[go: up one dir, main page]

CN100533690C - 用于在半导体器件中增强迁移率的方法和装置 - Google Patents

用于在半导体器件中增强迁移率的方法和装置 Download PDF

Info

Publication number
CN100533690C
CN100533690C CNB2005800248608A CN200580024860A CN100533690C CN 100533690 C CN100533690 C CN 100533690C CN B2005800248608 A CNB2005800248608 A CN B2005800248608A CN 200580024860 A CN200580024860 A CN 200580024860A CN 100533690 C CN100533690 C CN 100533690C
Authority
CN
China
Prior art keywords
channel
region
semiconductor
stress
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CNB2005800248608A
Other languages
English (en)
Other versions
CN1989602A (zh
Inventor
马瑞斯·K.·奥罗斯基
苏莱施·温卡特森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NXP USA Inc
Original Assignee
Freescale Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Freescale Semiconductor Inc filed Critical Freescale Semiconductor Inc
Publication of CN1989602A publication Critical patent/CN1989602A/zh
Application granted granted Critical
Publication of CN100533690C publication Critical patent/CN100533690C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/01Manufacture or treatment
    • H10D62/021Forming source or drain recesses by etching e.g. recessing by etching and then refilling
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/027Manufacture or treatment of FETs having insulated gates [IGFET] of lateral single-gate IGFETs
    • H10D30/0275Manufacture or treatment of FETs having insulated gates [IGFET] of lateral single-gate IGFETs forming single crystalline semiconductor source or drain regions resulting in recessed gates, e.g. forming raised source or drain regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/67Thin-film transistors [TFT]
    • H10D30/674Thin-film transistors [TFT] characterised by the active materials
    • H10D30/6741Group IV materials, e.g. germanium or silicon carbide
    • H10D30/6748Group IV materials, e.g. germanium or silicon carbide having a multilayer structure or superlattice structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/751Insulated-gate field-effect transistors [IGFET] having composition variations in the channel regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/791Arrangements for exerting mechanical stress on the crystal lattice of the channel regions
    • H10D30/795Arrangements for exerting mechanical stress on the crystal lattice of the channel regions being in lateral device isolation regions, e.g. STI
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/791Arrangements for exerting mechanical stress on the crystal lattice of the channel regions
    • H10D30/797Arrangements for exerting mechanical stress on the crystal lattice of the channel regions being in source or drain regions, e.g. SiGe source or drain
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/113Isolations within a component, i.e. internal isolations
    • H10D62/115Dielectric isolations, e.g. air gaps
    • H10D62/116Dielectric isolations, e.g. air gaps adjoining the input or output regions of field-effect devices, e.g. adjoining source or drain regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/82Heterojunctions
    • H10D62/822Heterojunctions comprising only Group IV materials heterojunctions, e.g. Si/Ge heterojunctions

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)

Abstract

提出了一种方法和装置,其在晶体管沟道区中提供了增强的迁移率。在一种实施方式中,在衬底上方形成受双轴向应力的沟道区(18)。在衬底上方形成源(30)和漏(32)区。源区和漏区将附加的单轴向应力提供到受双轴向应力的沟道区。单轴向应力和双轴向应力对于P沟道晶体管都是压缩应力,且对于N沟道晶体管都是拉伸应力。结果是,对于短沟道和长沟道晶体管都增加了载流子迁移率。这两种晶体管类型可以被包括在相同的集成电路中。

