[go: up one dir, main page]

CN100549217C - 生产涂覆超亲水性薄膜的金属产品的方法及涂覆超亲水性薄膜的金属产品 - Google Patents

生产涂覆超亲水性薄膜的金属产品的方法及涂覆超亲水性薄膜的金属产品 Download PDF

Info

Publication number
CN100549217C
CN100549217C CNB200480042694XA CN200480042694A CN100549217C CN 100549217 C CN100549217 C CN 100549217C CN B200480042694X A CNB200480042694X A CN B200480042694XA CN 200480042694 A CN200480042694 A CN 200480042694A CN 100549217 C CN100549217 C CN 100549217C
Authority
CN
China
Prior art keywords
compound film
superhydrophilic
metal product
gas
atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB200480042694XA
Other languages
English (en)
Other versions
CN1938445A (zh
Inventor
郑永万
吴定根
田贤佑
李守源
尹德铉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Publication of CN1938445A publication Critical patent/CN1938445A/zh
Application granted granted Critical
Publication of CN100549217C publication Critical patent/CN100549217C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/4557Heated nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/02Coatings; Surface treatments hydrophilic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/1266O, S, or organic compound in metal component
    • Y10T428/12667Oxide of transition metal or Al
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12986Adjacent functionally defined components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Laminated Bodies (AREA)
  • Chemical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

本发明公开了生产涂覆超亲水性薄膜的金属产品的方法,以及涂覆超亲水性薄膜的金属产品。为了以工业生产规模容易地生产具有优异的亲水性和耐老化性的空调金属材料,在金属基片(8)的两个表面上选择性地形成防腐薄膜,在已形成或尚未形成防腐薄膜的两个表面上涂覆超亲水性T-O(C)-(H)基化合物薄膜,并将所述金属基片机械加工成目标形状。

