CN100581645C - 氢气提纯用工艺和装置 - Google Patents
氢气提纯用工艺和装置 Download PDFInfo
- Publication number
- CN100581645C CN100581645C CN200380109953A CN200380109953A CN100581645C CN 100581645 C CN100581645 C CN 100581645C CN 200380109953 A CN200380109953 A CN 200380109953A CN 200380109953 A CN200380109953 A CN 200380109953A CN 100581645 C CN100581645 C CN 100581645C
- Authority
- CN
- China
- Prior art keywords
- adsorbent
- bed
- active carbon
- layer
- aluminium oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/04—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
- B01D53/0407—Constructional details of adsorbing systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/04—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
- B01D53/047—Pressure swing adsorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/06—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
- B01J20/08—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/10—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
- B01J20/103—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/10—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
- B01J20/16—Alumino-silicates
- B01J20/18—Synthetic zeolitic molecular sieves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/10—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
- B01J20/16—Alumino-silicates
- B01J20/18—Synthetic zeolitic molecular sieves
- B01J20/186—Chemical treatments in view of modifying the properties of the sieve, e.g. increasing the stability or the activity, also decreasing the activity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/20—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28014—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
- B01J20/28052—Several layers of identical or different sorbents stacked in a housing, e.g. in a column
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/50—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
- C01B3/56—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
- B01D2253/102—Carbon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
- B01D2253/104—Alumina
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
- B01D2253/106—Silica or silicates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
- B01D2253/106—Silica or silicates
- B01D2253/108—Zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/30—Physical properties of adsorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2256/00—Main component in the product gas stream after treatment
- B01D2256/16—Hydrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/10—Single element gases other than halogens
- B01D2257/102—Nitrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/50—Carbon oxides
- B01D2257/502—Carbon monoxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/50—Carbon oxides
- B01D2257/504—Carbon dioxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/70—Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
- B01D2257/702—Hydrocarbons
- B01D2257/7022—Aliphatic hydrocarbons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/80—Water
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/40—Further details for adsorption processes and devices
- B01D2259/40003—Methods relating to valve switching
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/40—Further details for adsorption processes and devices
- B01D2259/40011—Methods relating to the process cycle in pressure or temperature swing adsorption
- B01D2259/40013—Pressurization
- B01D2259/40018—Pressurization with more than three sub-steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/40—Further details for adsorption processes and devices
- B01D2259/40011—Methods relating to the process cycle in pressure or temperature swing adsorption
- B01D2259/4002—Production
- B01D2259/40024—Production with three sub-steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/40—Further details for adsorption processes and devices
- B01D2259/40011—Methods relating to the process cycle in pressure or temperature swing adsorption
- B01D2259/40035—Equalization
- B01D2259/40037—Equalization with two sub-steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/40—Further details for adsorption processes and devices