Description

用于在半导体器件中增强迁移率的方法和装置
技术领域
本发明涉及一种半导体器件,尤其涉及一种具有增强的迁移率的半导体器件。
背景技术
在半导体器件制造中,目前为止,对于半导体材料,硅是最普遍的选择。通常通过各种工艺改进有规律地增强晶体管性能。一种改进是改变硅中的应力,以改善迁移率。一些技术包括除了硅外使用其它材料,以显示出应力以及因此的迁移率改进。例如,添加锗的硅层导致受压缩应力的硅锗层。受压缩应力的这种硅锗层在改善P沟道晶体管载流子迁移率方面是有用的。找到产生拉伸应力的方法用于改善N沟道晶体管的载流子。
已经开发出各种技术以实现拉伸和压缩应力二者。迁移率随着应力增加而改善,但是最终,足够的应力增加导致晶格中的破裂或者扩展的缺陷,这使其不能用于半导体制造。另一个问题在于,典型的应力增强技术在改善仅在短沟道或者长沟道晶体管中之一中的迁移率方面是有用的。例如,SiGe中双轴向压缩应力的典型问题在于,其在改善短沟道晶体管中载流子迁移率方面几乎不起作用。另一方面,单轴向应力的典型问题在于其在改善长沟道晶体管中载流中迁移率方面几乎不起作用。由此,迁移率增强导致迁移率随着沟道长度变化而变化,这使得更难提供晶体管的模型,反过来,更难使用具有这些迁移率增强的晶体管来设计电路。
由此,需要提供改善上述问题中一个或多个的迁移率增强。
发明内容
根据本发明的一方面,提供一种形成晶体管的方法,包括:提供衬底;在衬底上方形成受双轴向应力的沟道区;和在衬底上方形成源区和漏区,源区和漏区将单轴向应力提供到沟道区。
根据本发明的另一方面,提供一种半导体器件,包括:衬底;在衬底上方形成的硅层;在硅层上方形成的沟道区,沟道区受双轴向应力;和在衬底上方形成的源区和漏区,源区和漏区将单轴向应力提供给沟道区。
附图说明
借助于实例描述本发明,且本发明不限于附图,图中相似的参考符号表示相似的元件,且其中:
图1是在根据本发明第一实施方式的处理中第一阶段的半导体结构的截面图;
图2是在处理中随后阶段图1的半导体结构的截面图;
图3是在处理中随后阶段图2的半导体结构的截面图;
图4是在根据本发明第二实施方式的处理中在第一阶段半导体结构的截面图;
图5是在处理中在随后阶段图4的半导体结构的截面图;
图6是在处理中在随后阶段图5的半导体结构的截面图;
图7是根据使用本发明的替代方案的半导体结构的截面图;
图8是权利要求7的半导体结构的顶视图。
本领域技术人员将理解,在为了简单和清楚的目的示出了图中的元件,而不必按比例画出。例如,图中一些元件的尺寸相对于其它元件被放大了,以有助于改善对本发明实施方式的理解。
具体实施方式
在一个方面,通过使沟道区处于单轴向应力和双轴向应力下,晶体管增强了载流子迁移率。结果是对于短和长沟道晶体管都增强了迁移率,并且减少了在长沟道和短沟道晶体管之间的迁移率差别。通过参考附图和以下的描述可对此更好地理解。
图1中所示出的是半导体结构10,其包括绝缘层12、在绝缘层12上的半导体层14、在绝缘层12上方并包围半导体层14的沟槽隔离16、在半导体层14上的半导体层18、栅介质20、其上方的栅极22、包围栅极22的侧壁隔离物24、在栅极22一侧上的源/漏极扩展区23、以及在栅极22另一侧上的源/漏极扩展25。半导体层18外延生长于半导体层14上。由此,半导体层18与半导体层14的晶体结构和晶体间隙相匹配。由于由外延生长导致的强制晶体间隙匹配,在半导体层14和18之间的材料变化导致两者之间的应力变化。
对于N沟道的情况,半导体层14优选是硅,且半导体层18优选是硅碳合金。由于硅碳合金处于双轴向拉伸应力下,因此硅优先弛豫。在替代方案中,半导体层14是至少部分弛豫的硅锗,且半导体层18可以是硅或者是硅碳合金,其任一种都处于双轴向拉伸应力下。在这些实例中的任一个中,对于N沟道情况,半导体层14具有大于随后外延生长的半导体层18的本征晶格常数的本征晶格常数。
对于P沟道情况,半导体层14优选是硅,且半导体层18优选是硅锗。硅可以弛豫,结果硅锗处于双轴向压缩应力下。在替代方案中,半导体层14是于其上生长将处于双轴向压缩应力下的半导体层18的另一半导体材料。在该实例中,对于P沟道情况,半导体层14具有小于随后外延生长的半导体层18的本征晶格常数的本征晶格常数。
图2中示出的是在蚀刻源/漏扩展23和25、半导体层18和半导体层14,以在栅极22一侧上留下凹槽26和在栅极22另一侧上留下凹槽28之后的半导体结构10。
图3中示出的是在分别用半导体填料30和半导体填料32填充凹槽26和28之后的半导体结构10。半导体填料30和32可原位掺杂或通过注入掺杂,以成为源/漏区。用于半导体填料30和32的材料与用于半导体层18的材料类型相同,但是具有不同的元素比率。例如,对于N沟道情况,若其中半导体层18是硅碳合金,则区域30和32中的半导体材料可以是硅碳合金,但是硅对碳的比率不同。硅碳合金的情况下,在半导体层18中产生单轴向拉伸应力。与P沟道情况相似,若其中半导体层是硅锗,则半导体填料30和32可以是硅锗,但硅对锗的比例不同。硅锗的情况下,在半导体层18中产生单轴向压缩应力。半导体填料30和32是应力源(stressors),其能提供单轴向的压缩或者拉伸应力,这取决于材料。