Description

生产涂覆超亲水性薄膜的金属产品的方法及涂覆超亲水性薄膜的金属产品
技术领域
本发明涉及生产涂覆超亲水性薄膜的金属产品的方法,以及涂覆超亲水性薄膜的金属产品。
背景技术
在其表面上具有亲水性表面层的金属材料已被有效地用于整个工业领域中,这种金属材料将通过使用热交换器作为例子进行说明。
通过使具有不同温度的两种流体彼此直接或间接接触而交换热的热交换器已被广泛地用在各种工业领域中,特别是用于加热、空气调节、动力的产生、废热回收和化学加工。
空调热交换器在空气侧形成翅片,翅片是增大的表面,用于改善热传送。当含湿气的空气在热交换操作中流经翅片时,通过供给到管中的低温冷却剂发生热传送。当翅片表面温度等于或低于含湿气的空气的露点温度时,在热交换器表面上形成小滴以截断空气的流动,这增加了作为热交换器进口和出口之间的压力差的压力降。因此,必须增加风扇的功率以供给相同的流量,这导致大功率的消费。
为了解决上述问题,如日本待审专利申请61-8598所公开的,通过使用Cr+6在铝翅片上进行防腐处理以改善耐腐蚀性,以及在其上进行硅酸盐基涂覆工艺以赋予亲水性,该材料被称为预涂材料(PCM),从而在热交换器翅片表面上形成的凝结水的流动得以改善。
PCM基本上需要Cr+6以获得耐腐蚀性。然而,由于环境问题,Cr+6自2006年后被禁用。因此越来越需要替代Cr+6的材料。直到目前为止,已经建议了Cr+3或树脂类型。在PCM的制备中,不可避免地用于铝洗涤的四氯乙烷(TCE)还造成环境污染。另外,在初始阶段表现优异亲水性的PCM逐渐丧失亲水性,即,具有老化特性。近年来,主要使用化学产品作为壁纸的材料。用于赋予亲水性的硅酸盐材料具有挥发性并且与墙纸发生化学结合,从而使墙纸褪色。另外,挥发物质还令人不快。
一直不断地进行各种尝试以通过在现有材料上形成功能性(例如亲水性或疏水性)表面层以满足各种需要。形成功能性表面层的示例性方法包括1)在现有材料上淀积功能性表面层,和2)通过改善现有材料的表面膜而赋予新的物理和化学性质。
然而,在后一种方法中,随着时间的流逝,表面性质发生改变并返回到初始性质。例如,在诸如铝的金属根据离子束辅助反应工艺进行处理的情况中,金属表面的亲水性得以改善。因为在铝表面上蚀刻了自然氧化膜并在铝表面上形成了功能性薄膜。随着时间的流逝,氧化膜自然地在铝表面上生长。结果是,通过蚀刻自然氧化膜获得的亲水性改善作用变差。在铝表面上形成的功能性薄膜由对各种环境变量(水、温度等)随时间具有极低机械抗性的超薄层(<几个纳米)组成。因此,改善的亲水性降低并返回到初始表面性质。
为了解决上述问题,一直不断地努力以在金属材料上形成亲水性或疏水性的功能性表面层,该功能性表面层可以保持物理和化学稳定状态。
例如,如日本待审专利公开2001-280879中所建议的,在金属管(其作为冷冻剂的通道)上安装了由传导金属材料制成的热交换器中,含钛的化合物蒸气(其作为原料气)被供给为在空气中以与热交换器翅片表面平行的方向上流动。因此,在翅片表面上涂覆二氧化钛薄膜的热交换器根据等离子体CVD技术生产。上述专利申请教导了热交换器可以获得优异的亲水性、抗菌性和除臭性。
然而,在翅片被安装到管上以构成热交换器的情况中,二氧化钛薄膜被淀积到热交换器的翅片上。因此,二氧化钛薄膜不能均一地淀积到翅片整个表面上,这引起亲水性和耐老化性变差。另外,不能获得直接应用于工业生产的生产能力。
发明内容
为解决上述问题而完成了本发明。本发明的一个目的是提供生产具有优异的亲水性和耐老化性的涂覆超亲水性薄膜的金属产品的方法,以及提供涂覆超亲水性薄膜的金属产品。
本发明的另一个目的是通过在片型金属基材上形成超亲水性薄膜并将所述片型金属基材机械加工成目标形状而以工业生产规模容易地生产超亲水性薄膜。
本发明的又一个目的是在片型金属基材的两个表面上均一地形成超亲水性薄膜。
为了实现本发明的上述目的,提供了生产涂覆超亲水性薄膜的金属产品的方法,该方法在真空室中通过使用等离子体在被连续供给的片型金属基材的两个表面上连续地涂覆超亲水性钛化合物薄膜,并将涂覆薄膜的片型金属基材机械加工成目标形状。这里,薄膜是Ti-O基化合物薄膜。优选地,薄膜是含有15到22原子%的Ti和45到65原子%的O的Ti-O基化合物薄膜。另外,薄膜进一步含有C和/或H。优选地,薄膜含有15到22原子%的Ti和45到65原子%的O,并且进一步含有20到25原子%的C和/或20到25原子%的H。这里,薄膜的厚度为1到100纳米。
金属基材可以是铝基材,金属产品可以是热交换器的翅片。
涂覆工艺通过将活性气体、气相钛前体和载气注入真空室进行。优选地,气体注射比满足载气∶活性气体=1∶3,并且还满足气相钛前体∶载气=3∶1。
优选地,活性气体为空气或O2,载气选自He、N2和Ar,气相钛前体通过使液相四异丙醇钛通过鼓泡器制得。另外,注入真空室的气相钛前体的注入量通过调节供给到鼓泡器的液相四异丙醇钛的量进行控制。载气在液相四异丙醇钛之前被注入鼓泡器,用于将液相四异丙醇钛转移到鼓泡器。
还提供了涂覆超亲水性薄膜的金属产品,其通过使用等离子体涂覆了含有15到22原子%的Ti和45到65原子%的O以及厚度为1到100纳米的超亲水性Ti-O基化合物薄膜。优选地,薄膜进一步含有20到25原子%的C和/或20到25原子%的H。薄膜具有无定形结构并且金属片为铝片。涂覆薄膜的铝片是可机械加工成热交换器翅片的金属片。
附图说明
本发明通过参考附图得以更好地理解,所述附图仅仅是示例性的,不对本发明构成限制,其中:
图1是说明根据本发明通过使用等离子体在片型金属基材上连续地涂覆超亲水性钛化合物薄膜的装置的原理图;
