状,纳米粒子团聚小,呈现纳米级,分布均匀。The Ag nanoparticles prepared in Examples 1-3 were scanned with a Quanta2000 scanning electron microscope (SEM) from Czech FEI Company to observe the size and morphology of the samples. Before observation, the samples were vacuum dried at 60°C and then sprayed with gold. The SEM of the samples under different discharge voltages is shown in Figure 5 (where a is Example 1, b is Example 2, and c is Example 3), it can be seen that the prepared Ag nanoparticles are mainly rod-shaped, and the nanoparticles have small agglomeration. , showing nanoscale and uniform distribution.
3、X射线能量色散谱(EDS)测试3. X-ray energy dispersive spectroscopy (EDS) test
用德国 Quanta 型X射线能谱(EDS)测试实施例2中制得的Ag纳米粒子的成分,测试结果见图6。EDS分析表明,样品中只有Ag的特征峰,原子分数为84.07%,另外,EDS分析中有15.93%元素为Au,这是由喷金所致。说明采用本发明制备方法制备的黑色粉末状产物为纯Ag。Use German Quanta type X-ray energy spectrum (EDS) to test the composition of the Ag nanoparticles obtained in Example 2, and the test results are shown in Figure 6. EDS analysis shows that there are only characteristic peaks of Ag in the sample, and the atomic fraction is 84.07%. In addition, 15.93% of the elements in the EDS analysis are Au, which is caused by gold spraying. It is indicated that the black powdery product prepared by the preparation method of the present invention is pure Ag.
4、UV-vis光谱测试4. UV-vis spectrum test
用UV757紫外-可见分光光度计(上海科恒)在200~800 nm 范围对Ag纳米粒子进行紫外分析。图7为实施例2所制备样品的紫外光谱图。在480nm左右出现强吸收峰,另外,在268nm和300nm 处出现2个肩峰,这与Ag纳米粒子的紫外谱图一致,说明制备的颗粒为Ag纳米粒子。Ag nanoparticles were analyzed by UV757 UV-Vis spectrophotometer (Shanghai Keheng) in the range of 200-800 nm. FIG. 7 is the ultraviolet spectrum of the sample prepared in Example 2. FIG. A strong absorption peak appears around 480 nm, and two shoulder peaks appear at 268 nm and 300 nm, which are consistent with the UV spectrum of Ag nanoparticles, indicating that the prepared particles are Ag nanoparticles.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010049907.2A CN111215636B (en) | 2020-01-17 | 2020-01-17 | A kind of preparation method of Ag nanoparticles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010049907.2A CN111215636B (en) | 2020-01-17 | 2020-01-17 | A kind of preparation method of Ag nanoparticles |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111215636A CN111215636A (en) | 2020-06-02 |
CN111215636B true CN111215636B (en) | 2022-07-12 |
Family
ID=70829590
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010049907.2A Expired - Fee Related CN111215636B (en) | 2020-01-17 | 2020-01-17 | A kind of preparation method of Ag nanoparticles |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111215636B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115582551A (en) * | 2021-07-05 | 2023-01-10 | 无锡金鹏环保科技有限公司 | Process for continuously preparing nano metal powder in liquid phase environment |
CN114012102B (en) * | 2021-12-16 | 2023-04-18 | 西北师范大学 | Preparation method of Ag nanoparticles |
CN114195186B (en) * | 2021-12-16 | 2023-09-05 | 西北师范大学 | A kind of preparation method of niobium pentoxide nanoparticles |
CN117039031B (en) * | 2023-09-15 | 2024-07-12 | 大连交通大学 | Platinum-carbon catalyst prepared by atmospheric pressure discharge technology and preparation method and application thereof |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101032754A (en) * | 2007-04-18 | 2007-09-12 | 天津大学 | Method for producing nanometer metal by plasma deoxidization in low termprature |
CN101743199A (en) * | 2007-07-11 | 2010-06-16 | Gr智力储备股份有限公司 | The nanoparticle and the nanoparticle/liquor that are used for treatment liq and make continuation method, device and the acquisition of some component (for example nanoparticle) at liquid |
CN102909388A (en) * | 2012-09-17 | 2013-02-06 | 上海交通大学 | Gold-silver alloy nano particle prepared with assistant of atmospheric pressure micro-plasma fluid phase |
CN103163116A (en) * | 2013-03-06 | 2013-06-19 | 中国科学院上海硅酸盐研究所 | Liquid cathode glow discharge emission spectrum detection metal ion apparatus |
CN103712973A (en) * | 2014-01-03 | 2014-04-09 | 中国科学院上海硅酸盐研究所 | Method for fast forming plasma in liquid cathode glow discharge atomizer |
CN106290307A (en) * | 2016-09-07 | 2017-01-04 | 西北师范大学 | Liquid discharge plasma emission spectrum device and the assay method of metallic element |
CN107473272A (en) * | 2017-09-13 | 2017-12-15 | 西北师范大学 | The method for preparing flake nano beta cobaltous hydroxide using liquid phase cathode glow discharging plasma |
JP2018193266A (en) * | 2017-05-16 | 2018-12-06 | 日本メナード化粧品株式会社 | Silver nanoparticle-supporting powder |
-
2020