由此,图3获得的半导体器件10具有半导体区18,其用作受单轴向应力和双轴向应力的沟道。由此,对于长沟道和短沟道,都增强了迁移率。通过调整每种类型的应力量,对于长和短沟道情况下,都将迁移率保持为非常接近于相同。
图4中示出的是半导体结构50,包括绝缘层52、在绝缘层52上部分地弛豫的硅锗半导体层54、包围半导体层54的沟槽隔离56、在半导体层54上的栅介质62、在栅介质62上的栅极、包围栅极58的侧壁隔离物60、在半导体层54中栅极58一侧上的源/漏扩展64、和在半导体层54中栅极58另一侧上的源/漏扩展66。该结构用于P沟道晶体管,这是因为,由于其双轴向压缩应力,部分弛豫的硅锗提供了增强的空穴迁移率。
图5中示出的在穿过源/漏扩展64和66并进入半导体层54中进行蚀刻,以在栅极58的一侧上留下凹槽68并在栅极58的另一侧上留下凹槽70之后的半导体结构50。
图6中示出的是在分别用半导体填料72和半导体填料74填充凹槽68和70之后的半导体结构50。用于半导体填料72和74的材料与用于半导体层54的材料类型相同,但是其具有不同的元素比率。由此,在其中半导体层54是硅锗的实例中,半导体填料72和74中硅对锗的比率不同于半导体层54中。半导体填料72和74可原位掺杂或者通过注入掺杂,以成为源/漏区。在该半导体器件50中,由于部分弛豫的硅锗,该半导体层54具有双轴向压缩应力,且进一步通过形成半导体填料72和74提供单轴向的附加压缩应力。结果是具有双轴向和单轴向应力二者的器件结构。在这种情况下,压缩应力对于P沟道晶体管有利,但是使用不同的半导体材料,拉伸应力对于N沟道晶体管是有利的。
图7中示出的是半导体器件100,其包括绝缘层102、在绝缘层102上的半导体主体122、在半导体主体122上的半导体主体104、包围半导体主体122和104的沟槽隔离116、在半导体主体104上的栅介质110、在栅介质110上的栅极106、包围栅极106的侧壁隔离物108、在半导体主体122中栅极106一侧上的源/漏区124、在半导体主体122中栅极106另一侧上的源/漏区126、在半导体主体104中栅极106一侧上的源/漏区112、在半导体主体104中于栅极106另一侧上的源/漏区114、与栅极106隔开并穿过源/漏区112和124至绝缘层102的绝缘柱塞118、以及与栅极108隔开并穿过源/漏区114和126的绝缘柱塞120。
对于P沟道情况,半导体层122优选是硅,且半导体层104优选是硅锗。硅可以弛豫,结果硅锗处于压缩应力下。在替代方案中,半导体层122可以是其上生长将处于压缩应力下的半导体层104的另一种半导体材料。
图8中示出的是半导体器件100的顶视图,并且示出了取得图7的截面图的位置。其示出了穿过源/漏区112的绝缘柱塞118,并且示出了在栅极106和沟槽隔离116之间的栅极106一侧上的多个这种绝缘柱塞。相似地,示出了在栅极106另一侧上的绝缘柱塞120,并示出了穿过源/漏区114的多个这种绝缘柱塞。作为应力源的这些绝缘柱塞与沟槽隔离116同时并且以相同方式形成。这可通过氧化物内衬和氧化物如TEOS填充实现。方块132、150表示位于隔离柱塞114和120之间的源/漏区的触点。存在多个这种触点,以降低外部互连和源/漏区之间的接触电阻。该半导体器件100是提供单轴向应力的替代方案。在这种情况下,单轴向应力是半导体主体104中的压缩应力。
在前述说明中,参考具体实施方式描述了本发明。然而,本领域技术人员应当理解,可作出各种改进和变化,而不脱离本发明的范围,如在以下的权利要求中所列举出的。例如,图1-6中描述了用于获得单轴向应力的技术,但是也可使用其它替代方案,例如图7和8中所示出的。而且,可以将其它元素引入到晶格结构中,以实现不同的掺杂特性。例如,对于N沟道情况,可引入Ge。这将易于降低拉伸应力,但是其能通过与硅相比增加碳来补偿。在这种情况下,源/漏极应当处于进一步的拉伸应力下,从而需要进一步增加碳对锗的比率以超出对于沟道的比率。效果是对于给定拉伸张力增加了碳浓度。碳的增加具有降低硼扩散速度的效果。相似地,对于P沟道晶体管,将碳增加到沟道中,反过来其将需要增加Ge。Ge的进一步增加对于源/漏极是有利的。增加Ge浓度以保持相同的压缩应力的效果是增加砷的扩散速度。因此,以说明性而非限制性的方式看待说明书和附图,且希望所有这种修改都包括在本发明的范围内。
上面已经参考具体实施方式描述了益处、其它优点和对问题的解决方案。然而,不将益处、优点、对问题的解决方案以及可能导致任何益处、优点或者解决方案发生或者变得更加明确的任何元素构成为是任一或者所有权利要求严格的、需要的、或者本质的特征或者元素。如在此所使用的,术语“包括”或者其变形都希望覆盖非排他性的包含,以使得包括一系列元素的工艺、方法、产品或装置,而不仅包括这些元素,还包括没有特别列出或者结合到这种工艺、方法、产品或装置的其它元素。