图2是表示用于分析根据本发明涂覆防腐亲水性薄膜的金属片的表面组成的XPS数据的图;
图3是表示用于分析根据本发明涂覆的薄膜的厚度的AES数据的图;
图4是表示根据本发明涂覆的钛化合物薄膜的微结构的SEM照片;
图5a和图5b分别表示在本发明的表面亲水性/疏水性试验中当表面是亲水性(图5a)和当表面是疏水性(图5b)时小滴分散的照片;
图6是表示裸铝片、常规PCM片和本发明的涂覆钛化合物薄膜的片的耐老化性的图;
图7是表示本发明的涂覆钛化合物薄膜的片和常规PCM片的耐老化性的图;和
图8是表示本发明的钛化合物薄膜涂层的变量测试结果的图。
实施本发明的最佳方式
将参考附图详细描述本发明的生产涂覆超亲水性薄膜的金属产品的方法,以及涂覆超亲水性薄膜的金属产品。
图1是说明根据本发明用于在片型金属基材上涂覆超亲水性Ti-O-C基化合物薄膜的等离子体聚合装置的原理图。聚合装置包括保持在真空状态下的涂覆室,在涂覆室内部形成的等离子体,将活性气体注入涂覆室的活性气体注射装置,将气相前体注入涂覆室的气相前体注射装置,和用于注射载气从而将气相前体转移到涂覆室的载气注射装置。
用于在涂覆室2内部形成真空的真空泵4与涂覆室2连接,金属片8在电极6之间被连续地供给,所述电极6安装在上部和右部或右侧和左侧。在图1中,电极6安装在金属板8的上部和下部,金属片8以水平方向被供给。通过电极6之间生成的等离子体在金属片8的两个表面上连续地涂覆超亲水性钛化合物薄膜后,金属片8离开涂覆室2。电源10被施加于电极6上。
优选地,含有可形成空气或氧气的活性气体的活性气体缸20经由阀22将活性气体注射到涂覆室2。
另外,包含在通过加压器32加压的容器30内的液相钛前体(其是液相四异丙醇钛[Ti(OC3H7)4])由于压力差经由液相质量流量控制器(MFC)38被注入鼓泡器40。通过鼓泡器40鼓泡的气相钛前体被注入涂覆室2。优选地,可形成He、Ar或N2的载气经由液相MFC 38和鼓泡器40之间的管被注射,用于帮助气相钛前体被注入涂覆室2。载气包含在载气缸50中,并经由阀52被注入管。加热线圈42盘绕鼓泡器40,用于加热和鼓泡液相钛前体。如上所述,使用纳米等离子体的涂覆工艺通过将可形成空气或O2的活性气体、气相钛前体以及载气注入涂覆室2而进行。另外,注入涂覆室2的气相前体的注射量通过调节供给到鼓泡器4的液相前体(即液相四异丙醇钛)的量进行控制。
这里,活性气体、气相钛前体和载气可在涂覆室2的外部合并并经由一个管60被注入涂覆室2(如图1所示),或可经由不同的管被注入涂覆室2并在涂覆室2内部经由一个管合并。仍参见图1,合并管60通过涂覆室2的一侧孔被连接。优选地,管60的出口与涂覆的金属片8的顶表面和底表面相邻,从而经由管60在金属片8的向上/向下的方向上释放注入的混合气体。
气相钛前体在低温下冷凝。当管60保持在正常温度时,气相钛前体在管60的内壁上冷凝。为了防止气相钛前体冷凝,热丝64盘绕气相钛前体气体流经的管60的外壁,用于保持预定温度。液相钛前体流经的管66也以相同方式形成。也就是说,热丝68盘绕管66的外壁用于保持预定温度,从而防止钛前体在管66的内壁上冷凝。
根据本发明,通过使用等离子体在被连续供给到涂覆室2的金属片8上连续地涂覆超亲水性钛化合物薄膜,将涂覆薄膜的金属片8机械加工成目标形状,例如,加工成空调热交换器的翅片。
如图1所示,用于在涂覆室2内部形成真空的真空泵4与涂覆室2连接,金属片8在安装在上、下侧的电极6之间被连续地供给。通过电极6之间产生的等离子体在金属片8的两个表面上连续地涂覆超亲水性钛化合物薄膜后,金属片8离开涂覆室2。这里,电源10被施加于电极6。
优选地,含有可形成空气或氧气的活性气体的活性气体缸20经由阀22将活性气体注射到涂覆室2。
另外,包含在通过加压器32加压的容器30内的液相钛前体(其是液相四异丙醇钛[Ti(OC3H7)4])由于压力差经由液相质量流量控制器(MFC)38被注入鼓泡器40。通过鼓泡器40鼓泡的气相钛前体被注入涂覆室2。优选地,可形成He或Ar的载气经由液相MFC 38和鼓泡器40之间的管被注射,用于帮助要注入涂覆室2的气相钛前体和气相硅前体。载气包含在载气缸50中并经由阀52被注入管中。加热线圈42盘绕鼓泡器40用于加热和鼓泡液相钛前体。
这里,活性气体、气相钛或硅前体以及载气可在涂覆室2外部合并并经由一个管60被注入涂覆室2(如图1所示),或可经由不同的管被注入涂覆室2并在涂覆室2内经由一个管合并。仍参见图1,合并管60通过涂覆室2的一侧孔被连接。优选地,经由管60注射的混合气体在涂覆的金属片8的向上/向下方向上被释放。也就是说,混合气体以金属片8的向上/向下的方向被供给,用于在上、下电极6之间产生等离子体,从而在金属片8的两个表面上形成钛化合物薄膜。
气相钛或硅前体在低温下冷凝。当管60保持在正常温度时,气相钛前体在管60的内壁上冷凝。为了防止气相钛前体冷凝,热丝64盘绕气相钛前体气体流经的管60的外壁,用于保持预定温度。液相钛前体流经的管66也以相同方式形成。也就是说,热丝68盘绕管66的外壁用于保持预定温度,从而防止钛或硅前体在管66的内壁上冷凝。
参考数字34和36分别表示加压器32的阀和容器30的阀。
根据本发明,通过使用等离子体在被连续供给到涂覆室2的金属片8上连续地涂覆超亲水性Ti-O-C基化合物薄膜,并将涂覆薄膜的金属片8机械加工成目标形状,例如,加工成空调热交换器的翅片。
可通过使用等离子体聚合装置生产超亲水性金属片。如上所述,将超亲水性金属片机械加工成热交换器的翅片,在以下实施例中测量和说明其物理和表面性质。必须承认本发明的范围不受以下实施例的限制,而受权利要求的限制。