- 2020-01-17 CN CN202010049907.2A patent/CN111215636B/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101032754A (en) * | 2007-04-18 | 2007-09-12 | 天津大学 | Method for producing nanometer metal by plasma deoxidization in low termprature |
CN101743199A (en) * | 2007-07-11 | 2010-06-16 | Gr智力储备股份有限公司 | The nanoparticle and the nanoparticle/liquor that are used for treatment liq and make continuation method, device and the acquisition of some component (for example nanoparticle) at liquid |
CN102909388A (en) * | 2012-09-17 | 2013-02-06 | 上海交通大学 | Gold-silver alloy nano particle prepared with assistant of atmospheric pressure micro-plasma fluid phase |
CN103163116A (en) * | 2013-03-06 | 2013-06-19 | 中国科学院上海硅酸盐研究所 | Liquid cathode glow discharge emission spectrum detection metal ion apparatus |
CN103712973A (en) * | 2014-01-03 | 2014-04-09 | 中国科学院上海硅酸盐研究所 | Method for fast forming plasma in liquid cathode glow discharge atomizer |
CN106290307A (en) * | 2016-09-07 | 2017-01-04 | 西北师范大学 | Liquid discharge plasma emission spectrum device and the assay method of metallic element |
JP2018193266A (en) * | 2017-05-16 | 2018-12-06 | 日本メナード化粧品株式会社 | Silver nanoparticle-supporting powder |
CN107473272A (en) * | 2017-09-13 | 2017-12-15 | 西北师范大学 | The method for preparing flake nano beta cobaltous hydroxide using liquid phase cathode glow discharging plasma |
Non-Patent Citations (1)
Title |
---|
The facile synthesis of chitosan-based silver nano-biocomposites via a solution plasma process and their potential antimicrobial efficacy;MubarakAliDavoodbasha等;《Archives of Biochemistry and Biophysics》;20160901;第605卷;第49-58页 * |
Also Published As
Publication number | Publication date |
---|---|
CN111215636A (en) | 2020-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111215636B (en) | A kind of preparation method of Ag nanoparticles | |
Dsouza et al. | The importance of surface states in N-doped carbon quantum dots | |
Zhang et al. | Electrochemical route to the preparation of highly dispersed composites of ZnO/carbon nanotubes with significantly enhanced electrochemiluminescence from ZnO | |
Reddy et al. | CuO nanoparticle sensor for the electrochemical determination of dopamine | |
Ibrahim et al. | Selective and sensitive visible-light-prompt photoelectrochemical sensor of Cu2+ based on CdS nanorods modified with Au and graphene quantum dots | |
CN102909388B (en) | Gold-silver alloy nano particle prepared with assistant of atmospheric pressure micro-plasma fluid phase | |
Dewangan et al. | N-doped, silver, and cerium co-doped carbon quantum dots based sensor for detection of Hg2+ and captopril | |
Tian et al. | A sensitive electrochemiluminescence glucose biosensor based on graphene quantum dot prepared from graphene oxide sheets and hydrogen peroxide | |
Xue et al. | Enhancing photocatalytic performance of Zn2SnO4 by doping Yb: Oxygen vacancies formation and dye self-sensitization degradation | |
Wang et al. | A nanoflower shaped gold-palladium alloy on graphene oxide nanosheets with exceptional activity for electrochemical oxidation of ethanol | |
CN107620085B (en) | A method for preparing hexagonal phase nanometer h-molybdenum trioxide by using liquid phase cathode glow discharge plasma | |
Ge et al. | Hydroxylated graphene quantum dots as fluorescent probes for sensitive detection of metal ions | |
CN107775014A (en) | A kind of method that atmosphere cold plasma prepares noble metal/graphene composite nano material | |
Liu et al. | Spectroelectrochemistry of hollow spherical CdSe quantum dot assemblies in water | |
Kang et al. | Preparation of Ag–Cu bimetallic dendritic nanostructures and their hydrogen peroxide electroreduction property | |
CN108044125B (en) | Method for preparing Ag nano particles by using liquid diaphragm discharge plasma | |
Zhou et al. | Tunable thickness of mesoporous ZnO-coated metal nanoparticles for enhanced visible-light driven photoelectrochemical water splitting | |
Ashkarran et al. | Rapid and efficient synthesis of colloidal gold nanoparticles by arc discharge method | |
CN101556246A (en) | Mercury vapour generation method and device | |
CN111235588B (en) | Method for preparing nano zinc oxide by liquid cathode glow discharge plasma | |
Liu et al. | Facile electrochemical dispersion of bulk Rh into hydrosols | |
CN114232003B (en) | A method for preparing Cu2O nanoparticles using cathode glow discharge electrolytic plasma technology | |
CN111155137B (en) | Method for preparing nano ferroferric oxide by liquid cathode glow discharge plasma | |
Zhang et al. | Preparation of porous Cu2O octahedron and its application as L-Tyrosine sensors | |
Ugalde-Saldivar | Aerobic synthesis of palladium nanoparticles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20220712 |