CN100573916C - Thin-film transistor and manufacture method thereof and display base plate with this thin-film transistor - Google Patents
Thin-film transistor and manufacture method thereof and display base plate with this thin-film transistor Download PDFInfo
- Publication number
- CN100573916C CN100573916C CNB2006101498787A CN200610149878A CN100573916C CN 100573916 C CN100573916 C CN 100573916C CN B2006101498787 A CNB2006101498787 A CN B2006101498787A CN 200610149878 A CN200610149878 A CN 200610149878A CN 100573916 C CN100573916 C CN 100573916C
- Authority
- CN
- China
- Prior art keywords
- semiconductor pattern
- diffusion
- drain
- source
- region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/6704—Thin-film transistors [TFT] having supplementary regions or layers in the thin films or in the insulated bulk substrates for controlling properties of the device
- H10D30/6713—Thin-film transistors [TFT] having supplementary regions or layers in the thin films or in the insulated bulk substrates for controlling properties of the device characterised by the properties of the source or drain regions, e.g. compositions or sectional shapes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/031—Manufacture or treatment of FETs having insulated gates [IGFET] of thin-film transistors [TFT]
- H10D30/0312—Manufacture or treatment of FETs having insulated gates [IGFET] of thin-film transistors [TFT] characterised by the gate electrodes
- H10D30/0314—Manufacture or treatment of FETs having insulated gates [IGFET] of thin-film transistors [TFT] characterised by the gate electrodes of lateral top-gate TFTs comprising only a single gate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/6729—Thin-film transistors [TFT] characterised by the electrodes
- H10D30/673—Thin-film transistors [TFT] characterised by the electrodes characterised by the shapes, relative sizes or dispositions of the gate electrodes
- H10D30/6731—Top-gate only TFTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/6729—Thin-film transistors [TFT] characterised by the electrodes
- H10D30/6737—Thin-film transistors [TFT] characterised by the electrodes characterised by the electrode materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/6757—Thin-film transistors [TFT] characterised by the structure of the channel, e.g. transverse or longitudinal shape or doping profile
Landscapes
- Thin Film Transistor (AREA)
- Liquid Crystal (AREA)
- Optical Filters (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
本申请要求2006年5月15日提交的韩国专利申请第43247/2006号和2006年9月14日提交的韩国专利申请第88989/2006的优先权,并在此引用其全文作为参考。This application claims the benefit of Korean Patent Application No. 43247/2006 filed on May 15, 2006 and Korean Patent Application No. 88989/2006 filed on September 14, 2006, the entire contents of which are incorporated herein by reference.
技术领域 technical field
本发明涉及一种薄膜晶体管及其制造方法和具有该薄膜晶体管的显示基板。The invention relates to a thin film transistor, its manufacturing method and a display substrate with the thin film transistor.
背景技术 Background technique
随着半导体器件如薄膜晶体管(TFT)的发展,可在短时间内处理更多的数据的信息处理器件也得以发展。用于显示已处理数据的显示器件也在快速发展。With the development of semiconductor devices such as thin film transistors (TFTs), information processing devices that can process more data in a short time have also been developed. Display devices for displaying processed data are also developing rapidly.
显示器件的例子包括液晶显示器件(LCD)、有机发光器件(OLED)和等离子体显示面板(PDP)。Examples of display devices include liquid crystal display devices (LCDs), organic light emitting devices (OLEDs), and plasma display panels (PDPs).
通常显示器件包括TFT以显示全色图像。尤其地,最近已引入具有低温多晶硅(LTPS)TFT的显示器件。Typically display devices include TFTs to display full color images. In particular, display devices having low temperature polysilicon (LTPS) TFTs have recently been introduced.
在LTP技术中,用于有源矩阵显示器件的TFT的沟道层由比非晶硅具有更高电子迁移率的多晶硅形成。同样,由于用于控制显示器件的驱动电路可以直接形成在显示基板上,因此不需要在显示面板周围排列独立的驱动集成电路。因此,与使用非晶硅的显示器件相比部件的数目减少。LTP的制造技术可以提供具有高耐用性、薄外观、高亮度和低能耗特征的显示器件。In the LTP technology, a channel layer of a TFT used for an active matrix display device is formed of polysilicon having higher electron mobility than amorphous silicon. Also, since the driving circuit for controlling the display device can be directly formed on the display substrate, there is no need to arrange separate driving integrated circuits around the display panel. Therefore, the number of components is reduced compared to a display device using amorphous silicon. LTP's manufacturing technology can provide display devices featuring high durability, thin profile, high brightness and low power consumption.
在LTPS TFT中,多晶硅图案直接形成在显示面板上,以及栅极在多晶硅图案上形成。源极和漏极在多晶硅图案上形成。接触孔在多晶硅图案和栅极之间的绝缘层上形成。源极和漏极通过接触孔电连接到多晶硅图案。In LTPS TFTs, polysilicon patterns are formed directly on the display panel, and gate electrodes are formed on the polysilicon patterns. Source and drain electrodes are formed on the polysilicon pattern. Contact holes are formed on the insulating layer between the polysilicon pattern and the gate. The source and drain are electrically connected to the polysilicon pattern through the contact holes.
然而,源极和漏极的金属离子从源极和漏极扩散到多晶硅图案。尤其,在基板上形成钝化层之后,在该钝化层执行退火工序用于去除钝化层内的氢。在该工序中,由于退火工序的温度大约是200℃到400℃,源极和漏极的金属离子或原子从源极和漏极扩散到多晶硅图案。从而,通过金属离子的扩散多晶硅图案的长度逐渐缩减。在这种情况下,TFT的性能急剧退化且也降低了由显示器件产生的显示质量。However, the metal ions of the source and the drain diffuse from the source and the drain to the polysilicon pattern. In particular, after the passivation layer is formed on the substrate, an annealing process is performed on the passivation layer for removing hydrogen in the passivation layer. In this process, since the temperature of the annealing process is about 200° C. to 400° C., metal ions or atoms of the source and drain electrodes diffuse from the source and drain electrodes to the polysilicon pattern. Thus, the length of the polysilicon pattern is gradually reduced by the diffusion of metal ions. In this case, the performance of the TFT is drastically degraded and also reduces the display quality produced by the display device.
发明内容 Contents of the invention
依照本发明的一实施方式,如这里具体和广义所描述的,本发明提供包括设置在基板上的半导体图案的薄膜晶体管。该半导体图案包含具有导电或绝缘特征的半导体图案部分,和接近半导体图案部分的一侧且用于防止金属离子沿半导体图案部分扩散的防扩散部分。第一绝缘层覆盖半导体图案且具有暴露半导体图案部分的第一区域的第一接触孔。第二接触孔暴露半导体图案部分的第二区域。栅极位于第一绝缘层上并且第二绝缘层覆盖该栅极。第二绝缘层具有暴露第一区域的第三接触孔和暴露第二区域的第四接触孔。源极叠在第二绝缘层并且连接到第一区域,漏极叠在第二绝缘层并且连接到第二区域。According to one embodiment of the present invention, as described herein with specificity and broadness, there is provided a thin film transistor comprising a semiconductor pattern disposed on a substrate. The semiconductor pattern includes a semiconductor pattern portion having conductive or insulating features, and an anti-diffusion portion close to one side of the semiconductor pattern portion and used to prevent metal ions from diffusing along the semiconductor pattern portion. The first insulating layer covers the semiconductor pattern and has a first contact hole exposing a first region of a portion of the semiconductor pattern. The second contact hole exposes a second region of the semiconductor pattern portion. The gate is on the first insulating layer and the second insulating layer covers the gate. The second insulating layer has a third contact hole exposing the first region and a fourth contact hole exposing the second region. The source is stacked on the second insulating layer and connected to the first region, and the drain is stacked on the second insulating layer and connected to the second region.