- B01D2259/40011—Methods relating to the process cycle in pressure or temperature swing adsorption
- B01D2259/40058—Number of sequence steps, including sub-steps, per cycle
- B01D2259/40075—More than ten
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/40—Further details for adsorption processes and devices
- B01D2259/404—Further details for adsorption processes and devices using four beds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/40—Further details for adsorption processes and devices
- B01D2259/41—Further details for adsorption processes and devices using plural beds of the same adsorbent in series
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/40—Further details for adsorption processes and devices
- B01D2259/414—Further details for adsorption processes and devices using different types of adsorbents
- B01D2259/4141—Further details for adsorption processes and devices using different types of adsorbents within a single bed
- B01D2259/4145—Further details for adsorption processes and devices using different types of adsorbents within a single bed arranged in series
- B01D2259/4146—Contiguous multilayered adsorbents
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/042—Purification by adsorption on solids
- C01B2203/043—Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/0465—Composition of the impurity
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/0465—Composition of the impurity
- C01B2203/047—Composition of the impurity the impurity being carbon monoxide
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/0465—Composition of the impurity
- C01B2203/0475—Composition of the impurity the impurity being carbon dioxide
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/0465—Composition of the impurity
- C01B2203/0495—Composition of the impurity the impurity being water
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/14—Details of the flowsheet
- C01B2203/146—At least two purification steps in series
- C01B2203/147—Three or more purification steps in series
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/151—Reduction of greenhouse gas [GHG] emissions, e.g. CO2
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Combustion & Propulsion (AREA)
- Separation Of Gases By Adsorption (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
本发明公开了一组供H2-PSA工艺中使用的最佳吸附剂。各吸附剂床被分成四个区;1区含用于除去水的吸附剂;2区含强和弱吸附剂的混合物以除去主要杂质如CO2;3区含堆积密度高(>38lbm/ft3)的吸附剂以除去剩余的CO2和含H2进料混合物中存在的大部分CH4和CO;和4区含亨利定律常数高的吸附剂以最终除去N2和剩余的杂质,从而以所需的高纯度制造氢气。
Description
发明领域
此发明涉及一种用于提纯含大于50摩尔%氢气之不纯气流的变压吸附(PSA)系统和工艺,更特别地,涉及这样一种用各种含氢气的进料混合物如合成气制造高纯氢气的工艺。与早先公开的制氢用PSA工艺相比,该改进的工艺提供更高的氢气回收率和更低的吸附剂用量。
发明背景
在化学加工工业,包括钢退火、硅制造、油脂氢化、玻璃制造、氢化裂解、甲醇制造、羰基合成醇制造和异构化工艺中对高纯氢气的需要持续增加。有许多已知的制造氢气的工艺,包括天然气或石脑油(naptha)的蒸汽转化。在此工艺中,将原料如天然气压缩并送到净化单元中,除去硫化合物。然后,将脱硫的进料与过热蒸汽混合,并送到重整装置中以主要制造H2和CO。将来自该重整装置的流出气流(effluent stream)送到热回收单元中,然后送到变换炉中,获得额外的H2。在将来自变换炉的流出物送到其中制造高纯(例如,99.9摩尔%或更高)氢气的PSA系统中之前,使其通过过程冷却和回收单元。
然而,送到PSA系统的H2气体可以含若干种浓度变化大的污染物,例如,从蒸汽甲烷重整装置(SMR)到PSA的原料流可以含CO2、CH4、CO和N2中的一种或多种。成分如此大不相同的吸附物的这种组合给PSA系统的设计,特别是对于吸附剂选择和吸附器/吸附床的结构提出了重大的挑战。
有代表性的现有技术PSA工艺包括Sircar等人的美国专利US4,077,779;Fuderer等人的美国专利US 4,553,981;Fong等人的美国专利US 5,152,975;Wagner的美国专利US 3,430,418和Batta等人的美国专利US 3,564,816。
更具体地说,在美国专利US 5,912,422中,Bomard等人公开了将氢气与含CO及其它杂质如CO2和烃的原料气混合物分离的PSA工艺。将进料混合物通到第一吸附剂中以除去CO2和/或烃,然后通到第二吸附剂中以基本除去CO杂质而制造氢气,该第二吸附剂是至少80%锂交换的八面沸石型沸石。如果含氢气的进料混合物中存在N2,则Bomard等人在第一吸附剂与第二吸附剂之间引入第三吸附剂以除去氮。
Golden等人的美国专利US 4,957,514公开了使用钡交换的X型沸石净化氢气。
Golden等人的美国专利US 6,027,549公开了使用堆积密度为约35-38lb/ft3的活性炭除去CO2和CH4的PSA工艺。
在美国专利US 6,302,943和EP 1097746A2中,Johnson等人公开了用于通过压力和真空摆动(swing)吸附来回收H2的吸附剂,其中床产物端处的吸附剂对CO具有0.8-2.2mmol/g/atm的亨利定律常数,对N2具有0.55-1.40mmol/g/atm的亨利定律常数。
与现有制氢用PSA系统和工艺相比,仍然需要具有更低吸附剂要求和更高产物回收率的改进PSA系统和工艺。
本发明通过在吸附床内使用吸附剂的新选择和排列满足了此需要。
发明概述
根据此发明,将H2-PSA系统的各吸附器(床)分成四个区。在一个优选的实施方案中,第一个区包括用于从原料流中除去水的吸附剂。第二个区用于将含氢进料中高(>10体积%)含量的污染物(例如,CO2)降低至小于10%。第三个区包含能够将进入此层的所有杂质的浓度降低至小于1%的吸附剂。第四个区由对N2(例如,大于1.5mmol/gm bar,优选大于2.3mmol/gm bar)和CO(例如,大于2.94mmol/gm bar)具有高亨利定律常数的吸附剂组成,以除去剩余的杂质,从而获得所需的产物(H2)纯度。在一个实施方案中,可以省略第二个区和/或将其与第三个区结合。还公开了其它实施方案。
附图简述
根据以下优选实施方案和附图的描述,目的、特点和优点将为本领域普通技术人员所想到,其中:
图1说明了根据本发明优选实施方案的四层PSA吸附塔的示意图。
图2a和2b分别说明了吸附床的4区中各种吸附剂的Δ氮负载和亨利定律常数。
图3说明了亨利定律常数与生产能力之间的相关性。
图4说明了根据本发明的四床PSA系统的工艺流程图。
图5说明了各种工艺实施例的氢气回收率与床尺寸因数之间的对比。
图6说明了在床尺寸因数方面实施例中公开的工艺的对比。
发明详述
根据本发明,提供一种改进的PSA系统和工艺来提纯含大于50摩尔%氢气的气流。
典型地,送到PSA中的H2原料气含若干种污染物如H2O、CO2、CH4、CO和N2。除非另有陈述,否则正如本文中使用的,所有气体组分百分比都是摩尔%。成分如此大不相同的吸附物的这种组合给有效的吸附剂选择提出了重大的挑战。
参考图1说明本发明的优选实施方案。在此实施方案中,PSA工艺使用包括四个吸附剂区的吸附床。对于此说明书来说,正如表示气流方向的箭头所表示的,第一个区是最靠近床的进料端的区。
床的第一个区包括除去污染物如水的吸附剂。用于第一层(第一个区)的吸附剂可选自氧化铝、硅胶、硅质岩或沸石。
使用第二层/区用吸附剂来除去CO2和一些CH4。在一个优选的实施方案中,此层包括堆积密度为38-46lb/ft3的活性炭(按ASTM标准D-2854测量),其可以与较弱的吸附剂(对于CO2和CH4)如氧化铝混合。此混合物的作用是使该层的温度梯度以及与吸附热有关的热摆动最小。最优选的活性炭是可以从Takeda Chemical Industries,Japan获得的G2X活性炭。
对于该混合物,可以使用不同分数的氧化铝和活性炭。用于该混合物的氧化铝和碳的最佳数量由PSA工艺操作条件、进料组成和床中的局部气相浓度决定。还可以使用其它强和弱吸附剂的混合物来于床中获得所需的温度梯度降低。一种这样的混合物也许是活性炭和ZnX沸石或氧化铝和ZnX。Ackley等人的美国专利US 6,027,548公开了关于在PSA工艺中使用强和弱吸附剂之混合物的额外细节。
使用第三层用吸附剂来除去原料流中剩余的CH4和大部分N2和CO。用于此区的优选吸附剂是堆积密度大于或等于38lb/ft3的活性炭。与层2一样,G2X活性炭是最优选的材料。可以使用阳离子交换形式的沸石A、X、Y(例如ZnX和ZnY)、菱沸石和丝光沸石,更特别地,可以使用用Zn2+和Cu2+离子以不同交换百分比交换的X型沸石。Khelifa等人,Microporous和Mesoporous Materials,第32卷,第199页,1999和其中的参考文献给出了Zn2+和Cu2+交换的X型沸石的合成。此外,用于床的3区的其它材料包括堆积密度为32-45lb/ft3的浸渍活性炭。一种这样浸渍活性炭的例子是Sn-活性炭(Sn-AC)。更具体地说,用约35%SnCl2·2H2O盐浸渍活性炭,然后在180℃下干燥,从而制造AC-SnO2。Iyuke等人,Chemical Enginecring Science,第55卷,第4745页,2000给出了关于Sn-活性炭(Sn-AC)合成的额外信息。对于床的3区,相对不优选的材料是活性炭。
正如上面所指出的,在床的第二个区和第三个区中使用的优选吸附剂最好具有38-46lb/ft3的堆积密度。将这种材料用于PSA工艺导致比常规工艺高的H2回收率(约提高10%)和更低的吸附剂用量。在具有优选范围堆积密度的吸附剂中,应该选择对污染物具有最高动态负载量(dynamic capacity)的吸附剂。对此发明来说,将动态负载量定义为在吸附条件下的负载与脱附条件下的负载之间的差。
因为2区和3区除去了含H2的进料混合物中存在的大部分CO2、CO、CH4和N2,所以在床的这两个区中存在最大的温度梯度和热摆动,而且在床中,2区具有比3区大的温度梯度和热摆动。对比了用于床2区的吸附剂的两种混合物组合。为了与G2X性能比较,还分析了密度小于38lb/ft3的较低密度活性炭(BPL,购于Calgon Carbon Corp.USA)。结果示于下面的表1中。
表1:2区和3区(见图3)CO2和CH4在活性炭(G2X&BPL)、氧化铝和A201氧化铝与G2X活性炭的混合物上的温度摆动和动态负载。
Δ=delta
表1清楚地说明,通过将G2X碳与较弱的吸附剂(例如,氧化铝)混合显著降低了床的2区中不利的温度梯度。如表1所示,评价了G2X碳与25%或50%A201活性氧化铝(购于UOP,Des Plaines,IL,USA)的混合物降低床中的热摆动。热摆动从只有G2X碳的25K降低至各混合物的20K和16K。对于75%碳混合物,ΔCO2和ΔCH4负载分别降低14%和18%。由于不利的热摆动下降,即由于较高密度、较弱吸附剂提供的较低吸附热和增加的热容量,所以混合物的动态负载高于吸附剂负载的简单加权平均值。在2区中使用混合物的第二个优点是对3区中的基础温度的影响。由于由混合物在2区中产生较低的温度,所以ΔCO2和ΔCH4负载(表1中未示出)大约高10%。因此,在此发明的最优选实践中,第二个区由较强和较弱吸附剂的混合物(例如,氧化铝和G2X活性炭的混合物)组成,从而降低含H2的进料混合物中存在的高含量污染物的浓度。通过在2区中使用吸附剂的混合物,降低的热摆动实际上增加了床的局部动态负载量并降低了所需的吸附剂用量。
在床的4区中进行最终的N2和剩余杂质(例如CO、CH4、O2、Ar)清除。根据本发明,四区用最优选吸附剂具有2.58-10mmol/g·bar,优选2.58-4.3mmol/g·bar的N2亨利定律常数。具有大于2.94mmol/g·bar的CO亨利定律常数的吸附剂也是优选的。在本发明的实践中,亨利定律常数高的吸附剂实现提高的动态负载量以及在PSA循环均衡化(equalization)和吹扫步骤中较低的床压力。因此,由于在于PSA循环的逆流(相对于进料方向而言)泄料之前床压力较低,所以获得较高的H2回收率和较低的床尺寸因数。通过在床的净化区中使用亨利常数高的吸附剂,在于PSA循环的并流压力改变步骤(例如,床-床均衡化)的过程中抑制了质量交换区的扩展。杂质浓度锋面(fronts)的锐度(sharpness)导致回收率增加并使吸附剂用量减少。完全规范的MonteCarlo模拟说明,具有上述亨利常数(>2.3mmol/g·bar)的吸附剂包括CaEMT、CaMOR和LiMOR以及亨利常数≥1.5mmol/g·bar的吸附剂如VSA-6、Baylith KEH 650、KEJ407、CaX(2.0)、LiX(2.0)(>86%锂)、LiCaX(2.0)和无粘合剂的LiX(2.0)(>86%锂),其中(2.0)指的是可以使用的SiO2/Al2O3比,然而亨利定律常数>10mmol/g·bar的吸附剂通常在本发明的实践中不合适。注意,亨利定律常数以等温线模型和比温度为基础。比压力仅涉及ΔN2负载的确定。
4区用其它材料包括天然存在的结晶沸石分子筛如菱沸石、毛沸石、斜发沸石和八面沸石以及合适的合成沸石分子筛如ZSM-2、ZSM-3、EMC-2(含拥有结构代码EMT的六方形八面沸石)、β丝光沸石、片沸石A、D、R、T、X、Y和L。并且,也可以使用含选自周期表I族(例如Li、Na、K、Rb、Cs)和II族(例如Mg、Ca、Sr和Ba)中阳离子的其它金属交换的沸石。此外,在床的4区中可以使用沸石A和X,该沸石A和X中的AlO2成分至少有50%与选自钙、锂、锌、铜、锰、镁、镍、锶和钡中的阳离子缔合。而且,用Li或Ca阳离子交换的丝光沸石、EMT、FAU、MOR和CaX也可以在床的净化区(4区)中使用以除去杂质如N2和痕量的CH4以及CO,从而制造高纯H2。确定四面体骨架的三字母代码是由国际沸石协会(international Zeolite Association)根据IUPAC Zeolite Structure Types委员会,建立的规则而分配的结构类型代码(W.M.Meier等人,第4次修订版,1996)。对于选择用于床的4区的吸附剂,最理想的Si/Al比如下:CaA(Si/Al=1.0)、LiX(Si/Al=1.25)、LiX(Si/Al=1.0)、CaX(Si/Al=1.25)、CaX(Si/Al=1.0)、Li-丝光沸石(Si/Al=5.0)、Ca-丝光沸石(Si/Al=5.0)和CaEMT(Si/Al=1.0)。此外,在此发明的4区中也可以使用含锂/碱土金属的沸石-A和X型沸石(Chao等人,美国专利US 5,413,625;US 5,174,979;US5,698,013;US 5,454,857和US 4,859,217)。
对此应用来说,根据以下表示低分压区中线性形式等温线的方程定义亨利定律常数:
在评价N2亨利定律常数(X0KH)中,使用纯净组分荷载比关系(loading ratio correlation)(LRC)(Yang,“Gas Separation byAdsorption Processes”,1967)。LRC等温线方程给出了KH的表达式:
其中,Ki和ni根据LRC常数确定:
根据纯净组分的等温线数据确定LRC常数。对于在CaX(2.0)上的N2吸附,LRC常数具有以下值:XO=3.77、A1=23.56、A2=-3151、A3=1.0、A4=320。在选择用于在H2提纯中清除N2(4区)的吸附剂中,仅仅需要限定X0KH的极限值和确定可能在H2气流中存在的最大量N2的上限N2分压。
如图2所示,在4区中,使用具有最高亨利定律常数的吸附剂制造H2的PSA工艺模拟提供最高的N2处理能力(即,需要最小的N2清除层)。当N2处理能力与N2等温线的亨利定律常数相关时,便显示出在310K和PN2=93.6mbar条件下图3中所示的线性相互关系。图3中的数据点来自图2中的吸附剂。测试的最大亨利定律常数出现在CaX(2.0),为2.38mmol/g bar。根据此数据确定了本发明的亨利定律常数范围。亨利定律常数>10如此强烈地保持吸附物以致脱附将需要较低的脱附压力和/或更高的脱附温度。结果是将系统的净化气体和需用功率增加到不可接受的程度。