Claims (2)

1.一种形成P沟道晶体管的方法,包括:
提供衬底;
在衬底上方形成受双轴向应力的沟道区,其中该双轴向应力的沟道区处于压缩应力之下;以及
在衬底上方形成源区和漏区,源区和漏区将压缩单轴向应力提供到沟道区;
其中所述沟道区包含硅和锗,且源区和漏区每一个都包含硅和锗,其中所述源区和漏区的锗含量高于沟道区的锗含量。
2.一种形成N沟道晶体管的方法,包括:
提供衬底;
在衬底上方形成受双轴向应力的沟道区,其中该双轴向应力的沟道区处于拉伸应力之下;以及
在衬底上方形成源区和漏区,源区和漏区将拉伸单轴向应力提供到沟道区;
其中所述沟道区包含硅和碳,且源区和漏区每一个都包含硅和碳,其中所述源区和漏区的碳含量高于沟道区的碳含量。
CNB2005800248608A 2004-08-24 2005-07-27 用于在半导体器件中增强迁移率的方法和装置 Active CN100533690C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/925,108 US7288448B2 (en) 2004-08-24 2004-08-24 Method and apparatus for mobility enhancement in a semiconductor device
US10/925,108 2004-08-24

Publications (2)

Publication Number Publication Date
CN1989602A CN1989602A (zh) 2007-06-27
CN100533690C true CN100533690C (zh) 2009-08-26

Family

ID=35943818

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005800248608A Active CN100533690C (zh) 2004-08-24 2005-07-27 用于在半导体器件中增强迁移率的方法和装置

Country Status (7)

Country Link
US (2) US7288448B2 (zh)
EP (1) EP1784854A2 (zh)
JP (1) JP5060296B2 (zh)
KR (1) KR101218841B1 (zh)
CN (1) CN100533690C (zh)
TW (1) TWI423342B (zh)
WO (1) WO2006023219A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105244281A (zh) * 2015-10-14 2016-01-13 上海华力微电子有限公司 一种半导体器件的制备方法