依照本发明的另一方案,本发明提供一种制造薄膜晶体管的方法,包括在基板上形成半导体层和构图半导体层以形成半导体图案。半导体图案包含具有导电或绝缘特征的半导体图案部分,在该半导体图案部分中形成防扩散部分以防止金属离子通过半导体图案部分扩散。形成第一绝缘层以覆盖半导体图案而栅极形成在第一绝缘层上且与半导体图案隔开。形成第二绝缘层以覆盖栅极。构图第一和第二绝缘层以形成第一绝缘层图案和第二绝缘层图案,第一和第二绝缘层图案具有暴露半导体图案部分的第一和第二区域的接触孔。源极和漏极形成在第二绝缘层图案上,其中源极与第一区域接触而漏极与第二区域接触。According to another aspect of the present invention, the present invention provides a method for manufacturing a thin film transistor, including forming a semiconductor layer on a substrate and patterning the semiconductor layer to form a semiconductor pattern. The semiconductor pattern includes a semiconductor pattern portion having conductive or insulating characteristics in which a diffusion preventing portion is formed to prevent metal ions from diffusing through the semiconductor pattern portion. A first insulating layer is formed to cover the semiconductor pattern and a gate is formed on the first insulating layer and spaced apart from the semiconductor pattern. A second insulating layer is formed to cover the gate. The first and second insulating layers are patterned to form a first insulating layer pattern and a second insulating layer pattern having contact holes exposing first and second regions of the semiconductor pattern portion. A source and a drain are formed on the second insulating layer pattern, wherein the source contacts the first region and the drain contacts the second region.
依照本发明的又一方案,本发明提供包括第一基板和在该第一基板上的薄膜晶体管的显示基板。该薄膜晶体管包含具有导电或绝缘特征的半导体图案部分,和与半导体图案部分隔开的栅极。源极与半导体图案部分的第一区域电接触,及漏极与半导体图案部分的第二区域电接触。防扩散部分沿基板从半导体图案部分的一侧突出,并且配置为防止金属离子从源极和漏极朝半导体图案部分的中心扩散。According to still another aspect of the present invention, the present invention provides a display substrate comprising a first substrate and a thin film transistor on the first substrate. The thin film transistor includes a semiconductor pattern portion having conductive or insulating features, and a gate electrode separated from the semiconductor pattern portion. The source is in electrical contact with the first region of the semiconductor pattern portion, and the drain is in electrical contact with the second region of the semiconductor pattern portion. The diffusion preventing portion protrudes from one side of the semiconductor pattern portion along the substrate, and is configured to prevent metal ions from diffusing from the source and the drain toward the center of the semiconductor pattern portion.
依照本发明的再一方案,本发明提供一种薄膜晶体管,其包括设置在基板上并具有通过沟道区域隔开的源极区域和漏极区域的半导体图案。防扩散结构邻近半导体图案。栅极与沟道区域隔开并且通过第一绝缘层分开。第二绝缘层覆盖栅极,源极叠在第二绝缘层上并与源极区域接触。漏极叠在第二绝缘层之上,并与漏极区域接触。防扩散结构配置为用于将从源极和漏极扩散的金属离子引导向远离沟道区域。According to still another aspect of the present invention, the present invention provides a thin film transistor including a semiconductor pattern disposed on a substrate and having a source region and a drain region separated by a channel region. The anti-diffusion structure is adjacent to the semiconductor pattern. The gate is spaced apart from the channel region and separated by a first insulating layer. The second insulating layer covers the gate, and the source is stacked on the second insulating layer and is in contact with the source region. The drain is stacked on the second insulating layer and is in contact with the drain region. The diffusion prevention structure is configured to direct metal ions diffused from the source and drain away from the channel region.
应当理解本发明的前述的一般性描述和以下的详细描述都是示意性和解释性的,意欲提供对本发明权利要求的进一步解释。It is to be understood that both the foregoing general description and the following detailed description of the present invention are schematic and explanatory and are intended to provide further explanation of the invention as claimed.
附图说明 Description of drawings
本申请所包括的附图提供对本发明的进一步理解,并且结合在本申请中构成说明书一部分,示出了本发明的具体实施例并与说明一起解释本发明的原理。在附图中:The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate specific embodiments of the invention and together with the description explain the principle of the invention. In the attached picture:
图1是依照本发明实施方式的TFT的平面图;1 is a plan view of a TFT according to an embodiment of the present invention;
图2是沿图1中线I-I’提取的截面图;Fig. 2 is a sectional view extracted along line I-I ' in Fig. 1;
图3A是依照一实施方式示出图2中的半导体图案部分中金属离子扩散路径的平面图;3A is a plan view showing metal ion diffusion paths in the semiconductor pattern portion in FIG. 2 according to an embodiment;
图3B是依照另一实施方式示出图2中的半导体图案部分中金属离子扩散路径的平面图;3B is a plan view showing metal ion diffusion paths in the semiconductor pattern portion in FIG. 2 according to another embodiment;
图4是依照本发明的一实施方式通过制造TFT的方法形成的半导体层的平面图;4 is a plan view of a semiconductor layer formed by a method of manufacturing a TFT according to an embodiment of the present invention;
图5是沿图4中的线II-II’提取的截面图;Fig. 5 is a sectional view taken along line II-II' in Fig. 4;
图6是示出构图后的多晶硅层的平面图;6 is a plan view illustrating a patterned polysilicon layer;
图7是沿图6中的线III-III’提取的截面图;Fig. 7 is a sectional view taken along line III-III' in Fig. 6;
图8是覆盖图7中的半导体图案的第一绝缘层的截面图;8 is a cross-sectional view of a first insulating layer covering the semiconductor pattern in FIG. 7;
图9是覆盖图8中的半导体图案的第二绝缘层和层间绝缘层的截面图;9 is a cross-sectional view of a second insulating layer and an interlayer insulating layer covering the semiconductor pattern in FIG. 8;
图10是通过构图层间绝缘层、第二绝缘层和第一绝缘层形成的层间绝缘层图案、第二绝缘层图案和第一绝缘层图案的截面图;10 is a cross-sectional view of an insulating interlayer pattern, a second insulating layer pattern, and a first insulating layer pattern formed by patterning an insulating interlayer, a second insulating layer, and a first insulating layer;
图11是在图10的层间绝缘层图案上形成的源极和漏极的截面图;11 is a cross-sectional view of source and drain electrodes formed on the interlayer insulating layer pattern of FIG. 10;
图12是依照本发明的一实施方式的显示器件的截面图;以及12 is a cross-sectional view of a display device according to an embodiment of the present invention; and
图13是依照本发明的另一实施方式的显示器件的截面图。FIG. 13 is a cross-sectional view of a display device according to another embodiment of the present invention.