在如下的实施例中进一步说明了此发明PSA工艺所要求的提高的H2回收率和较低的吸附剂用量。为了将使用此发明吸附剂的PSA工艺性能与现有技术相比,将使用图4所示的四床PSA系统。阀开关逻辑示于表2中,在表3-5中给出了该PSA工艺的细节。然而,应该注意:仅使用12步PSA循环来说明通过用床的2-4区的先进吸附剂代替(现有技术)吸附剂而获得的提高的PSA工艺性能。另外,也可以使用其它PSA循环来说明提高的PSA工艺性能而不偏离此发明的范围。
图4说明了将用于说明此发明提高的PSA工艺性能的四吸附剂床(B1、B2、B3和B4)及相关的阀和管道。参考图1和4,基于一个完全的PSA循环公开了此发明的一个实施方案,在表2和3中分别给出了PSA阀开关和步骤。并且,1区含氧化铝,2区含A201氧化铝和Takeda G2X活性炭各50%的混合物,3区含G2X活性炭,4区含CaX(2.0)。
步骤1(AD1):床1(B1)处于232psig下的第一吸附步骤(AD1),同时床2(B2)经受逆流泄料(BD),床3(B3)经受第一均衡化下降步骤(EQ1DN),床4(B4)经受第二压力均衡化上升步骤(EQ2UP)。
步骤2(AD2):床1处于第二吸附步骤(AD2),并且还向经受第一产物加压(PP1)步骤的床4提供产物气体。在相同的时间,床2、3和4分别经受清洗、并流减压和第一产物加压。
步骤3(AD3):床1处于第三吸附步骤(AD3),并且还向经受第二产物加压(PP2)步骤的床4提供产物气体。在相同的期间,床2、3和4分别经受第一均衡化上升步骤(EQ1UP)、第二均衡化下降(EQ2DN)和第二产物加压步骤(PP2)。
步骤4(EQ1DN):床1经受第一均衡化下降步骤(EQ1DN),同时床2接收来自床1的气体并经受第二均衡化上升步骤(EQ2UP)。床3和4现在分别经受泄料(BD)和第一吸附步骤(PP1)。
步骤5(PPG):床1经受并流减压步骤以向床3提供吹扫气体(PPG),同时床2和4分别经受第一产物加压(PP1)和第二吸附步骤(AD2)。
步骤6(EQ2DN):床1通过向经受第一均衡化上升(EQ1UP)步骤的床3输送低压均衡化气体而经受第二均衡化下降步骤(EQ2DN)。床2和4分别经受第二产物加压(PP2)和第三吸附步骤。
步骤7(BD):床1和2分别经受逆流泄料(BD)和第一吸附(AD1)步骤。在此时,床3和4经受床-床均衡化,即床3和4分别经受第二均衡化上升(Eq2UP)步骤和第一均衡化下降(EQ1DN)步骤。
步骤8或PG(时间单位340-425秒):现在,床1接收来自床4的吹扫气体(PG),床2和3分别经受第二吸附步骤和第一产物加压(PP1)步骤。
步骤9(EQ1UP):床1通过接收来自经受第二均衡化下降步骤(EQ2DN)的床4的低压均衡化气体而经受第一均衡化上升步骤(EQ1UP)。在相同的时间,床2和3分别经受第三吸附步骤(AD3)和第二产物加压(PP2)。
步骤10(EQ2UP):床1通过接收来自经受第一均衡化下降步骤(EQ1DN)的床2的高压均衡化气体而经受第二均衡化上升步骤(EQ2UP)。在相同的时间,床3和4分别经受第一吸附(AD1)步骤和逆流泄料步骤。
步骤11(PP1):床1接收来自也处于第二吸附步骤(AD2)的床3的第一产物加压(PP1)气体,同时床2经受并流减压步骤以向床4的提供吹扫气体(PPG)。
步骤12(PP2):床1接收来自也处于第三吸附步骤(AD3)的床3的第二产物加压(PP2)气体。在相同的时间,床2通过向经受第一均衡化上升(EQ1UP)步骤的床4输送低压均衡化气体而经受第二均衡化下降步骤(EQ2DN)。
在表2和3中给出了上述12个步骤的总结。特别是,表2基于图4所示的四床PSA工艺的一个完全循环总结了阀顺序,表3给出了在一个完全PSA循环过程中每个床的各个时间间隔和相应的状态。注意,根据表2和3,这四个床并行运转,并且在总循环时间的1/4期间,这些床中的一个处于吸附步骤,同时其它床经受压力均衡化、清洗、泄料或产物加压。
表2:四床H2PSA阀开关(O=开,C=关)
步骤 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
床1(BD1) | AD1 | AD2 | AD3 | EQ1DN | PPG | EQ2DN | BD | PG | EQ1UP | EQ2UP | PP1 | PP2 |
床2(BD2) | BD | PG | EQ1UP | EQ2UP | PP1 | PP2 | AD1 | AD2 | AD3 | EQ1DN | PPG | EQ2DN |
床3(BD3) | EQ1DN | PPG | EQ2DN | BD | PG | EQ1UP | EQ2UP | PP1 | PP2 | AD1 | AD2 | AD3 |
床4(BD4) | EQ2UP | PP1 | PP2 | AD1 | AD2 | AD3 | EQ1DN | PPG | EQ2DN | BD | PG | EQ1UP |
阀编号 | ||||||||||||
1 | O | O | O | C | C | C | C | C | C | C | C | C |
2 | C | C | C | C | C | C | O | O | O | C | C | C |
3 | C | C | C | C | C | C | C | C | C | O | O | O |
4 | C | C | C | O | O | O | C | C | C | C | C | C |
5 | O | O | C | O | O | C | O | O | C | O | O | C |
6 | C | C | C | C | C | C | O | O | C | C | C | C |
7 | O | O | C | C | C | C | C | C | C | C | C | C |
8 | C | C | C | O | O | C | C | C | C | C | C | C |
9 | C | C | C | C | C | C | C | C | C | O | O | C |
10 | C | O | O | C | O | O | C | O | O | C | O | O |
11 | O | O | O | C | C | C | C | C | C | C | C | C |
12 | C | C | C | C | C | C | O | O | O | C | C | C |
13 | C | C | C | C | C | C | C | C | C | O | O | O |
14 | C | C | C | O | O | O | C | C | C | C | C | C |
15 | C | C | C | C | O | O | C | O | O | C | C | C |
16 | C | O | O | C | C | C | C | C | C | C | O | O |
17 | C | O | O | C | O | O | C | C | C | C | C | C |
18 | C | C | C | C | C | C | C | O | O | C | O | O |
19 | C | C | C | O | C | C | C | C | C | O | O | O |
20 | C | C | C | O | O | O | C | C | C | O | C | C |
21 | O | C | C | C | C | C | O | O | O | C | C | C |
22 | O | O | O | C | C | C | O | C | C | C | C | C |
表3:PSA循环的时间间隔和步骤顺序
步骤号 | 时间间隔 | 1号床 | 2号床 | 3号床 | 4号床 |
1 | 0-4 | AD1 | BD | EQ1DN | EQ2UP |
2 | 4-8 | AD2/PP1 | PG | PPG | PP1 |
3 | 8-12 | AD3/PP2 | EQ1UP | EQ2DN | PP2 |
4 | 12-16 | EQ1DN | EQ2UP | BD | AD1 |
5 | 16-20 | PPG | PP1 | PG | AD2/PP1 |
6 | 20-24 | EQ2DN | PP2 | EQ1UP | AD3/PP2 |
7 | 24-28 | BD | AD1 | EQ2UP | EQ1DN |
8 | 28-32 | PG | AD2/PP1 | PP1 | PPG |
9 | 32-36 | EQ1UP | AD3/PP2 | PP2 | EQ2DN |
10 | 36-40 | EQ2UP | EQ1DN | AD1 | BD |
11 | 40-44 | PP1 | PPG | AD2/PP1 | PG |
12 | 44-48 | PP2 | EQ2DN | AD3/PP2 | EQ1UP |
AD1=第一吸附步骤
AD2/PP1=第二吸附步骤/第一产物加压
AD3/PP2=第三吸附步骤/第二产物加压
EQ1DN=第一均衡化下降
PPG=提供吹扫气体
EQ2DN=第二均衡化下降
BD=泄料
PG=吹扫
EQ1UP=第一均衡化上升
EQ2UP=第二均衡化上升
PP1=第一产物加压
PP2=第二产物加压
表4给出了在床中的1区中使用氧化铝、在2区中使用A201氧化铝和G2X活性炭各50%的混合物、在3区中使用G2X且在4区中使用CaX(2.0)的操作条件和PSA工艺性能的实施例。在下文中,将此实施例称为IV2。