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100642747B1 (ko) * 2004-06-22 2006-11-10 삼성전자주식회사 Cmos 트랜지스터의 제조방법 및 그에 의해 제조된cmos 트랜지스터
JP4327104B2 (ja) * 2005-01-20 2009-09-09 富士通マイクロエレクトロニクス株式会社 Mos型電界効果トランジスタの製造方法及びmos型電界効果トランジスタ
US20080121932A1 (en) * 2006-09-18 2008-05-29 Pushkar Ranade Active regions with compatible dielectric layers
US7470972B2 (en) * 2005-03-11 2008-12-30 Intel Corporation Complementary metal oxide semiconductor integrated circuit using uniaxial compressive stress and biaxial compressive stress
US7429775B1 (en) 2005-03-31 2008-09-30 Xilinx, Inc. Method of fabricating strain-silicon CMOS
US7446350B2 (en) * 2005-05-10 2008-11-04 International Business Machine Corporation Embedded silicon germanium using a double buried oxide silicon-on-insulator wafer
US7423283B1 (en) 2005-06-07 2008-09-09 Xilinx, Inc. Strain-silicon CMOS using etch-stop layer and method of manufacture
US7655991B1 (en) 2005-09-08 2010-02-02 Xilinx, Inc. CMOS device with stressed sidewall spacers
US7936006B1 (en) 2005-10-06 2011-05-03 Xilinx, Inc. Semiconductor device with backfilled isolation
JP2007157788A (ja) * 2005-11-30 2007-06-21 Toshiba Corp 半導体装置
US7479422B2 (en) * 2006-03-10 2009-01-20 Freescale Semiconductor, Inc. Semiconductor device with stressors and method therefor
US7279758B1 (en) 2006-05-24 2007-10-09 International Business Machines Corporation N-channel MOSFETs comprising dual stressors, and methods for forming the same
DE102006035669B4 (de) 2006-07-31 2014-07-10 Globalfoundries Inc. Transistor mit einem verformten Kanalgebiet, das eine leistungssteigernde Materialzusammensetzung aufweist und Verfahren zur Herstellung
US7897493B2 (en) * 2006-12-08 2011-03-01 Taiwan Semiconductor Manufacturing Company, Ltd. Inducement of strain in a semiconductor layer
US20090289280A1 (en) * 2008-05-22 2009-11-26 Da Zhang Method for Making Transistors and the Device Thereof
US8003454B2 (en) * 2008-05-22 2011-08-23 Freescale Semiconductor, Inc. CMOS process with optimized PMOS and NMOS transistor devices
JP5295651B2 (ja) * 2008-06-13 2013-09-18 株式会社東芝 乱数生成装置
US8299453B2 (en) * 2009-03-03 2012-10-30 International Business Machines Corporation CMOS transistors with silicon germanium channel and dual embedded stressors
US20110049582A1 (en) * 2009-09-03 2011-03-03 International Business Machines Corporation Asymmetric source and drain stressor regions
US8035141B2 (en) * 2009-10-28 2011-10-11 International Business Machines Corporation Bi-layer nFET embedded stressor element and integration to enhance drive current
KR101576529B1 (ko) * 2010-02-12 2015-12-11 삼성전자주식회사 습식 식각을 이용한 실리콘 파셋트를 갖는 반도체 장치 및 제조방법
US8659054B2 (en) * 2010-10-15 2014-02-25 International Business Machines Corporation Method and structure for pFET junction profile with SiGe channel
US8962417B2 (en) 2010-10-15 2015-02-24 International Business Machines Corporation Method and structure for pFET junction profile with SiGe channel
CN103367430B (zh) * 2012-03-29 2016-11-02 中芯国际集成电路制造(上海)有限公司 晶体管以及形成方法
KR20150020845A (ko) * 2013-08-19 2015-02-27 에스케이하이닉스 주식회사 수직 채널을 갖는 반도체 장치, 그를 포함하는 저항 변화 메모리 장치 및 그 제조방법
FR3011119B1 (fr) * 2013-09-23 2017-09-29 Commissariat Energie Atomique Procede de realisation d'un transistor
FR3023411B1 (fr) * 2014-07-07 2017-12-22 Commissariat Energie Atomique Generation localisee de contrainte dans un substrat soi
FR3087658B1 (fr) 2018-10-26 2021-09-17 Basf Beauty Care Solutions France Sas Nouvelles utilisations cosmetiques et dermatologiques d'un extrait du champignon inonotus obliquus
CN118825064B (zh) * 2024-09-03 2025-02-18 深圳平湖实验室 半导体器件及其制备方法、芯片、电子设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6319799B1 (en) * 2000-05-09 2001-11-20 Board Of Regents, The University Of Texas System High mobility heterojunction transistor and method
CN1477718A (zh) * 2002-08-21 2004-02-25 ������������ʽ���� 半导体器件

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3146045B2 (ja) * 1992-01-06 2001-03-12 株式会社東芝 半導体装置及びその製造方法
US5789306A (en) 1996-04-18 1998-08-04 Micron Technology, Inc. Dual-masked field isolation
US5849440A (en) 1996-07-02 1998-12-15 Motorola, Inc. Process for producing and inspecting a lithographic reticle and fabricating semiconductor devices using same
JP3311940B2 (ja) * 1996-09-17 2002-08-05 株式会社東芝 半導体装置及びその製造方法
US5891769A (en) * 1997-04-07 1999-04-06 Motorola, Inc. Method for forming a semiconductor device having a heteroepitaxial layer
US5858830A (en) 1997-06-12 1999-01-12 Taiwan Semiconductor Manufacturing Company, Ltd. Method of making dual isolation regions for logic and embedded memory devices
JPH11163343A (ja) * 1997-11-28 1999-06-18 Nec Corp 半導体装置およびその製造方法
JP3443343B2 (ja) * 1997-12-03 2003-09-02 松下電器産業株式会社 半導体装置
KR100307635B1 (ko) * 1999-09-27 2001-11-02 윤종용 SiGe 채널의 모스 트랜지스터 및 그 제조 방법
US6197632B1 (en) 1999-11-16 2001-03-06 International Business Machines Corporation Method for dual sidewall oxidation in high density, high performance DRAMS
JP3420168B2 (ja) * 2000-04-07 2003-06-23 株式会社東芝 電界効果トランジスタ及びこれを用いた集積化論理回路
US6541382B1 (en) 2000-04-17 2003-04-01 Taiwan Semiconductor Manufacturing Company Lining and corner rounding method for shallow trench isolation
JP2001338988A (ja) * 2000-05-25 2001-12-07 Hitachi Ltd 半導体装置及びその製造方法
US7312485B2 (en) 2000-11-29 2007-12-25 Intel Corporation CMOS fabrication process utilizing special transistor orientation
JP3618319B2 (ja) * 2000-12-26 2005-02-09 松下電器産業株式会社 半導体装置及びその製造方法
WO2002052652A1 (en) * 2000-12-26 2002-07-04 Matsushita Electric Industrial Co., Ltd. Semiconductor device and its manufacturing method
JP4034627B2 (ja) * 2001-09-28 2008-01-16 テキサス インスツルメンツ インコーポレイテツド 集積回路及びその製造方法
US6621131B2 (en) 2001-11-01 2003-09-16 Intel Corporation Semiconductor transistor having a stressed channel
US6600170B1 (en) * 2001-12-17 2003-07-29 Advanced Micro Devices, Inc. CMOS with strained silicon channel NMOS and silicon germanium channel PMOS
US6605498B1 (en) 2002-03-29 2003-08-12 Intel Corporation Semiconductor transistor having a backfilled channel material
US6703293B2 (en) * 2002-07-11 2004-03-09 Sharp Laboratories Of America, Inc. Implantation at elevated temperatures for amorphization re-crystallization of Si1-xGex films on silicon substrates
US6787864B2 (en) * 2002-09-30 2004-09-07 Advanced Micro Devices, Inc. Mosfets incorporating nickel germanosilicided gate and methods for their formation
JP2004193203A (ja) * 2002-12-09 2004-07-08 Matsushita Electric Ind Co Ltd 電界効果トランジスタおよびその製造方法
JP2004200335A (ja) * 2002-12-18 2004-07-15 Toshiba Corp 絶縁ゲート型電界効果トランジスタを含む半導体装置及びその製造方法
JP4301816B2 (ja) * 2003-01-06 2009-07-22 富士通マイクロエレクトロニクス株式会社 半導体装置及び半導体装置の製造方法
US7019326B2 (en) * 2003-11-14 2006-03-28 Intel Corporation Transistor with strain-inducing structure in channel
US7413957B2 (en) * 2004-06-24 2008-08-19 Applied Materials, Inc. Methods for forming a transistor
US7227205B2 (en) * 2004-06-24 2007-06-05 International Business Machines Corporation Strained-silicon CMOS device and method
US7470972B2 (en) * 2005-03-11 2008-12-30 Intel Corporation Complementary metal oxide semiconductor integrated circuit using uniaxial compressive stress and biaxial compressive stress