实施例
等离子体涂膜的制备
通过使用真空泵4在涂覆室2中形成10-3托的真空度后,将金属片8连接到阳极上并相对于电极6保持在预定距离上(30到150mm),鼓泡器40的加热线圈42经过电加热(80到120℃)用于鼓泡液相前体。盘绕管60外壁的热丝64和68经过电加热(80到120℃),用于防止钛前体在管60和66的内壁上冷凝。气相前体气体、载气以及活性气体经由管被注入涂覆室2,并在金属片8的向上/向下的方向上被释放。
优选的,气相前体气体和载气以3∶1的比率被注入涂覆室2,载气和活性气体以1∶3的比率被注入涂覆室2。
当通过注射的气体获得目标操作真空度时,施加电源,将金属片8相对于管60移动,通过混合气体在电极6之间连续形成等离子体。因此,在金属片8的两个表面上涂覆超亲水性Ti-O-C基化合物薄膜。
在等离子体处理中,电流为1.2A 900V,载气(He或Ar气)的流量为800sccm,活性气体(氧或空气)的流量为1500sccm,气相前体气体的流量为1000sccm,涂覆室2内的真空度为0.2到0.35托。
涂覆薄膜的组成和厚度的分析
根据用于类推表面组成的X射线光电光谱学(XPS),通过使用X射线测量分子的吸收率和发射波分析加工后的薄膜样品的组成,根据用于分析深度组成的原子发射光谱法(AES),通过以固定速度进行溅射分析其厚度,图2和3表示分析结果。
图2是表示当在形成HMDSO防腐薄膜后形成的钛化合物薄膜的XPS数据的图。分析得到19.4原子%的C、58.3原子%的O和19.8原子%的Ti。也就是说,化合物薄膜是Ti-O-C基化合物薄膜。
虽然未说明,当仅涂覆超亲水性化合物薄膜时,制备了Ti-O-C基化合物薄膜。
根据分析结果,虽然条件略有不同,但是钛化合物薄膜通常含有15到22原子%的Ti、45到65原子%的O、和20到25原子%的C和/或20到25原子%的H。
图3是表示典型的AES数据的图。如上所述,通过以固定速度进行溅射分析深度组成的AES可以分析薄膜的厚度。在图3的AES数据中,薄膜的厚度为233
Figure C20048004269400131
(23.3纳米)。Ti-O-O-(C)-(H)基化合物薄膜的厚度限制在100
Figure C20048004269400132
到1500
Figure C20048004269400133
之间。因此,Ti-O-O-(C)-(H)基化合物薄膜的优选厚度为1到100纳米之间。
图4是表示本发明的Ti-O-C基化合物薄膜的SEM照片。如图4所示,得到具有无定形结构的致密薄膜。
薄膜的亲水性和耐老化性
通过将固定量的小滴(0.1cc)从10mm的高度滴下并测量样品表面上小滴的尺寸来评价亲水性能。当薄膜表面为亲水性时,小滴的尺寸由于高分散性而增加,当薄膜表面为疏水性时,小滴的尺寸由于低分散性而减小。图5a表示在亲水性表面上形成的小滴-小滴的尺寸为9到11毫米。图5b表示在疏水性表面上形成的小滴-小滴的尺寸为2到3毫米。
为了评价亲水性的耐老化性,将样品周期地置于蒸馏水中10分钟并干燥10分钟。将初始样品的亲水性能与在300次循环后获得的样品的亲水性能进行比较。
图6为表示试验结果的图。通过等离子体加工的本发明薄膜的亲水性能在300次循环的加速试验后没有变化。另一方面,常规PCM具有优异的初始亲水性能。当将作为亲水试剂的表面活性剂溶于水中时,常规PCM的亲水性能变差。也就是说,常规PCM老化。裸铝在最初阶段具有疏水性。在加速试验后,在铝表面上形成Al2O3层,从而略微改善了亲水性能。
图7是表示本发明的钛化合物薄膜和常规PCM薄膜在1000次循环老化试验结果的图。本发明的薄膜保持亲水性能(小滴尺寸为至少9毫米)。另一方面,常规PCM薄膜的亲水性能随着循环次数的增加而急剧变差。
生产的组合物的亲水性能
图8为表示铝片样品当鼓泡器温度、活性气体、载气和淀积时间改变时其亲水性能试验结果的图。也就是说,图8表示小滴尺寸由于各个因素的变化而不同。
用于鼓泡液相前体的鼓泡器40的加热温度设定为60℃、100℃和120℃。在100℃加热和鼓泡的液相前体具有最高的亲水性能(8.7毫米)。
活性气体从O2、N2和空气改变。使用空气作为活性气体的样品具有最高的亲水性能(9.3毫米)。
载气从He和Ar变化。使用He作为载气的样品具有最高的亲水性能(9.9毫米)。
前体气体的淀积时间从30秒到120秒之间变化,间隔为30秒。通过90秒涂覆的样品与通过120秒涂覆的样品具有相似的亲水性能(9.9毫米)。因此,涂覆法优选进行90秒,以保持亲水性能和减少生产时间。
这里,安装在样品两个表面上用于形成等离子体的电极6的电流为0.13A,容纳样品的涂覆室2内部的真空度保持在0.3托。
为了有效生产涂覆超亲水性薄膜的金属产品,液相前体在鼓泡器40中在100℃受热和鼓泡,空气用作活性气体,He用作载气,涂覆法在涂覆室2内进行90秒。
在上述试验中,涂覆法在适当的样品上进行。在产品的批量生产中,鼓泡器的加热温度、活性气体、载气和淀积时间可根据生产环境和连续批量生产的变动要素而在近似范围内变化。
有益效果
如以上讨论的,根据本发明,可以工业生产规模容易地生产具有优异的亲水性和耐老化性的涂覆薄膜的空调金属材料。
另外,超亲水性薄膜可以在片型金属基材的两个表面上均一地形成。
虽然已经描述了本发明的优选方案,然而可理解本发明将不限于这些优选方案,可由本领域的技术人员在本发明的精神和范围内进行各种变化和改变,本发明的范围由权利要求进行限制。