表5给出了在床中的1区中使用氧化铝、在2区和3中使用堆积密度高(>38lb/ft3)的G2X活性炭且在第四个区中使用VSA6的操作条件和PSA工艺性能的实施例。在下文中,将此实施例称为IV1。
表6(现有技术)给出了在床中的1区中使用氧化铝、在2区和3中使用堆积密度低(<38lb/ft3)的活性炭且在第四个区中使用5A沸石的操作条件和PSA工艺性能的实施例。在下文中,将此实施例称为PA。
在这些表中,符号具有以下意义:TPD=吨(2000lb)氢气/天,kPa=1000Pa=压力的S.I.单位(1.0atm.=14.696psi=0.0磅/平方英寸=1.01325bars=101.325kPa),s=时间单位,秒。
表4(IV2):在床中的第一个区中使用氧化铝、在第二个区中使用50%氧化铝和G2X活性炭的混合物、在第三个区中使用G2X活性炭且在第四个区(顶部)中使用CaX(2.0)的四床PSA工艺性能(SMR进料)。如下所示的结果相应于使用75.83%H2、0.72%N2、3.35%CH4、2.96%CO和17.14%CO2的进料混合物的PSA工艺模型。吸附压力为232psig,解吸压力为4.4psig,在四床PSA循环中使用12个步骤(见表2和3)。下面给出了四床PSA工艺的更多细节。
循环时间(s):48秒
吸附剂(1区):氧化铝
堆积密度(氧化铝):49.0lb/ft3
氧化铝的数量:74.65lbm/TPD H2
吸附剂(2区):混合物(A201氧化铝和G2X各50%)
堆积密度:43lb/ft3
混合物的数量:110lbm/TPD H2
吸附剂(3区):Takeda G2X活性炭
堆积密度:39.0lb/ft3
G2X的数量:112lbm/TPD H2
吸附剂(4区):CaX(2.0)
堆积密度(CaX(2.0)):41.33lb/ft3
CaX(2.0)的数量:137.38lbm/TPD H2
高压:232psig
低压:4.4psig
温度:311K
进料速率:65,778SCFH
产物速率:42,000SCFH
总BSF 434.05lbm/TPD H2(SMR/IV2)
IV2对比PA下降100*(850.85-434.05)/850.85=49%BSF
H2纯度:99.99%
H2回收率84%(与PA相比,H2回收率高10.53%)
表5(IV1):在床中的第一个区中使用氧化铝、在2区和3区中使用堆积密度高(>38lbm/ft3)的G2X活性炭且在第四个区(顶部)中使用VSA6沸石的四床PSA工艺性能(SMR进料)。如下所示的结果相应于使用75.83%H2、0.72%N2、3.35%CH4、2.96%CO和17.14%CO2的进料混合物的PSA工艺模型。吸附压力为232psig,解吸压力为4.4psig,在四床PSA循环中使用12个步骤(见表2和3)。下面给出了6床PSA工艺的更多细节。
循环时间(s):48秒(每个步骤4.0秒)
吸附剂(1区):氧化铝
堆积密度(氧化铝):49.0lb/ft3
氧化铝的数量:78.26lbm/TPD H2
吸附剂(2区和3):Takeda G2X活性炭
堆积密度:39lb/ft3
G2X的数量:278.02lbm/TPD H2
吸附剂(4区):VSA6
堆积密度(VSA6):41.33lb/ft3
VSA6的数量:188.06lbm/TPD H2
高压:232psig
低压:4.4psig
温度:311K
进料速度:69,234SCFH
产物速率:42,000SCFH
总BSF 544.34lbm/TPD H2(SMR进料情况/IV1)
IV1对比PA下降100*(850.85-544.34)/850.85=36.02%BSF
H2纯度:99.98%
H2回收率80%(与PA相比,H2回收率高5.3%)
表6(现有技术,即PA):在图4的3层床和四床PSA工艺中使用氧化铝、活性炭和5A沸石的操作条件和PSA工艺性能的实施例。使用基于干基的进料混合物:75.83%H2、17.14%CO2、2.96%CO、3.35%CH4和0.72%N2,由PSA模拟结果获得如下所示的结果。并且,在该表中,总的床尺寸因数是每天制造1吨H2的吸附剂总数量。
循环时间(s)60
吸附剂(1区)氧化铝
氧化铝的数量(lb/TPD H2):122.32
吸附剂(2区和3):活性炭
活性炭的数量(lb/TPD H2):434.58
吸附剂(4区中):5A沸石
5A沸石的数量(lb/TPD H2):293.93
高压:232psig
低压:4.4
进料速率:72,025SCFH
产物速率:42,000SCFH
氢气纯度:99.9%
氢气回收率:76.9%
总的床尺寸因素(lb/TPD H2):851
温度:311K
应该认识到,相对于使用5A沸石的现有技术PSA工艺,上述实施例使用相似运作的PSA工艺条件来说明使用CaX(2.0)、VSA6和堆积密度高的活性炭所提高的性能。本领域普通技术人员可以容易地设计在PSA循环中使用或多或少吸附器的其它实施方案而不偏离此发明的范围。
图5比较了使用表4-6的PSA工艺、通过计算机模拟获得的PSA工艺性能。注意,在图5的上图中,对于大致相同的H2纯度(99.99%),使用5A沸石(PA)的H2回收率约为76%(表6)。通过使用此发明的吸附剂,H2回收率分别约为80%(表5,即IV1)和84%(表4,即IV2)。图5的下图说明了使用表4-6中各上述吸附剂和PSA工艺获得的总床尺寸因数(BSF,lb/TPD H2)。
图6说明了使用表4-6中各上述吸附剂和PSA工艺获得的总床尺寸因数(BSF,lb/TPD H2)。下图说明了相对于现有技术(PA),此发明(IV1和IV2)床尺寸因数减少的百分比。注意,IV1比现有技术(PA)降低35%,IV2的床尺寸因数相对于现有技术(PA)降低50%。IV2中床尺寸因数降低50%暗示相对于现有技术(PA)工艺,IV2仅需要一半的吸附剂用量。
也设想了本发明的变化。例如,可以用多层不同的吸附剂替换各床的区/层。例如,吸附剂层可以为复合吸附剂层所代替,该复合吸附剂层含位于分离区中的不同吸附剂材料,其中在各个区中,在合适的工艺条件下,温度条件有利于特定吸附材料的吸附性能。Notaro等人的美国专利US 5,674,311给出了关于复合吸附剂层设计的更多细节。
而且,考虑动态或速率效应可以实现提高的PSA工艺性能。特别是,通过在床的2-4区中使用更高速率的吸附剂可以改进选择用于这些区的吸附剂。并且,更高表面积/更高孔隙率的吸附剂和/或更小的颗粒将提供更高的吸附/脱附动力学。另外,在床的4区中,更高速率的材料如无粘合剂的LiX(2.0)将是合乎需要的。可以将此材料放入整个区(4区)中或4区的顶部。可以腐蚀消化(caustically digested)(c.d.)在床的4区中使用的吸附剂(例如,CaX)以产生具有不同吸附/脱附速率的吸附剂。并且,在本文中也可以使用更小的颗粒来提高速率。在此发明的实践中,在床的2-4区中优选的是直径为0.5-2.0毫米的吸附剂。
尽管相对于制造H2论述了上述PSA工艺,但是推荐的吸附剂也可以适用于其它的分离工艺。例子包括从天然气或低温源(例如,NRU/HRU)中回收氦、由合成气制造CO2,或以其它的PSA工艺中从含这些组分的各种混合物中制造H2和CO,或H2和CO2。另外,此发明的PSA工艺也可以与含额外杂质如氧和氩的含氢进气一起使用。
仅仅是为了方便,在一个或多个附图中说明了本发明的具体特点,因为可以将各个特点与根据本发明的其它特点结合。其它实施方案将为本领域普通技术人员想到,并意在包括在权利要求书的范围内。
Claims (11)
1.一种适用于变压吸附系统的吸附剂床,所述变压吸附系统用于净化含大于50摩尔%氢气和杂质的气流,所述杂质包括水、CO2、CH4、CO和N2,该吸附剂床包括:
a)选自硅胶、硅质岩、沸石和氧化铝的第一层,所述第一层适合于除去水;
b)活性炭和氧化铝或沸石和氧化铝的第二层,其中活性炭、氧化铝和沸石的至少一种具有32-46lb/ft3的堆积密度;
c)活性炭的第三层,所述活性炭的堆积密度为32-46lb/ft3;和
d)由N2亨利定律常数为1.5-10mmol/g·bar的吸附剂形成的第四层。
2.权利要求1的吸附剂床,其中所速第四层的吸附剂选自:VSA-6,KE-H650,KE-J407,CaX2.0,>86%锂的LiX2.0,和LiCaX2.0,其中2.0指的是SiO2/Al2O3比。
3.权利要求2的吸附剂床,其中所述>86%锂的LiX2.0是无粘合剂的>86%锂的LiX2.0。
4.权利要求1的吸附剂床,其中所述第二层含堆积密度为38-46lb/ft3的活性炭,并且其中第四层吸附剂具有2.3-10mmol/g·bar的N2亨利定律常数。
5.权利要求1的吸附剂床,其中在所述第二层中的沸石是X型沸石,并且其中所述吸附剂床用于氢气提纯。
6.一种用于净化含大于50摩尔%氢气和杂质的气流的变压吸附工艺,该杂质包括水、CO2、CH4、CO和N2,所述工艺包括使所述气流通过吸附剂的床,其中所述吸附剂的床含至少4层,选自硅胶、硅质岩、沸石和氧化铝的第一层,活性炭和氧化铝或沸石和氧化铝的第二层,活性炭的第三层和由N2亨利定律常数为1.5-10mmol/g·bar的吸附剂形成的第四层。
7.权利要求6的工艺,其中所述第二层中的活性炭具有38-46lb/ft3的堆积密度。
8.权利要求6的工艺,其中所述N2亨利定律常数为2.3-10mmol/g·bar。
9.权利要求6的工艺,其中所述第四层的吸附剂选自:VSA-6,KE-H650,KE-J407,CaX2.0,>86%锂的LiX2.0,和LiCaX2.0,其中2.0指的是SiO2/Al2O3比。