在图中,为了清楚,放大了半导体图案、第一绝缘层、栅极、第二绝缘层、源极、漏极和其它结构的厚度。In the drawings, the thicknesses of semiconductor patterns, first insulating layers, gates, second insulating layers, sources, drains, and other structures are exaggerated for clarity.
具体实施方式 Detailed ways
在此用到,当提到一层在另一层或基板“上”时,它可能是直接在其它层或基板上方,或者也可能存在插入层。当半导体图案、第一绝缘层、栅极、第二绝缘层、源极、漏极和其它结构称为“第一”、“第二”、“第三”和/或“第四”时,它们不能理解为对这些构件的限制,而用于区别半导体图案、第一绝缘层、栅极、第二绝缘层、源极、漏极和其它结构。因此,术语“第一”、“第二”、“第三”和“第四”相对于半导体图案、第一绝缘层、栅极、第二绝缘层、源极、漏极和其它结构是可选择性地或者互换的。As used herein, when a layer is referred to as being "on" another layer or substrate, it can be directly on the other layer or substrate, or intervening layers may also be present. When the semiconductor pattern, first insulating layer, gate, second insulating layer, source, drain and other structures are referred to as "first", "second", "third" and/or "fourth", They should not be understood as limitations on these members, but are used to distinguish semiconductor patterns, first insulating layers, gate electrodes, second insulating layers, source electrodes, drain electrodes, and other structures. Therefore, the terms "first", "second", "third" and "fourth" are interchangeable with respect to semiconductor patterns, first insulating layers, gates, second insulating layers, sources, drains and other structures. alternatively or interchangeably.
薄膜晶体管thin film transistor
图1是依照本发明的实施方式的TFT的平面图,图2是沿图1中线I-I’提取的截面图。1 is a plan view of a TFT according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along line I-I' in FIG. 1 .
参照图1和图2,TFT TR包括形成在基板S上的半导体图案SP、第一绝缘层图案FILP、栅极GE、第二绝缘层SILP、源极SE和漏极DE。1 and 2, the TFT TR includes a semiconductor pattern SP formed on a substrate S, a first insulating layer pattern FILP, a gate GE, a second insulating layer SILP, a source SE and a drain DE.
半导体图案SP设置在基板S上。在该实施方式中,半导体图案SP包括多晶硅。通常在平面图中半导体图案SP可具有亚铃状形状。The semiconductor pattern SP is disposed on the substrate S. As shown in FIG. In this embodiment, the semiconductor pattern SP includes polysilicon. Generally, the semiconductor pattern SP may have a sub-bell shape in a plan view.
例如,亚铃状半导体图案SP包括半导体图案部分SPP和防扩散部分EP。For example, the sub-bell-shaped semiconductor pattern SP includes a semiconductor pattern part SPP and an anti-diffusion part EP.
在该实施方式中,依照外部电压的施加/切断,半导体图案部分SPP具有导电或绝缘特性。尤其地,半导体图案部分SPP包括第一区域FR、第二区域SR和沟道部分CP。第一区域FR和第二区域SR分别对应源极SE和漏极DE。In this embodiment, the semiconductor pattern part SPP has conductive or insulating properties according to the application/cut-off of the external voltage. In particular, the semiconductor pattern part SPP includes a first region FR, a second region SR, and a channel part CP. The first region FR and the second region SR correspond to the source SE and the drain DE, respectively.
在平面图中,第一区域FR设置在半导体图案部分SPP的第一端而第二区域SR设置在与第一端相对的第二端。在半导体图案部分SPP的第一区域FR和第二区域SR掺杂入N型或P型杂质,从而提供导电特性。In a plan view, the first region FR is disposed at a first end of the semiconductor pattern part SPP and the second region SR is disposed at a second end opposite to the first end. N-type or P-type impurities are doped into the first region FR and the second region SR of the semiconductor pattern portion SPP, thereby providing conductive characteristics.
另外,在第一区域FR和第二区域SR之间夹入沟道部分CP。根据外部电压的施加/切断,沟道部分CP具有导电或绝缘特性。In addition, the channel portion CP is sandwiched between the first region FR and the second region SR. The channel part CP has conductive or insulating properties according to application/cutoff of an external voltage.
防扩散部分EP从半导体图案部分SPP突出或延伸。防扩散部分EP防止来自金属离子从源极SE和漏极DE扩散到半导体图案部分SPP的沟道部分CP。源极SE和漏极DE与半导体图案部分SPP的第一区域FR和第二区域SR电连接。The diffusion prevention part EP protrudes or extends from the semiconductor pattern part SPP. The diffusion prevention part EP prevents diffusion of metal ions from the source SE and the drain DE to the channel part CP of the semiconductor pattern part SPP. The source SE and the drain DE are electrically connected to the first region FR and the second region SR of the semiconductor pattern part SPP.
图3A是依照一实施方式示出在图2半导体图案部分中金属离子扩散路径的平面图。FIG. 3A is a plan view illustrating metal ion diffusion paths in the semiconductor pattern portion of FIG. 2 according to an embodiment.
参照图3A,半导体图案部分SPP的第一区域FR分别对应源极SE和漏极DE。Referring to FIG. 3A , the first regions FR of the semiconductor pattern part SPP correspond to the source SE and the drain DE, respectively.
当第一区域FR和第二区域SR分别连接到源极SE和漏极DE时,来自源极SE和漏极DE的金属离子主要从第一区域FR和第二区域SR向沟道部分CP扩散。在这点,因为第一区域FR和第二区域SR具有导电特性,所以即使金属离子从源极SE和漏极DE向第一和第二区域FR和SR扩散,也不会影响第一和第二区域FR和SR的电特性。即,第一和第二区域FR和SR持续保持它们的导电特性。When the first region FR and the second region SR are respectively connected to the source SE and the drain DE, metal ions from the source SE and the drain DE are mainly diffused from the first region FR and the second region SR to the channel portion CP . At this point, since the first region FR and the second region SR have conductive characteristics, even if metal ions diffuse from the source electrode SE and the drain electrode DE to the first and second regions FR and SR, it will not affect the first and second regions FR and SR. Electrical properties of two regions FR and SR. That is, the first and second regions FR and SR continuously maintain their conductive properties.
另一方面,当来自源极SE和漏极DE的金属离子经过第一区域FR和第二区域SR并在随后扩散到沟道部分CP时,沟道部分CP的长度减小。而且,由于来自源极SE和漏极DE的金属离子的扩散,沟道部分CP可能失去半导体特性。On the other hand, when metal ions from the source SE and the drain DE pass through the first region FR and the second region SR and then diffuse to the channel portion CP, the length of the channel portion CP decreases. Also, the channel portion CP may lose semiconductor characteristics due to the diffusion of metal ions from the source SE and the drain DE.