Claims (21)

1.生产涂覆超亲水性薄膜的金属产品的方法,该方法包括在真空室中通过使用等离子体在被连续供给的片型金属基材的两个表面上连续地涂覆超亲水性钛化合物薄膜,并将涂覆所述超亲水性钛化合物薄膜的片型金属基材机械加工成目标形状。
2.权利要求1的方法,其中所述超亲水性钛化合物薄膜为Ti-O基化合物薄膜。
3.权利要求2的方法,其中所述超亲水性钛化合物薄膜为含有15到22原子%的Ti和45到65原子%的O的Ti-O基化合物薄膜。
4.权利要求2的方法,其中所述超亲水性钛化合物薄膜进一步含有C和/或H。
5.权利要求4的方法,其中所述超亲水性钛化合物薄膜含有15到22原子%的Ti和45到65原子%的O,并且进一步含有20到25原子%的C。
6.权利要求1到5中任一项的方法,其中所述超亲水性钛化合物薄膜的厚度为1到100纳米。
7.权利要求1到5中任一项的方法,其中金属基材为铝基材。
8.权利要求1到5中任一项的方法,其中金属产品为热交换器的翅片。
9.权利要求1到5中任一项的方法,其中涂覆工艺通过将活性气体、气相钛前体和载气注入真空室进行。
10.权利要求9的方法,其中气体注射比满足载气∶活性气体=1∶3。
11.权利要求9的方法,其中气体注射比满足气相钛前体∶载气=3∶1。
12.权利要求9的方法,其中活性气体为空气或O2
13.权利要求9的方法,其中载气选自He、N2和Ar。
14.权利要求9的方法,其中气相钛前体通过使液相四异丙醇钛流经鼓泡器制备。
15.权利要求14的方法,其中注入真空室的气相钛前体的注射量通过调节供给到鼓泡器的液相四异丙醇钛的量进行控制。
16.权利要求9的方法,其中载气在液相四异丙醇钛之前被注入鼓泡器,用于将液相四异丙醇钛转移到鼓泡器。
17.涂覆超亲水性薄膜的金属产品,该金属产品通过如下得到:使用等离子体,用含有15到22原子%的Ti和45到65原子%的O且厚度为1到100纳米的超亲水性Ti-O基化合物薄膜涂覆金属基材。
18.权利要求17的金属产品,其中超亲水性Ti-O基化合物薄膜进一步含有20到25原子%的C或20到25原子%的H。
19.权利要求17或18的金属产品,其中超亲水性Ti-O基化合物薄膜具有无定形结构。
20.权利要求19的金属产品,其中金属基材为铝片。
21.权利要求20中的金属产品,其中涂覆超亲水性Ti-O基化合物薄膜的铝片被机械加工成热交换器的翅片。
CNB200480042694XA 2004-04-06 2004-11-06 生产涂覆超亲水性薄膜的金属产品的方法及涂覆超亲水性薄膜的金属产品 Expired - Fee Related CN100549217C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020040023446 2004-04-06
KR20040023446 2004-04-06

Publications (2)

Publication Number Publication Date
CN1938445A CN1938445A (zh) 2007-03-28
CN100549217C true CN100549217C (zh) 2009-10-14

Family

ID=35125104

Family Applications (3)

Application Number Title Priority Date Filing Date
CNB2004800427016A Expired - Fee Related CN100537824C (zh) 2004-04-06 2004-11-06 生产涂覆超亲水性薄膜的金属产品的方法及涂覆超亲水性薄膜的金属产品
CNB200480042694XA Expired - Fee Related CN100549217C (zh) 2004-04-06 2004-11-06 生产涂覆超亲水性薄膜的金属产品的方法及涂覆超亲水性薄膜的金属产品
CN2004800426935A Expired - Fee Related CN1938444B (zh) 2004-04-06 2004-11-06 涂覆超亲水性和抗菌性薄膜的金属产品及其生产方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CNB2004800427016A Expired - Fee Related CN100537824C (zh) 2004-04-06 2004-11-06 生产涂覆超亲水性薄膜的金属产品的方法及涂覆超亲水性薄膜的金属产品

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN2004800426935A Expired - Fee Related CN1938444B (zh) 2004-04-06 2004-11-06 涂覆超亲水性和抗菌性薄膜的金属产品及其生产方法

Country Status (8)

Country Link
US (5) US8043710B2 (zh)
EP (3) EP1761655B1 (zh)
KR (4) KR100783214B1 (zh)
CN (3) CN100537824C (zh)
AT (3) ATE450629T1 (zh)
DE (3) DE602004024454D1 (zh)
ES (3) ES2336453T3 (zh)
WO (4) WO2005098074A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE450629T1 (de) * 2004-04-06 2009-12-15 Lg Electronics Inc Verfahren zur herstellung eines mit einem ultrahydrophilen dünnen film überzogenen metallprodukts und mit einem ultrahydrophilen dünnen film überzogenes metallprodukt
ITRM20040430A1 (it) * 2004-09-10 2004-12-10 Consiglio Nazionale Ricerche Materiale ibrido a base di ossido di tatanio, relativo processo di preparazione e usi.
CN1965103B (zh) * 2004-12-30 2012-06-27 Lg电子株式会社 超亲水性Ti-O-C基纳米膜制备方法
WO2009060597A1 (ja) * 2007-11-06 2009-05-14 Panasonic Corporation 薄膜形成装置及び薄膜の形成方法
KR101319900B1 (ko) 2010-12-10 2013-10-18 엘지전자 주식회사 기능성 막을 가지는 제품 및 그 제조방법
US8920361B2 (en) * 2011-04-05 2014-12-30 The Texas A&M University System Plasma treatment and plasma enhanced chemical vapor deposition onto temperature sensitive biological materials
US9724440B2 (en) 2013-11-15 2017-08-08 GE Lighting Solutions, LLC Environmental cleaning and antimicrobial lighting component and fixture
US9642358B2 (en) 2013-12-12 2017-05-09 Ge Lighting Solutions Llc Antimicrobial lighting system
KR101650367B1 (ko) * 2015-06-19 2016-08-23 성균관대학교산학협력단 안티 박테리아성 박막의 제조 방법
US10064273B2 (en) 2015-10-20 2018-08-28 MR Label Company Antimicrobial copper sheet overlays and related methods for making and using
KR20190067977A (ko) 2017-12-08 2019-06-18 동국대학교 산학협력단 과일 맥주의 제조 방법 및 이로부터 제조된 과일 맥주

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3577246D1 (de) * 1984-11-20 1990-05-23 Hitachi Maxell Magnetischer aufzeichnungstraeger und herstellung derselben.
US5190807A (en) * 1990-10-18 1993-03-02 Diamonex, Incorporated Abrasion wear resistant polymeric substrate product
JPH0849085A (ja) 1994-08-08 1996-02-20 Nisshin Steel Co Ltd 抗菌性ステンレス鋼板及びその製造方法
US5702770A (en) * 1996-01-30 1997-12-30 Becton, Dickinson And Company Method for plasma processing
EP0870530B1 (en) * 1996-08-05 2005-01-19 Nippon Sheet Glass Co., Ltd. Photocatalyst and process for the preparation thereof
DE19736925A1 (de) * 1996-08-26 1998-03-05 Central Glass Co Ltd Hydrophiler Film und Verfahren zur Erzeugung desselben auf einem Substrat
DE19704947A1 (de) * 1997-02-10 1998-08-13 Leybold Systems Gmbh Verfahren und Vorrichtung zur Schutzbeschichtung von Verspiegelungsschichten
US20020155299A1 (en) * 1997-03-14 2002-10-24 Harris Caroline S. Photo-induced hydrophilic article and method of making same
US6027766A (en) * 1997-03-14 2000-02-22 Ppg Industries Ohio, Inc. Photocatalytically-activated self-cleaning article and method of making same
US6551665B1 (en) * 1997-04-17 2003-04-22 Micron Technology, Inc. Method for improving thickness uniformity of deposited ozone-TEOS silicate glass layers
JP3800567B2 (ja) 1997-05-15 2006-07-26 大日本塗料株式会社 鋼材の防食方法
KR19990047370A (ko) * 1997-12-04 1999-07-05 구자홍 표면의 친수성 또는 소수성이 향상된 냉동, 공조용 금속재료 및 그 향상 방법
KR100256669B1 (ko) * 1997-12-23 2000-05-15 정선종 화학기상증착 장치 및 그를 이용한 구리 박막 형성 방법
TWI221861B (en) * 1998-04-22 2004-10-11 Toyo Boseki Agent for treating metallic surface, surface-treated metal material and coated metal material
US6027466A (en) * 1998-09-04 2000-02-22 Diefenbacher; Beat Adjustable orthopedic device joint
TWI230186B (en) * 1998-10-19 2005-04-01 Toto Ltd Antifouling material and process for producing the same, and coating composition for said material
GB2350841B (en) * 1999-06-08 2001-12-19 Kansai Paint Co Ltd Inorganic film-forming coating composition, preparation method therof and inorganic film-forming method
JP3498739B2 (ja) 1999-08-05 2004-02-16 株式会社豊田中央研究所 光触媒体の形成方法および光触媒物質の製造方法
US6984415B2 (en) * 1999-08-20 2006-01-10 International Business Machines Corporation Delivery systems for gases for gases via the sublimation of solid precursors
US20010026859A1 (en) * 1999-11-30 2001-10-04 Toru Nakamura Functional films, their use, articles having the films and processes for producing these
JP2001280879A (ja) * 2000-01-28 2001-10-10 Matsushita Electric Ind Co Ltd 光触媒熱交換器およびその製造方法
US6749813B1 (en) * 2000-03-05 2004-06-15 3M Innovative Properties Company Fluid handling devices with diamond-like films
JP2002105641A (ja) * 2000-10-03 2002-04-10 Murakami Corp 複合材およびその製造方法
CN1418245A (zh) * 2000-11-17 2003-05-14 有限会社环境设备研究所 可见光应答性涂料、涂膜及物品
US6454912B1 (en) * 2001-03-15 2002-09-24 Micron Technology, Inc. Method and apparatus for the fabrication of ferroelectric films
US6613385B2 (en) * 2001-04-23 2003-09-02 The United States Of America As Represented By The Secretary Of The Navy Highly spin-polarized chromium dioxide thin films prepared by CVD using chromyl chloride precursor
KR100400398B1 (ko) * 2001-04-26 2003-10-01 주식회사 엘지이아이 열교환기 방열핀 제조용 항균판재 및 그 제조방법
KR20020088029A (ko) * 2001-05-16 2002-11-25 한라공조주식회사 친수, 탈취 및 항균성 피막을 가지는 열교환기 및 이열교환기의 피막 형성방법
EP1472391A2 (en) * 2001-08-03 2004-11-03 Elisha Holding LLC Process for treating a conductive surface and products formed thereby
US20030042630A1 (en) * 2001-09-05 2003-03-06 Babcoke Jason E. Bubbler for gas delivery
KR100727372B1 (ko) * 2001-09-12 2007-06-12 토소가부시키가이샤 루테늄착체, 그 제조방법 및 박막의 제조방법
KR100438941B1 (ko) * 2001-10-12 2004-07-03 주식회사 엘지이아이 플라즈마를 이용한 내식성 및 친수성을 가지는 다층막형성방법
CN1256463C (zh) * 2001-11-19 2006-05-17 乐金电子(天津)电器有限公司 利用等离子体形成具有耐腐蚀性和亲水性的多层膜的方法
FI115393B (fi) 2002-03-28 2005-04-29 Abb Oy Järjestelmä ja menetelmä propulsioyksikön moottorin jarruttamiseksi
JPWO2003095193A1 (ja) * 2002-05-09 2005-09-08 独立行政法人理化学研究所 薄膜材料およびその製造方法
WO2004014986A1 (en) * 2002-08-07 2004-02-19 Showa Denko K. K. Metal alkoxide hydrolytic polycondensation solution and transparent films manufactured therefrom
US7211513B2 (en) 2003-07-01 2007-05-01 Pilkington North America, Inc. Process for chemical vapor desposition of a nitrogen-doped titanium oxide coating
AU2004297458B2 (en) * 2003-12-09 2007-08-09 Central Research Institute Of Electric Power Industry Multifunctional material having carbon-doped titanium oxide layer
ATE450629T1 (de) * 2004-04-06 2009-12-15 Lg Electronics Inc Verfahren zur herstellung eines mit einem ultrahydrophilen dünnen film überzogenen metallprodukts und mit einem ultrahydrophilen dünnen film überzogenes metallprodukt
US7354624B2 (en) * 2004-05-28 2008-04-08 Ppg Industries Ohio, Inc. Multi-layer coatings and related methods
US8490863B1 (en) * 2005-10-17 2013-07-23 Dollar Bank, Federal Savings Bank Secure financial report and method of processing and displaying the same
US7892488B2 (en) * 2006-02-10 2011-02-22 Honeywell International, Inc. Thermal liquid flow sensor and method of forming same