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6319799B1 (en) * 2000-05-09 2001-11-20 Board Of Regents, The University Of Texas System High mobility heterojunction transistor and method
CN1477718A (zh) * 2002-08-21 2004-02-25 ������������ʽ���� 半导体器件

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105244281A (zh) * 2015-10-14 2016-01-13 上海华力微电子有限公司 一种半导体器件的制备方法

Also Published As

Publication number Publication date
US7872311B2 (en) 2011-01-18
TW200629419A (en) 2006-08-16
US7288448B2 (en) 2007-10-30
US20080006880A1 (en) 2008-01-10
TWI423342B (zh) 2014-01-11
JP2008511173A (ja) 2008-04-10
WO2006023219A2 (en) 2006-03-02
WO2006023219A3 (en) 2006-09-28
CN1989602A (zh) 2007-06-27
EP1784854A2 (en) 2007-05-16
JP5060296B2 (ja) 2012-10-31
KR101218841B1 (ko) 2013-01-21
KR20070046139A (ko) 2007-05-02
US20060046366A1 (en) 2006-03-02

Similar Documents

Publication Publication Date Title
CN100533690C (zh) 用于在半导体器件中增强迁移率的方法和装置
US7494902B2 (en) Method of fabricating a strained multi-gate transistor
TWI411106B (zh) 非對稱半導體裝置中用於增強效能之方法及設備
US8120065B2 (en) Tensile strained NMOS transistor using group III-N source/drain regions
US8062946B2 (en) Strained channel transistor structure with lattice-mismatched zone and fabrication method thereof
US6882025B2 (en) Strained-channel transistor and methods of manufacture
KR100703986B1 (ko) 동작 특성과 플리커 노이즈 특성이 향상된 아날로그트랜지스터를 구비하는 반도체 소자 및 그 제조 방법
US7473608B2 (en) N-channel MOSFETs comprising dual stressors, and methods for forming the same
US20050035470A1 (en) Strained channel complementary field-effect transistors and methods of manufacture
CN100397659C (zh) 具混成应变诱导层的应变晶体管及其形成方法
CN1985374A (zh) 改进的应变硅cmos器件和方法
JP2010505267A (ja) 応力印加電界効果トランジスタおよびその製造方法
US9564488B2 (en) Strained isolation regions
Ang et al. Thin body silicon-on-insulator N-MOSFET with silicon-carbon source/drain regions for performance enhancement
US9136330B2 (en) Shallow trench isolation
US7863141B2 (en) Integration for buried epitaxial stressor
KR20080040551A (ko) 전계 효과 트랜지스터의 성능 향상을 위한 컨포말하지 않은스트레스 라이너
US7268362B2 (en) High performance transistors with SiGe strain
US7816274B2 (en) Methods for normalizing strain in a semiconductor device
Collaert et al. Stress hybridization for multigate devices fabricated on supercritical strained-SOI (SC-SSOI)
US20130193483A1 (en) Mosfet Structures Having Compressively Strained Silicon Channel

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: Texas in the United States

Patentee after: NXP America Co Ltd

Address before: Texas in the United States

Patentee before: Fisical Semiconductor Inc.