依照本发明的另一技术方案,可以通过向防扩散部分EP扩散一些金属离子减少移向沟道部分CP的金属离子。为了这个目的,可形成防扩散部分EP以沿半导体图案部分SPP的侧边突出或延伸。因此,防扩散部分EP配置为用于传导从远离沟道部分CP的源极和漏极扩散的至少一部分金属物。According to another technical solution of the present invention, the metal ions moving to the channel portion CP can be reduced by diffusing some metal ions to the anti-diffusion portion EP. For this purpose, the diffusion prevention part EP may be formed to protrude or extend along the side of the semiconductor pattern part SPP. Therefore, the diffusion prevention part EP is configured for conducting at least a part of the metal objects diffused from the source and the drain away from the channel part CP.
如图3A所示,防扩散部分EP可具有针形形状。另外,两个针形防扩散部分EP可以像叉形物的齿一样彼此平行排列。As shown in FIG. 3A, the diffusion preventing part EP may have a needle shape. In addition, the two needle-shaped diffusion preventing portions EP may be arranged parallel to each other like teeth of a fork.
这样,当在半导体图案部分SPP里形成防扩散部分EP时,在来自源极SE和漏极DE的金属离子中向沟道部分CP扩散的金属离子向防扩散部分EP扩散。因此,分散了来自源极SE和漏极DE的金属离子的扩散方向。In this way, when the diffusion prevention part EP is formed in the semiconductor pattern part SPP, the metal ions diffused to the channel part CP among the metal ions from the source SE and the drain DE diffuse to the diffusion prevention part EP. Accordingly, the diffusion directions of metal ions from the source SE and the drain DE are dispersed.
通过分散来自源极SE和漏极DE的金属离子的扩散方向,可以防止源极SE和漏极DE短路,其中在沟道部分CP的长度缩减和/或沟道部分CP导电时产生短路。By dispersing the diffusion direction of metal ions from the source SE and the drain DE, the short circuit of the source SE and the drain DE, which is generated when the length of the channel part CP is reduced and/or the channel part CP is conductive, can be prevented.
尽管在此示出的防扩散部分EP是一个针状,但是依照其它实施方式,防扩散部分EP可以具有各种形状。例如,如图3B所示防扩散部分EP可以是多边形。在图3B所示的具体实施方式中,防扩散部分EP的宽度WEP大于沟道部分的对应宽度WCP。Although the anti-diffusion part EP is shown here as a needle shape, according to other embodiments, the anti-diffusion part EP may have various shapes. For example, the anti-diffusion portion EP may be polygonal as shown in FIG. 3B. In the particular embodiment shown in FIG. 3B , the width W EP of the anti-diffusion portion EP is greater than the corresponding width W CP of the channel portion.
可选择性地形成仅接近源极SE的防扩散部分EP。同样的,也可以选择性地形成仅接近漏极DE的防扩散部分EP。此外,可以形成既接近源极SE又接近漏极DE的防扩散部分EP。The diffusion preventing portion EP only close to the source SE may be selectively formed. Likewise, it is also possible to selectively form the anti-diffusion portion EP only close to the drain DE. In addition, the diffusion preventing portion EP may be formed close to both the source SE and the drain DE.
防扩散部分EP可以在与长方形的半导体图案部分SPP的纵向方向平行的方向突出从而可以更有效地扩散金属离子。另外,可在相对于半导体图案部分SPP的径向形成防扩散部分EP。The diffusion prevention part EP may protrude in a direction parallel to the longitudinal direction of the rectangular semiconductor pattern part SPP so that metal ions may be diffused more efficiently. In addition, the diffusion prevention part EP may be formed in a radial direction with respect to the semiconductor pattern part SPP.
再参照图1和图2,第一绝缘层图案FILP形成在基板S上以覆盖半导体图案SP。第一绝缘层图案FILP包括暴露第一区域FR的第一接触孔FCT和暴露第二区域SR的第二接触孔SCT。在该实施方式中,因为第一区域FR和第二区域SR以预定的距离彼此分开,所以第一接触孔FCT和第二接触孔SCT也以预定的距离彼此分开。Referring to FIGS. 1 and 2 again, the first insulating layer pattern FILP is formed on the substrate S to cover the semiconductor pattern SP. The first insulating layer pattern FILP includes a first contact hole FCT exposing the first region FR and a second contact hole SCT exposing the second region SR. In this embodiment, since the first region FR and the second region SR are separated from each other by a predetermined distance, the first contact hole FCT and the second contact hole SCT are also separated from each other by a predetermined distance.
栅极GE形成在第一绝缘层图案FILP上。例如,在第一接触孔FCT和第二接触孔SCT之间设置栅极GE。栅极可以由铝、铝合金和铝-钕合金形成。The gate electrode GE is formed on the first insulating layer pattern FILP. For example, the gate GE is disposed between the first contact hole FCT and the second contact hole SCT. The gate can be formed from aluminum, aluminum alloys, and aluminum-neodymium alloys.
第二绝缘层图案SILP形成在第一绝缘层图案FILP上,从而通过第二绝缘层图案SILP覆盖栅极GE。第二绝缘层图案SILP使栅极GE绝缘于外部导体。在该实施方式中,第二绝缘层图案SILP具有暴露第一区域FR的第三接触孔TCT和暴露第二区域SR的第四接触孔FOCT。层间绝缘层图案ILDP形成在第二绝缘层图案SILP上。The second insulating layer pattern SILP is formed on the first insulating layer pattern FILP such that the gate electrode GE is covered by the second insulating layer pattern SILP. The second insulating layer pattern SILP insulates the gate GE from the external conductor. In this embodiment, the second insulating layer pattern SILP has a third contact hole TCT exposing the first region FR and a fourth contact hole FOCT exposing the second region SR. The insulating interlayer pattern ILDP is formed on the second insulating layer pattern SILP.
源极SE通过在第一和第二绝缘层图案FILP和SILP上形成的第一和第三接触孔FCT和TCT与第一区域FR电连接。The source SE is electrically connected to the first region FR through first and third contact holes FCT and TCT formed on the first and second insulating layer patterns FILP and SILP.
漏极DE通过分别在第一和第二绝缘层图案FILP和SILP上形成的第二和第四接触孔SCT和FOCT与第二区域SR电连接。The drain DE is electrically connected to the second region SR through second and fourth contact holes SCT and FOCT formed on the first and second insulating layer patterns FILP and SILP, respectively.
制造TFT的方法Method of Manufacturing TFT
图4是依照本发明的一实施方式通过制造TFT的方法形成的半导体层的平面图。图5是沿图4中的线II-II’提取的截面图。4 is a plan view of a semiconductor layer formed by a method of manufacturing a TFT according to an embodiment of the present invention. Fig. 5 is a sectional view taken along line II-II' in Fig. 4 .