Also Published As

Publication number Publication date
US20080193745A1 (en) 2008-08-14
KR20060032565A (ko) 2006-04-17
EP1761655B1 (en) 2009-12-02
CN100537824C (zh) 2009-09-09
US20070287026A1 (en) 2007-12-13
DE602004014421D1 (de) 2008-07-24
EP1759034B1 (en) 2008-10-29
ATE398192T1 (de) 2008-07-15
EP1759034A1 (en) 2007-03-07
WO2005098074A1 (en) 2005-10-20
ES2336453T3 (es) 2010-04-13
CN1938444B (zh) 2010-06-16
WO2005098075A1 (en) 2005-10-20
ATE450629T1 (de) 2009-12-15
WO2005098076A1 (en) 2005-10-20
KR20060032562A (ko) 2006-04-17
CN1938444A (zh) 2007-03-28
KR100746419B1 (ko) 2007-08-03
US20090263649A1 (en) 2009-10-22
KR100783213B1 (ko) 2007-12-06
KR20060032563A (ko) 2006-04-17
KR100783214B1 (ko) 2007-12-06
KR100735950B1 (ko) 2007-07-06
EP1759033B1 (en) 2008-06-11
EP1761655A1 (en) 2007-03-14
US7901786B2 (en) 2011-03-08
KR20060032564A (ko) 2006-04-17
ES2315723T3 (es) 2009-04-01
ES2308276T3 (es) 2008-12-01
CN1938445A (zh) 2007-03-28
EP1759033A1 (en) 2007-03-07
WO2005098078A1 (en) 2005-10-20
ATE412788T1 (de) 2008-11-15
DE602004017518D1 (de) 2008-12-11
DE602004024454D1 (de) 2010-01-14
CN1938446A (zh) 2007-03-28
US20080118770A1 (en) 2008-05-22
US8043710B2 (en) 2011-10-25
US20100028663A1 (en) 2010-02-04

Similar Documents

Publication Publication Date Title
CN100549217C (zh) 生产涂覆超亲水性薄膜的金属产品的方法及涂覆超亲水性薄膜的金属产品
Qi et al. A fast method to fabricate superhydrophobic surfaces on zinc substrate with ion assisted chemical etching
JP5193466B2 (ja) 液体/蒸気堆積方法による基体の金属被覆
Karaman et al. Chemical and physical modification of surfaces
Wang et al. Silicon oxide anticorrosion coating deposition on alloy steel surface by low temperature plasma
EP1831424B1 (en) Method for fabricating an ultra hydrophilic ti-o-c based nano film
KR100836055B1 (ko) 초친수성 Ti-O-C 계 나노 박막 및 그 제조방법
KR100892456B1 (ko) 내식성 및 초친수성 금속 제품
KR100892455B1 (ko) 내식성, 초친수성 및 살/항균성 금속 제품
WO2024049305A1 (en) Method and apparatus for the controlled deposition of coatings on surfaces
Taniuchi et al. Chemical vapor deposition of Si3N4 onto metal substrates
Wahl et al. Conventional and Novel Chemical Vapor Deposition Techniques—Coating Methods to Protect Materials Against Hostile Environments
CN115475744A (zh) 一种超疏水仿生纳米复合涂层的制备方法
KR100438942B1 (ko) 플라즈마를 이용한 금속의 내부식처리방법
Dinelli Development of a new methodology for Flame Spraying of colloidal suspension process for nanostructured coating production
WO2010038077A1 (en) Method of coating pipettes
JPH0119468B2 (zh)

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20091014

Termination date: 20171106

CF01 Termination of patent right due to non-payment of annual fee