10.权利要求9的吸附剂床,其中所述>86%锂的LiX2.0是无粘合剂的>86%锂的LiX2.0。
11.权利要求6的工艺,其中所述第二层中的活性炭是堆积密度为32-46lb/ft3的浸渍活性炭。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US43631402P | 2002-12-24 | 2002-12-24 | |
US60/436,314 | 2002-12-24 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1758957A CN1758957A (zh) | 2006-04-12 |
CN100581645C true CN100581645C (zh) | 2010-01-20 |
Family
ID=32682374
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200380109953A Expired - Fee Related CN100581645C (zh) | 2002-12-24 | 2003-12-22 | 氢气提纯用工艺和装置 |
Country Status (7)
Country | Link |
---|---|
US (1) | US7537742B2 (zh) |
EP (1) | EP1590079B1 (zh) |
CN (1) | CN100581645C (zh) |
AU (1) | AU2003299775A1 (zh) |
CA (1) | CA2511660A1 (zh) |
ES (1) | ES2455992T3 (zh) |
WO (1) | WO2004058630A2 (zh) |
Families Citing this family (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2455992T3 (es) | 2002-12-24 | 2014-04-21 | Praxair Technology, Inc. | Procedimiento y aparato para la purificación de hidrógeno |
US7276107B2 (en) | 2003-12-23 | 2007-10-02 | Praxair Technology, Inc. | Indexing rotary dual valve for pressure swing adsorption systems |
US7399341B2 (en) * | 2005-04-26 | 2008-07-15 | Uop Llc | Gas purification process |
DE102006008194A1 (de) * | 2006-02-22 | 2007-08-23 | Linde Ag | Druckwechseladsorptionsverfahren und -vorrichtung |
US7695545B2 (en) | 2007-03-14 | 2010-04-13 | Air Products And Chemicals, Inc. | Adsorption process to recover hydrogen from feed gas mixtures having low hydrogen concentration |
NZ553992A (en) * | 2007-03-20 | 2008-10-31 | Flotech Holdings Ltd | Biogas treatments for increasing the methane concentration |
FR2913969B1 (fr) * | 2007-03-22 | 2010-02-19 | Air Liquide | Ecretement des pics d'impurete |
KR100896455B1 (ko) * | 2007-07-09 | 2009-05-14 | 한국에너지기술연구원 | 압력변동흡착장치 및 이를 이용한 수소 정제 방법 |
US7803215B2 (en) * | 2007-12-12 | 2010-09-28 | Uop Llc | Adsorber for pretreatment of natural gas containing bulk hydrogen sulfide |
JP5314408B2 (ja) * | 2008-03-06 | 2013-10-16 | 株式会社神戸製鋼所 | 高純度水素ガス製造用psa装置 |
CN101723325B (zh) * | 2008-10-29 | 2011-09-21 | 中国石油化工股份有限公司 | 一种低浓度氢气回收方法 |
US8016914B2 (en) | 2009-03-25 | 2011-09-13 | Praxair Technology, Inc. | Adsorption control method and controller |
WO2011025091A1 (ko) * | 2009-08-27 | 2011-03-03 | 주식회사 케이씨씨 | 고순도의 수소 정제 방법 |
US8388736B2 (en) * | 2009-10-02 | 2013-03-05 | Perkinelmer Health Sciences, Inc. | Sorbent devices and methods of using them |
EP2316792A1 (en) * | 2009-10-27 | 2011-05-04 | Ammonia Casale S.A. | Ammonia production process |
US8241401B2 (en) * | 2010-11-02 | 2012-08-14 | Mitsubishi Polycrystalline Silicon America Corporation (MIPSA) | Apparatus and method for producing purified hydrogen gas by a pressure swing adsorption processes |
US8496733B2 (en) | 2011-01-11 | 2013-07-30 | Praxair Technology, Inc. | Large scale pressure swing adsorption systems having process cycles operating in normal and turndown modes |
US8491704B2 (en) | 2011-01-11 | 2013-07-23 | Praxair Technology, Inc. | Six bed pressure swing adsorption process operating in normal and turndown modes |
US8435328B2 (en) | 2011-01-11 | 2013-05-07 | Praxair Technology, Inc. | Ten bed pressure swing adsorption process operating in normal and turndown modes |
US8551217B2 (en) | 2011-01-11 | 2013-10-08 | Praxair Technology, Inc. | Six bed pressure swing adsorption process operating in normal and turndown modes |
CN103373707B (zh) * | 2012-04-18 | 2015-05-20 | 扬光绿能股份有限公司 | 氢气纯化装置 |
FR3005873B1 (fr) | 2013-05-27 | 2015-05-15 | Air Liquide | Unite de purification avec adsorbeur multi-lits |
CA2859254A1 (en) * | 2013-08-13 | 2015-02-13 | James M. Tour | Low cost carbon materials for the capture of co2 and h2s from various environments |
EP2823872A3 (en) | 2014-09-11 | 2015-05-06 | Air Products And Chemicals, Inc. | Pressure swing adsorption process |
US9381460B2 (en) | 2014-09-11 | 2016-07-05 | Air Products And Chemicals, Inc. | Pressure swing adsorption process |
US10232342B2 (en) | 2015-07-01 | 2019-03-19 | William Marsh Rice University | Method, synthesis, activation procedure and characterization of an oxygen rich activated porous carbon sorbent for selective removal of carbon dioxide with ultra high capacity |
EP3349878B1 (en) | 2015-09-16 | 2023-11-08 | Uop Llc | Pressure swing adsorption process and apparatus for purifying a hydrogen-containing gas stream |
WO2018026517A1 (en) * | 2016-08-04 | 2018-02-08 | Exxonmobil Research And Engineering Company | Increasing scales, capacities, and/or efficiencies in swing adsorption processes with hydrocarbon gas feeds |
JP6979023B2 (ja) * | 2016-09-26 | 2021-12-08 | 住友精化株式会社 | 水素またはヘリウムの精製方法、および水素またはヘリウムの精製装置 |
CN109748242B (zh) * | 2017-11-03 | 2022-09-16 | 中国科学院大连化学物理研究所 | 一种用于氢气高效提纯的吸附剂 |
KR101987804B1 (ko) * | 2017-11-17 | 2019-06-12 | 한국에너지기술연구원 | 압력순환흡착방법 및 압력순환흡착장치 |
US10882744B2 (en) * | 2018-11-15 | 2021-01-05 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Purification of hydrogen |
US11731075B2 (en) * | 2020-08-10 | 2023-08-22 | Praxair Technology, Inc. | High recovery process for purification of multicomponent gases |
US11571652B2 (en) | 2021-06-22 | 2023-02-07 | Praxair Technology, Inc. | Method of purifying hydrogen supplied from a storage cavern |
KR102667696B1 (ko) * | 2021-12-31 | 2024-05-22 | 한국에너지기술연구원 | 암모니아 분해가스로부터 수소 정제용 압력변동흡착장치 및 이를 이용한 수소 정제 방법 |
US11904297B1 (en) | 2023-01-11 | 2024-02-20 | Iliad Ip Company, Llc | Process for manufacturing lithium selective adsorption/separation media |
US20240390835A1 (en) * | 2023-05-22 | 2024-11-28 | Air Products And Chemicals, Inc. | Hydrogen Purification By Adsorption |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4176090A (en) * | 1975-11-18 | 1979-11-27 | W. R. Grace & Co. | Pillared interlayered clay materials useful as catalysts and sorbents |
US5174979A (en) * | 1989-10-06 | 1992-12-29 | Uop | Mixed ion-exchanged zeolites and processes for the use thereof in gas separations |
CN1156061A (zh) * | 1995-10-20 | 1997-08-06 | 普拉塞尔技术有限公司 | 使用多层吸附床的改进的吸附方法和系统 |
US5856264A (en) * | 1994-05-04 | 1999-01-05 | Uop | Adsorbent for use in double glazed windows |
CN1221643A (zh) * | 1997-12-09 | 1999-07-07 | 普拉塞尔技术有限公司 | 变压吸附方法和系统 |
CN1239011A (zh) * | 1998-06-12 | 1999-12-22 | 普拉塞尔技术有限公司 | 使用吸附剂混合物的psa设备和方法 |
US6027549A (en) * | 1998-04-28 | 2000-02-22 | Air Products And Chemicals, Inc. | Adjusted density carbon for hydrogen PSA |
US6302943B1 (en) * | 1999-11-02 | 2001-10-16 | Air Products And Chemicals, Inc. | Optimum adsorbents for H2 recovery by pressure and vacuum swing absorption |
CN1355131A (zh) * | 2000-12-01 | 2002-06-26 | 四川天一科技股份有限公司 | 从焦炉煤气中提纯氢气的方法 |
US20020183201A1 (en) * | 2001-05-01 | 2002-12-05 | Barnwell James W. | Adsorbents for use in regenerable adsorbent fractionators and methods of making the same |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3430418A (en) | 1967-08-09 | 1969-03-04 | Union Carbide Corp | Selective adsorption process |
US3564816A (en) | 1968-12-30 | 1971-02-23 | Union Carbide Corp | Selective adsorption process |
US4077779A (en) | 1976-10-15 | 1978-03-07 | Air Products And Chemicals, Inc. | Hydrogen purification by selective adsorption |
US4499208A (en) | 1983-05-13 | 1985-02-12 | Union Carbide Corporation | Activated carbon adsorbent with increased heat capacity and the production thereof |
US4553981A (en) | 1984-02-07 | 1985-11-19 | Union Carbide Corporation | Enhanced hydrogen recovery from effluent gas streams |
US4859217A (en) | 1987-06-30 | 1989-08-22 | Uop | Process for separating nitrogen from mixtures thereof with less polar substances |
US4957514A (en) | 1989-02-07 | 1990-09-18 | Air Products And Chemicals, Inc. | Hydrogen purification |
US5152975A (en) | 1991-03-15 | 1992-10-06 | Texaco Inc. | Process for producing high purity hydrogen |
CA2100811C (en) | 1992-08-19 | 1999-01-19 | Akhilesh Kapoor | Hydrogen and carbon monoxide production by partial oxidation of hydrocarbon feed |
US5454857A (en) | 1994-03-18 | 1995-10-03 | Uop | Air separation process |
US5698013A (en) | 1994-03-18 | 1997-12-16 | Uop | Nitrogen-selective zeolitic adsorbent for use in air separation process |
FR2749004B1 (fr) | 1996-05-24 | 1998-07-10 | Air Liquide | Procede pour la purification de melanges gazeux a base d'hydrogene utilisant une zeolithe x echangee au lithium |
US6152991A (en) | 1997-04-17 | 2000-11-28 | Praxair Technology, Inc. | Multilayer adsorbent beds for PSA gas separation |
US6007606A (en) | 1997-12-09 | 1999-12-28 | Praxair Technology, Inc. | PSA process and system |
US6197092B1 (en) | 1999-03-22 | 2001-03-06 | Engelhard Corporation | Selective removal of nitrogen from natural gas by pressure swing adsorption |
US6340382B1 (en) | 1999-08-13 | 2002-01-22 | Mohamed Safdar Allie Baksh | Pressure swing adsorption process for the production of hydrogen |
FR2804042B1 (fr) * | 2000-01-25 | 2002-07-12 | Air Liquide | Procede de purification d'un gaz par adsorption des impuretes sur plusieurs charbons actifs |
DE60129626T2 (de) | 2000-04-20 | 2008-05-21 | Tosoh Corp., Shinnanyo | Verfahren zum Reinigen von einem Wasserstoff enthaltenden Gasgemisch |
ES2455992T3 (es) | 2002-12-24 | 2014-04-21 | Praxair Technology, Inc. | Procedimiento y aparato para la purificación de hidrógeno |
-
2003
- 2003-12-22 ES ES03800049.3T patent/ES2455992T3/es not_active Expired - Lifetime
- 2003-12-22 CA CA002511660A patent/CA2511660A1/en not_active Abandoned
- 2003-12-22 US US10/540,506 patent/US7537742B2/en active Active
- 2003-12-22 EP EP03800049.3A patent/EP1590079B1/en not_active Expired - Lifetime
- 2003-12-22 AU AU2003299775A patent/AU2003299775A1/en not_active Abandoned
- 2003-12-22 WO PCT/US2003/040797 patent/WO2004058630A2/en not_active Application Discontinuation
- 2003-12-22 CN CN200380109953A patent/CN100581645C/zh not_active Expired - Fee Related
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4176090A (en) * | 1975-11-18 | 1979-11-27 | W. R. Grace & Co. | Pillared interlayered clay materials useful as catalysts and sorbents |
US5174979A (en) * | 1989-10-06 | 1992-12-29 | Uop | Mixed ion-exchanged zeolites and processes for the use thereof in gas separations |
US5856264A (en) * | 1994-05-04 | 1999-01-05 | Uop | Adsorbent for use in double glazed windows |
CN1156061A (zh) * | 1995-10-20 | 1997-08-06 | 普拉塞尔技术有限公司 | 使用多层吸附床的改进的吸附方法和系统 |
CN1221643A (zh) * | 1997-12-09 | 1999-07-07 | 普拉塞尔技术有限公司 | 变压吸附方法和系统 |
US6027549A (en) * | 1998-04-28 | 2000-02-22 | Air Products And Chemicals, Inc. | Adjusted density carbon for hydrogen PSA |
CN1239011A (zh) * | 1998-06-12 | 1999-12-22 | 普拉塞尔技术有限公司 | 使用吸附剂混合物的psa设备和方法 |
US6302943B1 (en) * | 1999-11-02 | 2001-10-16 | Air Products And Chemicals, Inc. | Optimum adsorbents for H2 recovery by pressure and vacuum swing absorption |
CN1355131A (zh) * | 2000-12-01 | 2002-06-26 | 四川天一科技股份有限公司 | 从焦炉煤气中提纯氢气的方法 |
US20020183201A1 (en) * | 2001-05-01 | 2002-12-05 | Barnwell James W. | Adsorbents for use in regenerable adsorbent fractionators and methods of making the same |
Non-Patent Citations (2)
Title |
---|
变压吸附制氢过程吸附剂性能. 施帆,邹筠,马正飞,姚虎卿.南京化工大学学报,第19卷第3期. 1997 |
变压吸附制氢过程吸附剂性能. 施帆,邹筠,马正飞,姚虎卿.南京化工大学学报,第19卷第3期. 1997 * |
Also Published As
Publication number | Publication date |
---|---|
EP1590079B1 (en) | 2014-03-26 |
CA2511660A1 (en) | 2004-07-15 |
US20060254425A1 (en) | 2006-11-16 |
AU2003299775A1 (en) | 2004-07-22 |
WO2004058630A2 (en) | 2004-07-15 |
EP1590079A2 (en) | 2005-11-02 |
CN1758957A (zh) | 2006-04-12 |
ES2455992T3 (es) | 2014-04-21 |
WO2004058630A3 (en) | 2005-01-27 |
EP1590079A4 (en) | 2008-04-09 |
US7537742B2 (en) | 2009-05-26 |
AU2003299775A8 (en) | 2004-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100581645C (zh) | 氢气提纯用工艺和装置 | |
CN100360394C (zh) | 用于制氢的变压吸附方法 | |
CN1307087C (zh) | 合成气的纯化方法 | |
JP4128695B2 (ja) | 吸着剤混合物を使用するpsa装置及び方法 | |
CA2567195C (en) | Continuous feed three-bed pressure swing adsorption system | |
EP0769320B1 (en) | Process for selecting adsorbent materials | |
JP3699822B2 (ja) | Psaガス分離のための多層吸着床 | |
CN1917952B (zh) | 通过用聚集的沸石吸附剂吸附来提纯被co2和一种或多种烃类和/或氮氧化物的污染的气流的方法 | |
EP1097902A1 (en) | Pressure swing adsorption process for the production of hydrogen | |
US6302943B1 (en) | Optimum adsorbents for H2 recovery by pressure and vacuum swing absorption | |
CN110813022A (zh) | 多床快速循环动力学psa | |
EP1894611A1 (en) | Gas purification apparatus and method for gas purification |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100120 Termination date: 20201222 |
|
CF01 | Termination of patent right due to non-payment of annual fee |