参照图4和图5,在基板S上形成多晶硅层PL。Referring to FIGS. 4 and 5 , a polysilicon layer PL is formed on a substrate S. Referring to FIGS.
多晶硅层PL的形成可包括在基板S上沉积非晶硅层并结晶所沉积的非晶硅层。非晶硅层可用化学气相沉积(CVD)工艺形成,且可以用高能激光诸如YAG激光结晶。The formation of the polysilicon layer PL may include depositing an amorphous silicon layer on the substrate S and crystallizing the deposited amorphous silicon layer. The amorphous silicon layer can be formed using a chemical vapor deposition (CVD) process, and can be crystallized using a high-energy laser such as a YAG laser.
图6是示出构图后的多晶硅层的平面图,和图7是沿图6中的线III-III’提取的截面图。FIG. 6 is a plan view showing the patterned polysilicon layer, and FIG. 7 is a cross-sectional view taken along line III-III' in FIG. 6 .
参照图6和图7,当在基板S上形成多晶硅层PL后,在多晶硅层PL上形成光刻胶图案(未示出)。6 and 7, after the polysilicon layer PL is formed on the substrate S, a photoresist pattern (not shown) is formed on the polysilicon layer PL.
在该实施方式中,光刻胶图案的形成可包括在多晶硅层PL上形成光刻胶薄膜,使用图案掩模对光刻胶薄膜进行曝光,及显影曝光后的光刻胶薄膜。另外,可以通过使用喷墨法在多晶硅层PL上设置光刻胶物质形成光刻胶图案。In this embodiment, forming the photoresist pattern may include forming a photoresist film on the polysilicon layer PL, exposing the photoresist film using a pattern mask, and developing the exposed photoresist film. In addition, a photoresist pattern may be formed by disposing a photoresist substance on the polysilicon layer PL using an inkjet method.
参照图6和图7,使用光刻图案作为刻蚀掩模刻蚀多晶硅层PL,从而形成半导体图案SP。具体地说,构图多晶硅层PL以形成具有半导体图案部分SPP和防扩散部分EP的半导体部分SP。半导体图案部分SPP具有第一区域FR、第二区域SR和沟道部分CP。Referring to FIGS. 6 and 7 , the polysilicon layer PL is etched using a photolithographic pattern as an etch mask, thereby forming a semiconductor pattern SP. Specifically, the polysilicon layer PL is patterned to form the semiconductor part SP having the semiconductor pattern part SPP and the diffusion prevention part EP. The semiconductor pattern part SPP has a first region FR, a second region SR, and a channel part CP.
在平面图中,第一区域FR在半导体图案SP的第一端形成,而第二区域SR在与第一端相对的第二端形成。沟道部分CP夹在第一区域FR和第二区域SR之间。In a plan view, the first region FR is formed at a first end of the semiconductor pattern SP, and the second region SR is formed at a second end opposite to the first end. The channel portion CP is sandwiched between the first region FR and the second region SR.
防扩散部分EP沿基板S相对第一区域FR和/或第二区域SR从半导体图案SP突出或延伸。The anti-diffusion portion EP protrudes or extends from the semiconductor pattern SP along the substrate S opposite the first region FR and/or the second region SR.
在该实施方式中,防扩散部分EP是针形并且沿基板S从半导体图案SP的第二区域SR延伸。至少形成一针形的防扩散部分EP。防扩散部分EP可平行地排列。In this embodiment, the diffusion preventing portion EP is needle-shaped and extends along the substrate S from the second region SR of the semiconductor pattern SP. At least one needle-shaped diffusion preventing portion EP is formed. The anti-diffusion parts EP may be arranged in parallel.
防扩散部分EP从长方形的半导体图案SP的侧边延伸。例如,至少一防扩散部分EP可以在与半导体图案SP的绘向方向平行的方向延伸。另外,防扩散部分EP可以相对第一和第二区域FR和SR从半导体图案SP的侧边在径向形成。The diffusion prevention part EP extends from the side of the rectangular semiconductor pattern SP. For example, at least one anti-diffusion portion EP may extend in a direction parallel to a direction in which the semiconductor pattern SP is drawn. In addition, the diffusion preventing portion EP may be formed in a radial direction from a side of the semiconductor pattern SP with respect to the first and second regions FR and SR.
防扩散部分EP可以相对第一和第二区域FR和SR在半导体图案SP上形成。同样地,可相对第一区域FR在半导体图案部分SPP上选择性地形成防扩散部分EP。另外,可相对于第二区域SR在半导体图案部分SPP选择性地形成防扩散部分EP。The diffusion prevention part EP may be formed on the semiconductor pattern SP opposite the first and second regions FR and SR. Likewise, the diffusion preventing part EP may be selectively formed on the semiconductor pattern part SPP with respect to the first region FR. In addition, the diffusion prevention part EP may be selectively formed at the semiconductor pattern part SPP with respect to the second region SR.
在图6中,在与漏极DE电连接的第二区域SR选择性地形成防扩散部分EP。In FIG. 6, the diffusion prevention part EP is selectively formed in the second region SR electrically connected to the drain DE.
图8是覆盖图7中的半导体图案的第一绝缘层的截面图。FIG. 8 is a cross-sectional view of a first insulating layer covering the semiconductor pattern in FIG. 7 .
参照图8,当具有半导体图案部分SPP和防扩散部分EP的半导体图案SP在基板S上形成之后,形成第一绝缘层FIL以覆盖半导体图案SP。第一绝缘层FIL可以由有机层、氧化层或氮化物层形成。Referring to FIG. 8 , after the semiconductor pattern SP having the semiconductor pattern part SPP and the diffusion prevention part EP is formed on the substrate S, a first insulating layer FIL is formed to cover the semiconductor pattern SP. The first insulating layer FIL may be formed of an organic layer, an oxide layer, or a nitride layer.
图9是覆盖图8中的半导体图案的第二绝缘层和层间绝缘层的截面图。FIG. 9 is a cross-sectional view of a second insulating layer and an interlayer insulating layer covering the semiconductor pattern in FIG. 8 .
参照图9,当在基板S上形成第一绝缘层FIL之后,栅极GE和存储电极StE形成在第一绝缘层FIL上。栅极GE可与半导体图案部分SPP分开形成。Referring to FIG. 9 , after the first insulating layer FIL is formed on the substrate S, the gate electrode GE and the storage electrode StE are formed on the first insulating layer FIL. The gate GE may be formed separately from the semiconductor pattern part SPP.
然后,通过使用栅极GE作为掩模在半导体图案SP内掺入n型和p型导电杂质。使用离子植入工序掺杂n型或p型导电杂质。导电杂质掺杂入半导体图案SP中栅极GE没有覆盖的第一区域FR和第二区域SR。从而,相对第一区域FR和第二区域SR的部分具有导电特性。Then, n-type and p-type conductive impurities are doped into the semiconductor pattern SP by using the gate GE as a mask. The n-type or p-type conductive impurities are doped using an ion implantation process. Conductive impurities are doped into the first region FR and the second region SR not covered by the gate GE in the semiconductor pattern SP. Thus, portions opposite to the first region FR and the second region SR have conductive characteristics.
然后,第二绝缘层SILD形成在第一绝缘层FIL上用以覆盖栅极GE。同样地,层间绝缘层ILP形成在第二绝缘层SILD上。Then, a second insulating layer SILD is formed on the first insulating layer FIL to cover the gate GE. Likewise, an insulating interlayer ILP is formed on the second insulating layer SILD.
图10是通过构图层间绝缘层、第二绝缘层和第一绝缘层形成的层间绝缘层图案、第二绝缘层图案和第一绝缘层图案的截面图。10 is a cross-sectional view of an interlayer insulating layer pattern, a second insulating layer pattern, and a first insulating layer pattern formed by patterning an interlayer insulating layer, a second insulating layer, and a first insulating layer.
参照图10,当第二绝缘层SILD和层间绝缘层ILP形成在第一绝缘层FIL上之后,构图层间绝缘层ILP、第二绝缘层SILD和第一绝缘层FIL用以形成第一绝缘层图案FILP、第二绝缘层图案SILP和层间绝缘层图案ILPP。绝缘层FILP、SILP和ILPP具有暴露半导体图案SP的第一区域FR和第二区域SR的一对接触孔CT1和CT2。在该实施方式中,接触孔CT1和CT2形成在栅极GE的两侧。Referring to FIG. 10, after the second insulating layer SILD and the interlayer insulating layer ILP are formed on the first insulating layer FIL, the interlayer insulating layer ILP, the second insulating layer SILD, and the first insulating layer FIL are patterned to form the first insulating layer. The layer pattern FILP, the second insulating layer pattern SILP, and the interlayer insulating layer pattern ILPP. The insulating layers FILP, SILP, and ILPP have a pair of contact holes CT1 and CT2 exposing the first and second regions FR and SR of the semiconductor pattern SP. In this embodiment, contact holes CT1 and CT2 are formed on both sides of the gate GE.
图11是在图10的层间绝缘层图案上形成的源极和漏极的截面图。FIG. 11 is a cross-sectional view of source and drain electrodes formed on the insulating interlayer pattern of FIG. 10 .
参照图11,源极/漏极金属层(未示出)形成在构图后的层间绝缘层图案ILPP上。源极/漏极可以由铝、铝合金、铬或铬合金形成。Referring to FIG. 11 , a source/drain metal layer (not shown) is formed on the patterned interlayer insulating layer pattern ILPP. The source/drain electrodes may be formed of aluminum, aluminum alloy, chromium or chromium alloy.
然后,使用光刻工艺构图源极/漏极金属层,从而在层间绝缘层图案ILPP上形成源极SE和漏极DE。Then, the source/drain metal layer is patterned using a photolithography process, thereby forming the source SE and the drain DE on the insulating interlayer pattern ILPP.
源极SE和漏极DE通过接触孔CT1和CT2与半导体图案SP的第一区域FR和第二区域SR电连接。The source SE and the drain DE are electrically connected to the first region FR and the second region SR of the semiconductor pattern SP through the contact holes CT1 and CT2.
向第一区域FR和第二区域SR提供来自源极SE和漏极DE的大量金属离子。然而,防扩散部分EP防止了金属离子扩散到夹在第一区域FR和第二区域SR之间的半导体图案部分SPP。因此,可以防止半导体图案部分SPP长度减小,或者防止半导体图案部分SPP导电。A large amount of metal ions from the source SE and the drain DE are supplied to the first region FR and the second region SR. However, the diffusion prevention part EP prevents metal ions from diffusing to the semiconductor pattern part SPP sandwiched between the first region FR and the second region SR. Therefore, it is possible to prevent the semiconductor pattern part SPP from being reduced in length, or to prevent the semiconductor pattern part SPP from being conductive.
显示基板display substrate
图12是依照本发明的实施方式的显示器件的截面图。FIG. 12 is a cross-sectional view of a display device according to an embodiment of the present invention.
参照图12,显示基板包括基板S、TFT和像素P。Referring to FIG. 12 , the display substrate includes a substrate S, TFTs, and pixels P. Referring to FIG.
基板S可以是具有类似于玻璃板的透光度的透明基板。The substrate S may be a transparent substrate having light transmittance similar to a glass plate.
TFT设置在基板S上用于在预定的时间内向像素P传输信号。TFTs are provided on the substrate S for transmitting signals to the pixels P for a predetermined time.
TFT包括半导体图案SP、第一绝缘层图案FILP、栅极GE、第二绝缘层图案SILP、源极SE和漏极DE。The TFT includes a semiconductor pattern SP, a first insulating layer pattern FILP, a gate GE, a second insulating layer pattern SILP, a source SE and a drain DE.
在平面图中由多晶硅形成的半导体图案SP具有长方亚铃形状,且半导体图案SP包括半导体图案部分SPP和从半导体图案部分SPP突出的防扩散部分EP。The semiconductor pattern SP formed of polysilicon has a rectangular sub-bell shape in a plan view, and the semiconductor pattern SP includes a semiconductor pattern part SPP and an anti-diffusion part EP protruding from the semiconductor pattern part SPP.
半导体图案部分SPP根据外部电压的施加/断开具有导电或绝缘特性。半导体图案部分SPP包括在半导体图案部分SPP的第一端形成的第一区域FR,在相对于第一端的第二端形成的第二区域SR和夹在第一区域FR和第二区域SR之间的沟道部分CP。在该实施方式中,在第一区域FR和第二区域SR中掺入n型或p型杂质。因此,半导体图案部分SPP相对第一区域FR和第二区域SR具有导电特性。The semiconductor pattern part SPP has conductive or insulating properties according to application/disconnection of an external voltage. The semiconductor pattern part SPP includes a first region FR formed at a first end of the semiconductor pattern part SPP, a second region SR formed at a second end opposite to the first end, and a region sandwiched between the first region FR and the second region SR. Between the channel portion CP. In this embodiment, n-type or p-type impurities are doped in the first region FR and the second region SR. Accordingly, the semiconductor pattern part SPP has a conductive property with respect to the first region FR and the second region SR.
同时,沟道部分CP根据外部电压的施加/断开具有半导体特性。Meanwhile, the channel portion CP has semiconductor characteristics according to application/disconnection of an external voltage.
防扩散部分EP沿基板S从半导体图案部分SPP以预定长度突出。防扩散部分EP防止了金属离子从源极SE和漏极DE向沟道部分CP扩散。源极SE和漏极DE分别与半导体图案部分SPP的第一区域FR和第二区域SR电连接。The diffusion prevention part EP protrudes from the semiconductor pattern part SPP by a predetermined length along the substrate S. As shown in FIG. The diffusion prevention part EP prevents metal ions from diffusing from the source SE and the drain DE to the channel part CP. The source SE and the drain DE are electrically connected to the first region FR and the second region SR of the semiconductor pattern part SPP, respectively.
防扩散部分EP可以沿基板S从半导体图案部分SPP的侧边突出或延伸。同样地,防扩散部分EP可以具有针状形状。另外,至少两个针形防扩散部分EP以叉形物形状排列。The diffusion prevention part EP may protrude or extend from a side of the semiconductor pattern part SPP along the substrate S. Referring to FIG. Also, the anti-diffusion part EP may have a needle shape. In addition, at least two needle-shaped diffusion preventing portions EP are arranged in a fork shape.
防扩散部分EP可以在源极SE和漏极DE里形成。同样地,可以选择性地形成仅在源极SE里的防扩散部分EP。另外,也可以选择性地形成仅在漏极DE里的防扩散部分EP。The diffusion prevention part EP may be formed in the source SE and the drain DE. Likewise, the diffusion preventing portion EP only in the source electrode SE may be selectively formed. In addition, it is also possible to selectively form the diffusion preventing portion EP only in the drain DE.
在图12中,防扩散部分EP从连接到漏极DE的半导体图案部分SPP的第二区域SR突出。In FIG. 12, the diffusion prevention part EP protrudes from the second region SR of the semiconductor pattern part SPP connected to the drain electrode DE.
防扩散部分EP可以在与具有长方形的半导体图案部分SPP的绘向方向平行的方向突出,从而金属离子可以更有效的扩散。另外,可以在相对于半导体图案部分SPP的径向形成防扩散部分EP。The diffusion prevention part EP may protrude in a direction parallel to the direction in which the semiconductor pattern part SPP having a rectangular shape is drawn, so that metal ions may be more effectively diffused. In addition, the diffusion prevention part EP may be formed in a radial direction with respect to the semiconductor pattern part SPP.
再参照图12,第一绝缘层图案FILP形成在基板S上以覆盖半导体图案SP。栅极GE和存储电极StE形成在第一绝缘层图案FILP上。Referring again to FIG. 12 , the first insulating layer pattern FILP is formed on the substrate S to cover the semiconductor pattern SP. The gate electrode GE and the storage electrode StE are formed on the first insulating layer pattern FILP.
第二绝缘层图案SILP形成在第一绝缘层图案FILP上以覆盖栅极GE。层间绝缘层图案ILDP形成在第二绝缘层图案SILP上,而钝化层PL形成在层间绝缘层图案ILDP上。The second insulating layer pattern SILP is formed on the first insulating layer pattern FILP to cover the gate GE. The insulating interlayer pattern ILDP is formed on the second insulating layer pattern SILP, and the passivation layer PL is formed on the insulating interlayer pattern ILDP.
分别通过第三接触孔TCT和第一接触孔FCT,源极SE电连接到第一区域FR。分别通过第四和第二接触孔FOCT和SCT,漏极DE电连接到第二区域SR。The source SE is electrically connected to the first region FR through the third contact hole TCT and the first contact hole FCT, respectively. The drain DE is electrically connected to the second region SR through the fourth and second contact holes FOCT and SCT, respectively.
像素P电连接到漏极DE。像素P可包括连接到漏极DE的第一电极M1。例如,作为像素P的第一电极M1可以是透明电极。第一电极M1可由铟锡氧化物(ITO)、铟锌氧化物(IZO)或非晶铟锡氧化物(a-ITO)形成。The pixel P is electrically connected to the drain DE. The pixel P may include a first electrode M1 connected to the drain DE. For example, the first electrode M1 serving as the pixel P may be a transparent electrode. The first electrode M1 may be formed of indium tin oxide (ITO), indium zinc oxide (IZO), or amorphous indium tin oxide (a-ITO).
像素P可进一步包括在第一电极M1上的有机发光层OL和第二电极M2。有机发光层OL使用由第一电极M1和第二电极M2供应的电流发光。在该实施方式中,第二电极M2可以由例如,铝或铝合金的具有低功函的金属形成。The pixel P may further include an organic light emitting layer OL on the first electrode M1 and a second electrode M2. The organic light emitting layer OL emits light using current supplied from the first electrode M1 and the second electrode M2. In this embodiment, the second electrode M2 may be formed of a metal having a low work function, for example, aluminum or an aluminum alloy.
图13是依照本发明另一实施方式的显示器件的截面图。在所示出的实施方式中,像素P包括在下基板S上连接到漏极DE的第一电极FE、在面对下基板的上基板S上形成的第二电极CE,从而第二电极与第一电极相对。红色滤色片R、黑矩阵B、绿色滤色片层G位于第二电极CE和基板之间的第二基板上。尽管没有在图中示出,但是蓝色滤光片也位于上基板上。液晶层(未示出)夹在第一电极和第二电极之间。位于液晶层两侧的第一电极和第二电极可以是透明电极。FIG. 13 is a cross-sectional view of a display device according to another embodiment of the present invention. In the illustrated embodiment, the pixel P includes a first electrode FE connected to the drain DE on the lower substrate S, a second electrode CE formed on the upper substrate S facing the lower substrate, so that the second electrode is connected to the first electrode CE. One electrode is opposite. The red color filter R, the black matrix B, and the green color filter layer G are located on the second substrate between the second electrode CE and the substrate. Although not shown in the figure, a blue color filter is also located on the upper substrate. A liquid crystal layer (not shown) is sandwiched between the first electrode and the second electrode. The first electrode and the second electrode located on both sides of the liquid crystal layer may be transparent electrodes.
在图13的实施方式中,除了像素结构,位于下基板上的结构与图12示出的且在以上描述过的基板的结构相似。TFT包括半导体图案SP、第一绝缘层图案FILP、栅极GE、第二绝缘层图案SILP、源极SE和漏极DE。In the embodiment of FIG. 13, except for the pixel structure, the structure on the lower substrate is similar to the structure of the substrate shown in FIG. 12 and described above. The TFT includes a semiconductor pattern SP, a first insulating layer pattern FILP, a gate GE, a second insulating layer pattern SILP, a source SE and a drain DE.
半导体图案SP包括半导体图案部分SPP和从半导体图案部分SPP延伸的防扩散部分EP。半导体图案部分SPP包括在半导体图案部分SPP第一端形成的第一区域FR、在与第一端相对的第二端形成的第二区域SR和夹在第一区域FR和第二区域SR之间的沟道部分CP。在第一区域FR和第二区域SR内掺杂入n型或p型杂质。因此,对应第一区域FR和第二区域SR的半导体图案部分SPP具有导电特性。The semiconductor pattern SP includes a semiconductor pattern part SPP and an anti-diffusion part EP extending from the semiconductor pattern part SPP. The semiconductor pattern part SPP includes a first region FR formed at a first end of the semiconductor pattern part SPP, a second region SR formed at a second end opposite to the first end, and a region sandwiched between the first region FR and the second region SR. The channel portion CP. N-type or p-type impurities are doped into the first region FR and the second region SR. Accordingly, the semiconductor pattern portion SPP corresponding to the first region FR and the second region SR has a conductive property.
第一绝缘层图案FILP位于基板S之上并覆盖半导体图案SP。栅极GE形成在第一绝缘层图案FILP上。第二绝缘层图案SILP形成在第一绝缘层图案FILP上以覆盖栅极GE。The first insulating layer pattern FILP is located on the substrate S and covers the semiconductor pattern SP. The gate electrode GE is formed on the first insulating layer pattern FILP. The second insulating layer pattern SILP is formed on the first insulating layer pattern FILP to cover the gate GE.
层间绝缘层图案ILDP叠在第二绝缘层SILP上。层间绝缘层图案ILDP、第二绝缘层SILP和第一绝缘层图案FILP分别包括暴露第二区域SR的接触孔FOCT和SCT。层间绝缘层图案ILDP、第二绝缘层SILP和第一绝缘层图案FILP还分别包括暴露第一区域FR的接触孔TCT和FCT。源极SE通过接触孔TCT和FCT电连接到半导体图案SP的第一区域FR。漏极DE通过接触孔FOCT和SCT电连接到半导体图案SP的第二区域SR。The insulating interlayer pattern ILDP is stacked on the second insulating layer SILP. The insulating interlayer pattern ILDP, the second insulating layer SILP, and the first insulating layer pattern FILP include contact holes FOCT and SCT exposing the second region SR, respectively. The insulating interlayer pattern ILDP, the second insulating layer SILP, and the first insulating layer pattern FILP further include contact holes TCT and FCT exposing the first region FR, respectively. The source electrode SE is electrically connected to the first region FR of the semiconductor pattern SP through the contact holes TCT and FCT. The drain DE is electrically connected to the second region SR of the semiconductor pattern SP through the contact holes FOCT and SCT.
防扩散部分EP从半导体图案部分SPP的第二区域SR突出或延伸,其中第二区域SR与漏极DE连接。防扩散部分EP的结构和所起作用与上述的防扩散部分EP相似。The diffusion prevention part EP protrudes or extends from the second region SR of the semiconductor pattern part SPP, wherein the second region SR is connected to the drain DE. The structure and function of the anti-diffusion part EP are similar to those of the above-mentioned anti-diffusion part EP.
通过在半导体图案的边界形成防扩散部分EP,可以防止来自与半导体图案电连接的电极的金属离子扩散到半导体图案。因此,本发明可防止TFT的性能退化。By forming the diffusion prevention part EP at the boundary of the semiconductor pattern, metal ions from electrodes electrically connected to the semiconductor pattern can be prevented from diffusing to the semiconductor pattern. Therefore, the present invention can prevent performance degradation of TFTs.
很显然,本领域的熟练技术人员可以在不脱离本发明的精神或者范围内对本发明进行各种不同的修改和改进。因此,本发明旨在覆盖包括所有落入所附权利要求及其等效物范围内的对本发明进行的修改和改进。Obviously, those skilled in the art can make various modifications and improvements to the present invention without departing from the spirit or scope of the present invention. Thus, it is intended that the present invention cover all the modifications and improvements of this invention that come within the scope of the appended claims and their equivalents.
Claims (28)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020060043247 | 2006-05-15 | ||
KR20060043247 | 2006-05-15 | ||
KR1020060088989 | 2006-09-14 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101075642A CN101075642A (en) | 2007-11-21 |
CN100573916C true CN100573916C (en) | 2009-12-23 |
Family
ID=38976537
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2006101498787A Active CN100573916C (en) | 2006-05-15 | 2006-10-27 | Thin-film transistor and manufacture method thereof and display base plate with this thin-film transistor |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP5181007B2 (en) |
KR (1) | KR20070110761A (en) |
CN (1) | CN100573916C (en) |
TW (1) | TWI322506B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101944919B1 (en) * | 2012-05-08 | 2019-02-08 | 삼성디스플레이 주식회사 | Organic light emitting display device and manufacturing method thereof |
KR102077123B1 (en) * | 2018-01-16 | 2020-02-13 | 국민대학교산학협력단 | Carbon nanotube network thin film transistor and manufacturing method thereof |
CN112071915A (en) * | 2019-06-10 | 2020-12-11 | 堺显示器制品株式会社 | Thin film transistor, method for manufacturing the same, and display device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0667207A (en) * | 1992-08-20 | 1994-03-11 | Seiko Epson Corp | Liquid crystal display |
KR100617031B1 (en) * | 2003-12-30 | 2006-08-30 | 엘지.필립스 엘시디 주식회사 | Reflective type liquid crystal display device and manufacturing method |
-
2006
- 2006-09-14 KR KR1020060088989A patent/KR20070110761A/en not_active Withdrawn
- 2006-10-27 CN CNB2006101498787A patent/CN100573916C/en active Active
- 2006-11-01 TW TW095140453A patent/TWI322506B/en active
-
2010
- 2010-09-29 JP JP2010219782A patent/JP5181007B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
KR20070110761A (en) | 2007-11-20 |
TWI322506B (en) | 2010-03-21 |
JP2011061212A (en) | 2011-03-24 |
JP5181007B2 (en) | 2013-04-10 |
CN101075642A (en) | 2007-11-21 |
TW200746433A (en) | 2007-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100491141B1 (en) | TFT and Method for Fabricating the Same and Active Matrix display device and Method for fabricating the Same using the TFT | |
TWI401802B (en) | Thin film transistor plate and method of manufacturing same | |
KR100437475B1 (en) | Method for fabricating display device used in flat display device | |
CN101964347B (en) | Array substrate and method of fabricating the same | |
CN102468232B (en) | Method of fabricating array substrate | |
CN108598089B (en) | TFT substrate manufacturing method and TFT substrate | |
US7833846B1 (en) | Array substrate and method of fabricating the same | |
US8362526B2 (en) | Liquid crystal display device and fabricating method thereof | |
JP2002313810A (en) | Display device and method of manufacturing the same | |
US9842915B2 (en) | Array substrate for liquid crystal display device and method of manufacturing the same | |
US7674658B2 (en) | Semiconductor device and manufacturing method thereof | |
KR100307457B1 (en) | Method for manufacturing Thin Film Transistor | |
US20080197357A1 (en) | Display panel and manufacturing method | |
CN100357991C (en) | Flat panel display and method for fabricating the same | |
US9570482B2 (en) | Manufacturing method and manufacturing equipment of thin film transistor substrate | |
KR101749265B1 (en) | Array substrate and fabricating method for the same | |
WO2019200824A1 (en) | Method for manufacturing ltps tft substrate and ltps tft substrate | |
CN100573916C (en) | Thin-film transistor and manufacture method thereof and display base plate with this thin-film transistor | |
KR20110058356A (en) | Array substrate and its manufacturing method | |
US8329517B2 (en) | Pixel structure and method for manufacturing the same | |
CN113889489A (en) | Array substrate, preparation method thereof and display device | |
US8927995B2 (en) | Thin film transistor with anti-diffusion area that prevents metal atoms and/or ions from source/drain electrodes from shortening the channel length and display substrate having the thin film transistor | |
CN100492618C (en) | Semiconductor element and manufacturing method thereof | |
KR101750562B1 (en) | Organic Light Emitting Display Device and Method for fabricating the same | |
KR20190124788A (en) | Thin film transistors and manufacturing method thereof, display panel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |