CN100520650C - Fuzzy PID control method and execution apparatus of numerical control machine - Google Patents
Fuzzy PID control method and execution apparatus of numerical control machine Download PDFInfo
- Publication number
- CN100520650C CN100520650C CNB2005100474259A CN200510047425A CN100520650C CN 100520650 C CN100520650 C CN 100520650C CN B2005100474259 A CNB2005100474259 A CN B2005100474259A CN 200510047425 A CN200510047425 A CN 200510047425A CN 100520650 C CN100520650 C CN 100520650C
- Authority
- CN
- China
- Prior art keywords
- control
- fuzzy
- axis
- pid
- pid control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 90
- 230000008569 process Effects 0.000 claims abstract description 22
- 238000012545 processing Methods 0.000 claims abstract description 20
- 238000004891 communication Methods 0.000 claims abstract description 5
- 230000006870 function Effects 0.000 claims description 40
- 230000008859 change Effects 0.000 claims description 34
- 238000001514 detection method Methods 0.000 claims description 19
- 238000005516 engineering process Methods 0.000 claims description 13
- 230000007246 mechanism Effects 0.000 claims description 11
- 230000003068 static effect Effects 0.000 claims description 7
- 238000009795 derivation Methods 0.000 claims description 4
- 230000009466 transformation Effects 0.000 claims 1
- 238000003754 machining Methods 0.000 abstract description 9
- 238000010586 diagram Methods 0.000 description 12
- 239000000523 sample Substances 0.000 description 5
- 238000005070 sampling Methods 0.000 description 5
- 238000011161 development Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000007726 management method Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000013178 mathematical model Methods 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000011217 control strategy Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Images
Landscapes
- Feedback Control In General (AREA)
Abstract
本发明公开一种数控机床模糊PID控制方法及实现装置,它采用人机接口、任务协调、运动控制及可编程控制器,将运动控制与可编程控制器加载于系统的内核空间,人机接口、任务协调部分加载于系统的用户空间,彼此间通过系统的共享通讯缓冲区互相通信;运动控制包括运动规划与轴控制两部分;其中:轴控制根据运动规划的设置值,采用模糊PID控制方法动态确定轴的控制参数并实现轴的稳定控制,从而形成加工过程中机床伺服轴的运动。采用本发明可通过将模糊控制与PID控制相结合的方法来支持实用化、性能优异智能型数控装置,达到加工过程中机床伺服轴运动的优化控制。
The invention discloses a fuzzy PID control method and a realization device of a numerically controlled machine tool. It adopts a man-machine interface, task coordination, motion control and a programmable controller, and loads the motion control and the programmable controller into the kernel space of the system, and the man-machine interface , The task coordination part is loaded in the user space of the system, and communicates with each other through the shared communication buffer of the system; the motion control includes two parts: motion planning and axis control; among them: the axis control adopts the fuzzy PID control method according to the setting value of the motion planning Dynamically determine the control parameters of the axis and realize the stable control of the axis, thus forming the movement of the servo axis of the machine tool during the machining process. By adopting the invention, the method of combining fuzzy control and PID control can be used to support a practical intelligent numerical control device with excellent performance, so as to achieve the optimal control of the motion of the servo axis of the machine tool in the process of processing.
Description
技术领域 technical field
本发明涉及数控装置控制技术,具体地说是一种数控机床模糊PID控制方法及实现装置,它可实现机床伺服轴控制参数智能化自适应调整。The invention relates to the control technology of a numerical control device, in particular to a fuzzy PID control method and a realization device of a numerical control machine tool, which can realize intelligent self-adaptive adjustment of control parameters of a machine tool servo axis.
背景技术 Background technique
近年来随着制造技术的进展,数控加工工艺及加工零件日趋复杂。复杂零件及工艺的控制要求,使得现有装置的控制方法已很难满足系统性能要求。以现有数控装置采用的PID(P代表比例、I代表积分、D代表微分)控制方法为例加以说明。PID控制方法历史悠久,因其原理简单、便于实现,被广泛应用于数控装置的轴控制中。采用PID控制方法的PID控制器具有三个重要的工程化参数Kp(比例参数)、Ki(积分参数).Kd(微分参数),这些参数一经整定,就不再改变。控制器用同样参数处理不同执行情况,不随受控参量的变化而调整,因此,适用于可建立精确数学模型的确定性控制系统。然而,因加工过程的复杂性,机床伺服轴是时变的动态系统。机床伺服轴经常在不同运动状态,如快移、点动、粗加工、精加工间切换。不同的运动状态具有不同的性能(速度、精度)指标,要求不同的控制参数。由于采用PID控制方法的PID控制器参数整定困难,对数控机床无法达到理想的控制效果。In recent years, with the development of manufacturing technology, the CNC machining process and processing parts have become increasingly complex. The control requirements of complex parts and processes make it difficult for existing device control methods to meet system performance requirements. Take the PID (P for proportional, I for integral, D for differential) control method adopted by the existing numerical control device as an example to illustrate. The PID control method has a long history and is widely used in the axis control of numerical control devices because of its simple principle and easy implementation. The PID controller using the PID control method has three important engineering parameters K p (proportional parameter), K i (integral parameter) and K d (differential parameter). Once these parameters are set, they will not change. The controller uses the same parameters to deal with different execution situations, and does not adjust with the change of the controlled parameters. Therefore, it is suitable for deterministic control systems that can establish accurate mathematical models. However, due to the complexity of the machining process, the servo axis of the machine tool is a time-varying dynamic system. Machine tool servo axes are often switched between different motion states, such as rapid movement, inching, roughing, and finishing. Different motion states have different performance (speed, precision) indicators and require different control parameters. Due to the difficulty in setting the parameters of the PID controller using the PID control method, the ideal control effect cannot be achieved for the CNC machine tool.
针对PID控制器参数整定困难、性能欠佳,对运行工况适应性差等问题,近年来发展了很多控制方法,如系统辨识、自适应控制与鲁棒控制。但上述三种方法本质上都没有摆脱基于被控对象数学模型的定量化思想,难以对复杂的非线性不确定系统进行有效而精确的控制。以模糊控制、神经网络和专家控制为代表的智能控制的出现,特别是近年来模糊控制技术的迅猛发展为解决这类问题提供了新思路。在智能控制中,系统所研究的目标不再是被控对象,而是控制器本身。控制器不再是单一的数学解析模型,而是数学解析和知识系统相结合的广义模型。因此,应用智能控制技术研制具有拟人智能特征的智能化数控装置,实现对进给速度、切削深度、坐标移动、主轴转速等工艺参数的优化控制成为数控装置的发展趋势。Aiming at the problems of PID controller parameter tuning difficulties, poor performance, and poor adaptability to operating conditions, many control methods have been developed in recent years, such as system identification, adaptive control, and robust control. However, none of the above three methods can get rid of the quantitative idea based on the mathematical model of the controlled object in essence, and it is difficult to effectively and accurately control the complex nonlinear uncertain system. The emergence of intelligent control represented by fuzzy control, neural network and expert control, especially the rapid development of fuzzy control technology in recent years, provides new ideas for solving such problems. In intelligent control, the object studied by the system is no longer the controlled object, but the controller itself. The controller is no longer a single mathematical analysis model, but a generalized model combining mathematical analysis and knowledge system. Therefore, the application of intelligent control technology to develop intelligent numerical control devices with anthropomorphic intelligence features to achieve optimal control of process parameters such as feed speed, cutting depth, coordinate movement, and spindle speed has become the development trend of numerical control devices.
智能控制技术的发展已经历了一段时间,但目前仍处于开创性研究阶段,存在尚未解决的许多理论问题,如常用的二维模糊控制器,虽然具有良好的动态性能,但静态性能较差,无法消除稳态误差。这些问题使智能控制技术在工业过程控制中远未得到如同像在家电产品中的推广。智能控制的工程化实践面临着如何解决“控制性能优于传统PID的控制器设计”及如何便于系统实现的“简单性”等问题。The development of intelligent control technology has gone through a period of time, but it is still in the pioneering research stage, and there are many theoretical problems that have not been resolved. For example, the commonly used two-dimensional fuzzy controller has good dynamic performance, but poor static performance. Steady-state errors cannot be eliminated. These problems make intelligent control technology far from being popularized in industrial process control as it is in household appliances. The engineering practice of intelligent control is faced with how to solve the problems of "controller design with better control performance than traditional PID" and how to facilitate the "simplicity" of system implementation.
发明内容 Contents of the invention
本发明的目的是提供一种面向数控机床模糊PID控制方法及智能型实现装置。本发明运用的模糊PID方法,是一种通过将模糊控制与PID控制方法结合来支持实用化、性能优异智能型数控装置的设计方法;基于此方法,本发明采用PC平台开发了智能型的数控实现装置,以实现加工过程中机床伺服轴运动的控制优化。The object of the present invention is to provide a fuzzy PID control method and an intelligent realization device for numerically controlled machine tools. The fuzzy PID method used in the present invention is a design method that supports practical and high-performance intelligent numerical control devices by combining fuzzy control and PID control methods; based on this method, the present invention uses a PC platform to develop an intelligent numerical control device. Realize the device to realize the control optimization of the servo axis movement of the machine tool during the machining process.
为了实现上述目的,本发明的技术方案如下:In order to achieve the above object, the technical scheme of the present invention is as follows:
采用人机接口、任务协调、运动控制及可编程控制器,将运动控制与可编程控制器加载于系统的内核空间,人机接口、任务协调部分加载于系统的用户空间,彼此间通过系统的共享通讯缓冲区互相通信;运动控制包括运动规划与轴控制两部分;轴控制根据轴运动规划的设置值,采用模糊PID控制方法动态确定轴的控制参数并实现轴的稳定控制,从而形成数控机床加工过程中伺服轴的运动;Using human-machine interface, task coordination, motion control and programmable controller, the motion control and programmable controller are loaded in the kernel space of the system, and the human-machine interface and task coordination are loaded in the user space of the system, and they are connected to each other through the system The shared communication buffer communicates with each other; the motion control includes two parts: motion planning and axis control; the axis control adopts the fuzzy PID control method to dynamically determine the control parameters of the axis and realize the stable control of the axis according to the set value of the axis motion planning, thus forming a CNC machine tool Movement of the servo axis during machining;
所述模糊PID控制方法由参数可调PID调节器和模糊自整定机制两部分组成,其中:以PID调节器作为基本的控制单元,针对机床伺服轴在加工过程中的非线性特性和各种加工要求,引入模糊控制技术来实现调节器参数的调整。模糊自整定机制接收运动规划输出的设置值并通过编码器检测轴的实际位置值,形成误差e与误差变化率ec,再由模糊自整定机制中的模糊化进行处理,形成语言变量,经模糊推理及解模糊化处理,产生PID调节器的参数,在该参数的控制下,PID调节器控制机床伺服轴的运动,从而完成伺服轴的控制过程;所述模糊推理是以误差e和误差变化率ec作为输入,推理规则形式如下:The fuzzy PID control method is composed of two parts, a parameter-adjustable PID regulator and a fuzzy self-tuning mechanism, wherein: the PID regulator is used as the basic control unit, aiming at the nonlinear characteristics of the machine tool servo axis during processing and various processing Requirements, the introduction of fuzzy control technology to achieve the adjustment of regulator parameters. The fuzzy self-tuning mechanism receives the setting value of the motion planning output and detects the actual position value of the shaft through the encoder to form the error e and the error change rate ec, which is then processed by the fuzzification in the fuzzy self-tuning mechanism to form a language variable. Inference and defuzzification processing generate the parameters of the PID regulator, under the control of the parameters, the PID regulator controls the motion of the servo shaft of the machine tool, thereby completing the control process of the servo shaft; the fuzzy reasoning is based on the error e and the error change The rate ec is used as input, and the inference rule has the following form:
If(e is...)and(ec is...)then(Kp is...)(Ki is...)(Kd is...) (1)If(e is...)and(ec is...)then(K p is...)(K i is...)(K d is...) (1)
基于所述规则,得出:PID调节器的PID参数是误差e和误差变化ec的非线性函数,具体可记为:Based on the rules, it is concluded that the PID parameters of the PID regulator are nonlinear functions of the error e and the error change ec, which can be specifically recorded as:
其中,分别表示PID参数中的比例、积分、微分的初始值,{ej+ecj}p、{ej+ecj}i、{ej+ecj}d表示经模糊推理和解模糊化后得到的调整PID参数中比例、积分、微分的变化量;其中j为序数;in, Respectively represent the initial values of the proportion, integral and differential in the PID parameters, {e j +ec j } p , {e j +ec j } i , {e j +ec j } d represent the obtained after fuzzy reasoning and defuzzification Adjustment of the proportional, integral and differential variation in the PID parameters; where j is an ordinal number;
所述数控机床模糊PID控制方法的实现装置,基于ISA总线,由电源供电,包括:显示器、中央控制器、机床操作面板、轴控制电路及接口电路,其中:中央控制器与显示器、机床操作面板通信,并通过ISA总线与轴控制电路及接口电路通信,控制程序安装在中央控制器的FLASH或DOM中,实现数控机床模糊PID控制;The implementation device of the fuzzy PID control method of the numerically controlled machine tool is based on the ISA bus and powered by a power supply, including: a display, a central controller, a machine tool operation panel, an axis control circuit and an interface circuit, wherein: the central controller and the display, the machine tool operation panel Communication, and communicate with the axis control circuit and interface circuit through the ISA bus, and the control program is installed in the FLASH or DOM of the central controller to realize the fuzzy PID control of the CNC machine tool;
所述控制程序包括轴控(Axisctrl)、轴特性(AxisProperty)、轴约束(AxisConstraint)、轴设置(AxisSetpoint)、轴检测(AxisSense)、轴驱动(AxisAction)、轴模糊PID控制(AxisFuzzyPID)部分;以轴控为主程序,其中:轴特性记录轴的动态特性与静态特性;轴约束记录轴的运动能力;轴设置作为模糊PID控制与运动规划的接口,记录轴设置位置;轴检测作为位置编码器的接口,检测轴的实际运行位置与速度;轴驱动作为伺服轴的接口,提供电机运转的信号;轴模糊PID控制按照模糊PID控制方法,调用轴特性、轴约束、轴检测、轴驱动的数据,实现轴运动的优化控制;The control program includes axis control (Axisctrl), axis characteristics (AxisProperty), axis constraint (AxisConstraint), axis setting (AxisSetpoint), axis detection (AxisSense), axis drive (AxisAction), and axis fuzzy PID control (AxisFuzzyPID) parts; The axis control is the main program, in which: the axis characteristics record the dynamic characteristics and static characteristics of the axis; the axis constraints record the movement ability of the axis; the axis setting is used as the interface between fuzzy PID control and motion planning, and the axis setting position is recorded; the axis detection is used as the position code The interface of the controller detects the actual running position and speed of the axis; the axis drive serves as the interface of the servo axis to provide the signal of the motor running; the axis fuzzy PID control uses the fuzzy PID control method to call the axis characteristics, axis constraints, axis detection, and axis drive. Data, realize the optimal control of axis motion;
所述模糊PID控制包括:初始化操作、输入数据操作、误差判断操作、模糊化操作、模糊推理操作、解模糊化操作、增益控制操作、控制保护操作、PID控制操作、模糊PID控制操作,其中:The fuzzy PID control includes: initialization operation, input data operation, error judgment operation, fuzzification operation, fuzzy inference operation, defuzzification operation, gain control operation, control protection operation, PID control operation, fuzzy PID control operation, wherein:
初始化操作(fuzzyInit()),具体包括PID控制操作比例、积分、微分参数初始化和模糊自整定参数初始化;Initialization operation (fuzzyInit()), specifically including PID control operation ratio, integral, differential parameter initialization and fuzzy self-tuning parameter initialization;
输入数据操作(inputError())由轴设置(AxisSetpoint)读取运动规划给出的设置值(setPoint),由轴检测AxisSense读取当前轴实际位置值,形成模糊PID控制的误差e和误差变化率ec;Input data operation (inputError()) reads the setting value (setPoint) given by the motion planning from the axis setting (AxisSetpoint), reads the actual position value of the current axis from the axis detection AxisSense, and forms the error e and error change rate of the fuzzy PID control ec;
误差判断操作(ctrlAccuracy())评价当前PID控制操作的执行情况;若输入误差e的值小于系统的控制精度一个单位数量级,则不需要调整,此时跳过模糊控制相关模块,直接运行PID控制操作;否则运行模糊控制相关模块,调整PID控制的相关参数;The error judgment operation (ctrlAccuracy()) evaluates the execution of the current PID control operation; if the value of the input error e is less than the control accuracy of the system by an order of magnitude, no adjustment is required. At this time, skip the fuzzy control related modules and directly run the PID control Operation; otherwise, run fuzzy control related modules and adjust related parameters of PID control;
模糊化操作(fuzzy())将来自输入数据操作的输入值按照模糊化方法和模糊隶属度函数,映射为一定区间上的模糊值,其模糊值的论域为:The fuzzy operation (fuzzy()) maps the input value from the input data operation into a fuzzy value in a certain interval according to the fuzzy method and the fuzzy membership function. The domain of fuzzy value is:
e={-0.75,-0.5,-0.25,0,0.25,0.5,0.75}e={-0.75, -0.5, -0.25, 0, 0.25, 0.5, 0.75}
ec={-0.15,-0.1,-0.05,0,0.05,0.1,0.15}ec={-0.15, -0.1, -0.05, 0, 0.05, 0.1, 0.15}
所对应的模糊子集为:The corresponding fuzzy subset is:
e,ec={LN(负方向偏大)、MN(负方向居中)、SN(负方向偏小)、ZZ(零)、SP(正方向偏小)、MP(正方向居中)、LP(正方向偏大)}e, ec={LN (the negative direction is too large), MN (the negative direction is centered), SN (the negative direction is small), ZZ (zero), SP (the positive direction is small), MP (the positive direction is centered), LP ( The positive direction is too large)}
模糊推理操作(fuzzyInf())根据模糊推理规则和模糊推理方法,推导输入误差e和误差变化ec对应的参数Kp、Ki、Kd,该输出值的形式为模糊值;The fuzzy inference operation (fuzzyInf()) derives the parameters K p , K i , K d corresponding to the input error e and the error change ec according to the fuzzy inference rules and the fuzzy inference method, and the output value is in the form of a fuzzy value;
解模糊化操作(deFuzzy())对模糊推理操作的输出值根据输出隶属度函数进行解模糊化,得到PID控制操作的比例、积分、微分调节增益参数(Δp、Δi、Δd);The defuzzification operation (deFuzzy()) defuzzifies the output value of the fuzzy inference operation according to the output membership function, and obtains the proportional, integral, and differential adjustment gain parameters (Δp, Δi, Δd) of the PID control operation;
增益控制操作(gainCtrl())根据解模糊化操作得到的比例、积分、微分调节增益参数Δp、Δi、Δd的值来调整PID控制操作的比例、积分、微分参数Kp、Ki、Kd的值,调节原则为:The gain control operation (gainCtrl()) adjusts the proportional, integral, and differential parameters K p , K i , and K d of the PID control operation according to the value of the proportional, integral, and differential adjustment gain parameters Δp, Δi , and Δd obtained by the defuzzification operation value, the adjustment principle is:
{ej+ecj}p=pa×Δp{e j +ec j } p =p a ×Δp
{ej+ecj}i=ia×Δi (3){e j +ec j }i=i a ×Δi (3)
{ej+ecj}d=da×Δd{e j +ec j } d =d a ×Δd
其中pa、ia、da为大于零的实数,j为序数;Among them, p a , i a , d a are real numbers greater than zero, and j is an ordinal number;
控制保护操作(ctrlSafe())设定PID控制操作的比例、积分、微分参数调节的上限,其PID控制操作的比例、积分、微分参数的变化范围:如果PID控制操作的比例参数Kp大于设定的最大值pmax,则令控制操作的比例参数Kp的值等于设定的最大值pmax;如果PID控制操作的积分参数Ki大于设定的最大值imax,则令PID控制操作的积分参数Ki的值等于设定的最大值imax;如果PID控制操作的微分参数Kd大于设定的最大值dmax,则令PID控制操作的微分参数Kd的值等于设定的最大值dmax;其中,pmax、imax、dmax分别为PID控制操作的比例、积分、微分参数调节的上限,其具体值根据轴、刀具和电机的实际性能指标设定;The control and protection operation (ctrlSafe()) sets the upper limit of the adjustment of the proportional, integral and differential parameters of the PID control operation, and the variation range of the proportional, integral and differential parameters of the PID control operation: if the proportional parameter K p of the PID control operation is greater than the set If the value of the proportional parameter K p of the control operation is equal to the set maximum value p max ; if the integral parameter K i of the PID control operation is greater than the set maximum value i max , then the PID control operation The value of the integral parameter K i of the PID control operation is equal to the set maximum value i max ; if the differential parameter K d of the PID control operation is greater than the set maximum value d max , then the value of the differential parameter K d of the PID control operation is equal to the set value The maximum value d max ; among them, p max , i max , and d max are the upper limits of the proportional, integral, and differential parameter adjustments of the PID control operation, and their specific values are set according to the actual performance indicators of the shaft, tool, and motor;
PID控制操作(PIDCtrl())根据控制保护操作所得到比例、积分、微分参数Kp、Ki、Kd的值,采用传统的PID控制方法,实现对轴的控制功能;PID control operation (PIDCtrl()) realizes the control function of the axis by using the traditional PID control method according to the values of the proportional, integral and differential parameters K p , K i , and K d obtained from the control and protection operation;
模糊PID控制操作是调用上述输入数据、误差判断、模糊化、模糊推理、解模糊化、增益控制、控制保护及PID控制操作,实现对机床伺服轴的优化控制;具体流程为:首先进行输入数据操作,输入数据操作后进行误差判断操作,如有误差则依次进行模糊化操作、模糊推理操作、解模糊化操作、增益控制操作,再进入控制保护操作;如没有误差则直接至控制保护操作;最后进行PID控制操作;The fuzzy PID control operation is to call the above input data, error judgment, fuzzification, fuzzy reasoning, defuzzification, gain control, control protection and PID control operation to realize the optimal control of the servo axis of the machine tool; the specific process is: firstly, input data Operation, after the input data operation, the error judgment operation is performed. If there is an error, the fuzzification operation, fuzzy reasoning operation, defuzzification operation, gain control operation are performed in sequence, and then enter the control protection operation; if there is no error, go directly to the control protection operation; Finally, perform PID control operation;
PID控制操作的比例、积分、微分参数初始化包括PID控制操作的比例、积分、微分参数初值的初始化以及PID控制操作的比例、积分、微分参数最大值的初始化;模糊自整定参数初始化包括对模糊控制输入输出隶属度函数的初始化、模糊控制输入、输出系数的初始化以及模糊推理规则的初始化;定义模糊值的论域误差e和误差变化ec的隶属度函数为开区间,区间边界的隶属度函数选择梯形隶属度函数,其他为三角隶属度函数;其中所述比例、积分、微分参数Kp、Ki、Kd推导规则的归纳:基于大量的工程实验,模糊推理方法选择乘积推理机,乘积推理机使用模糊并组合的独立推理原则,采用Mamdani积含义,所有t-范数算子都选用代数积算子,所有s-范数算子都选用最大算子;所述解模糊操作选择中心平均解模糊器作为解模糊器。The initialization of the proportional, integral and differential parameters of the PID control operation includes the initialization of the initial value of the proportional, integral and differential parameters of the PID control operation and the initialization of the maximum value of the proportional, integral and differential parameters of the PID control operation; the initialization of the fuzzy self-tuning parameters includes the fuzzy self-tuning parameter initialization Control the initialization of input and output membership functions, the initialization of fuzzy control input and output coefficients, and the initialization of fuzzy inference rules; define the membership function of the domain error e and error change ec of fuzzy values as an open interval, and the membership function of the interval boundary Select the trapezoidal membership function, and the others are triangular membership functions; the induction of the proportional, integral, and differential parameters K p , K i , and K d derivation rules: based on a large number of engineering experiments, the fuzzy reasoning method selects the product reasoning machine, and the product The inference engine uses the independent inference principle of fuzzy combination, adopts the meaning of Mamdani product, all t-norm operators select the algebraic product operator, and all s-norm operators select the maximum operator; the defuzzification operation selects the center The average defuzzifier serves as the defuzzifier.
与现有的技术相比,本发明有以下优点:Compared with the prior art, the present invention has the following advantages:
一是控制精度高。方法充分利用机床伺服轴在加工过程中的运动特性,即在某一加工过程中,控制对象为线性系统,采用PID调节器(为了区别现有技术的PID控制器,这里称PID调节器)作为基本的控制单元。因此,充分利用了PID方法简单、稳态无静差、控制精度高的特点,避免了常用二维模糊控制存在的静差问题。One is high control precision. The method makes full use of the motion characteristics of the servo axis of the machine tool in the processing process, that is, in a certain processing process, the control object is a linear system, and a PID regulator (in order to distinguish the PID controller of the prior art, here is called a PID regulator) is used as the Basic control unit. Therefore, the characteristics of simple PID method, no static error in steady state and high control precision are fully utilized, and the static error problem existing in common two-dimensional fuzzy control is avoided.
二是动态性能好。针对加工过程中机床伺服轴在不同运动状态间的切换,引入模糊控制。不仅可根据现场实际运行状况,在线调整PID调节器的控制参数,使之趋于最优状态,而且与被控对象的动态特性和控制策略等有关的知识可以嵌入到数控实现装置中,以适应轴控制中非线性扰动的变化,从而使系统具有更强的鲁棒性。The second is good dynamic performance. Fuzzy control is introduced to switch between different motion states of the servo axis of the machine tool during the machining process. Not only can the control parameters of the PID regulator be adjusted online according to the actual operating conditions on site, so that it tends to the optimal state, but also the knowledge related to the dynamic characteristics and control strategies of the controlled object can be embedded in the numerical control implementation device to adapt to The change of the nonlinear disturbance in the axis control makes the system more robust.
三是执行效率高。根据现场的实际运行情况,随时调整PID调节器参数的值,保证当前PID控制参数是相对优化的,所以可以获得较高的执行速度。The third is high execution efficiency. According to the actual operation situation on site, adjust the value of the PID regulator parameters at any time to ensure that the current PID control parameters are relatively optimized, so a higher execution speed can be obtained.
四是可靠性高。针对数控装置中检测环节与驱动环节的特殊地位,系统采用现场可编程门阵列技术设计并实现检测与驱动的电路,在确保系统开放的前提下,提高系统的可靠性。Four is high reliability. In view of the special status of the detection link and the drive link in the numerical control device, the system adopts the field programmable gate array technology to design and realize the detection and drive circuit, and improves the reliability of the system under the premise of ensuring the system is open.
附图说明 Description of drawings
图1为本发明方法总体结构图。Fig. 1 is the overall structural diagram of the method of the present invention.
图2为图1中本发明轴控制原理图。Fig. 2 is a schematic diagram of the axis control of the present invention in Fig. 1 .
图3为本发明方法的实现装置结构图。Fig. 3 is a structural diagram of a device for realizing the method of the present invention.
图4为图3中轴控制电路的结构框图。FIG. 4 is a structural block diagram of the axis control circuit in FIG. 3 .
图5为图4中现场可编程门阵列的功能框图。FIG. 5 is a functional block diagram of the field programmable gate array in FIG. 4 .
图6为本发明实现机床伺服轴控制的控制程序结构图。Fig. 6 is a structural diagram of the control program for realizing the servo axis control of the machine tool according to the present invention.
图7为本发明实现机床伺服轴控制的控制程序流程图。Fig. 7 is a flow chart of the control program for realizing the servo axis control of the machine tool according to the present invention.
图8为本发明为控制程序中模糊PID控制操作图。Fig. 8 is a fuzzy PID control operation diagram in the control program of the present invention.
图9为本发明模糊PID控制伺服轴误差变化轨迹。Fig. 9 is the change trajectory of the servo axis error in the fuzzy PID control of the present invention.
图10为现有技术PID控制伺服轴误差变化轨迹。Fig. 10 is the change trajectory of the servo axis error under PID control in the prior art.
具体实施方式 Detailed ways
下面结合附图对本发明作进一步详细说明。The present invention will be described in further detail below in conjunction with the accompanying drawings.
(1)数控机床模糊PID控制方法(1) Fuzzy PID control method for CNC machine tools
参见图1,采用人机接口、任务协调、运动控制及可编程控制器,将运动控制与可编程控制器加载于系统的内核空间,人机接口、任务协调部分加载于系统的用户空间,彼此间通过系统的共享通讯缓冲区互相通信;其中:Referring to Fig. 1, the human-machine interface, task coordination, motion control and programmable controller are used, and the motion control and programmable controller are loaded in the kernel space of the system, and the human-machine interface and task coordination are loaded in the user space of the system. Communicate with each other through the system's shared communication buffer; where:
人机接口用来接受操作命令与工件程序,用来显示本发明实现装置的加工过程,实现机床操作人员与本发明实现装置间的交互。The man-machine interface is used to accept operation commands and workpiece programs, to display the processing process of the realization device of the present invention, and to realize the interaction between machine tool operators and the realization device of the present invention.
任务协调由状态管理与工件程序解释两部分组成。状态管理采用有限状态机技术,实现加工状态间,如自动加工、手动等方式间的自动管理与切换。工件程序解释采用编译技术,实现操作命令与工件程序到机床控制命令的分解。Task coordination is composed of state management and part program interpretation. State management adopts finite state machine technology to realize automatic management and switching between processing states, such as automatic processing and manual processing. Part program interpretation adopts compiling technology to realize the decomposition of operation command and part program to machine tool control command.
运动控制包括运动规划与轴控制两部分,运动规划通过速度规划与曲线插补细化机床控制命令,生成具有位置与速度约束的机床伺服轴设置值;轴控制根据设置值,采用模糊PID控制方法动态确定轴的控制参数并实现轴的稳定控制,从而形成数控机床加工过程中伺服轴的运动。Motion control includes motion planning and axis control. Motion planning refines machine tool control commands through speed planning and curve interpolation, and generates machine tool servo axis setting values with position and speed constraints; axis control adopts fuzzy PID control method based on setting values Dynamically determine the control parameters of the axis and realize the stable control of the axis, thus forming the movement of the servo axis in the process of CNC machine tool processing.
可编程控制器由梯形图编辑器与可编程控制器引擎两部分组成。梯形图编辑器实现以梯形图表示机床电器控制程序的编辑与转换。可编程控制器引擎采用解释技术实现机床电器控制程序的解释执行,从而实现机床电器,如冷却液开关、换刀等控制。The programmable controller consists of two parts: the ladder diagram editor and the programmable controller engine. The ladder diagram editor implements the editing and conversion of the machine tool electrical control program represented by the ladder diagram. The programmable controller engine uses interpretation technology to realize the interpretation and execution of the control program of machine tool electrical appliances, so as to realize the control of machine tool electrical appliances, such as coolant switch and tool change.
用户通过人机接口输入工件程序,工件程序在任务协调的控制下,形成机床控制命令,机床控制命令经运动规划生成轴控制设置值后,进入轴控制阶段;轴控制阶段采用模糊PID控制方法,根据轴的运动状态在线调整控制参数,从而实现伺服轴的优化控制。The user inputs the workpiece program through the human-machine interface, and the workpiece program forms a machine tool control command under the control of task coordination. After the machine tool control command generates the axis control setting value through motion planning, it enters the axis control stage; the axis control stage adopts fuzzy PID control method, Adjust the control parameters online according to the motion state of the axis, so as to realize the optimal control of the servo axis.
模糊PID控制方法由参数可调PID调节器(为了区别现有技术的PID控制器,这里称PID调节器)和模糊自整定机制两部分组成,方法原理图如图2所示,其中:以PID调节器作为基本的控制单元,以利用其控制精度高的特点。针对机床伺服轴在加工过程中的非线性特性和各种加工要求,引入模糊控制技术来实现调节器参数的调整。模糊自整定机制接收运动规划输出的设置值并通过编码器检测轴的实际位置值,形成误差e与误差变化率ec,再由模糊自整定机制中的模糊化进行处理,形成语言变量,经模糊推理及解模糊化处理,产生PID调节器的参数。在该参数的控制下,PID调节器控制机床伺服轴的运动,从而完成伺服轴的控制过程。The fuzzy PID control method is composed of two parts: a PID regulator with adjustable parameters (in order to distinguish the PID controller of the prior art, it is called a PID regulator here) and a fuzzy self-tuning mechanism. The regulator is used as the basic control unit to take advantage of its high control accuracy. Aiming at the non-linear characteristics and various processing requirements of the servo axis of the machine tool in the processing process, the fuzzy control technology is introduced to realize the adjustment of the regulator parameters. The fuzzy self-tuning mechanism receives the setting value of the motion planning output and detects the actual position value of the shaft through the encoder to form the error e and the error change rate ec, which is then processed by the fuzzification in the fuzzy self-tuning mechanism to form a language variable. Reasoning and defuzzification processing to generate the parameters of the PID regulator. Under the control of this parameter, the PID regulator controls the movement of the servo axis of the machine tool, thus completing the control process of the servo axis.
所述模糊推理是以误差e和误差变化率ec作为输入,推理规则形式如下:The fuzzy reasoning takes the error e and the error rate of change ec as input, and the reasoning rules are as follows:
If(e is...)and(ec is...)then(Kp is...)(Ki is...)(Kd is...) (1)If(e is...)and(ec is...)then(K p is...)(K i is...)(K d is...) (1)
基于所述规则,得出:PID调节器的PID参数是误差e和误差变化ec的非线性函数,具体可记为:Based on the rules, it is concluded that the PID parameters of the PID regulator are nonlinear functions of the error e and the error change ec, which can be specifically recorded as:
其中,分别表示PID参数中比例、积分、微分的初始值,{ej+ecj}p、{ej+ecj}i、{ej+ecj}d表示经模糊推理和解模糊化后得到的PID参数中比例、积分、微分的变化量;其中j为序数。in, respectively represent the initial values of proportion, integral and differential in the PID parameters, {e j +ec j } p , {e j +ec j } i , {e j +ec j } d represent the values obtained after fuzzy reasoning and defuzzification The variation of proportional, integral and differential in PID parameters; where j is an ordinal number.
虽然e和ec均是时间的函数,但PID调节器参数的取值只由e与ec具体值决定,而与处在什么时刻无关。因此,该模糊PID控制本质上是一个静态(或定常)非线性系统,可实现各个非线性参数的独立整定。为了确保数控机床的稳定性,消除加工过程中可能产生的振动,本方法对PID调节器控制参数进行范围限定。Although both e and ec are functions of time, the value of the PID regulator parameters is only determined by the specific values of e and ec, and has nothing to do with what time it is. Therefore, the fuzzy PID control is essentially a static (or steady) nonlinear system, which can realize the independent tuning of each nonlinear parameter. In order to ensure the stability of the CNC machine tool and eliminate the vibration that may occur during the machining process, this method limits the range of the control parameters of the PID regulator.
(2)数控机床模糊PID控制方法的实现装置(2) Implementation device of fuzzy PID control method for CNC machine tools
如图3所示,数控机床模糊PID控制方法的实现装置,基于ISA总线,由电源4供电,包括:TFT型显示器1、中央控制器2、机床操作面板3、轴控制电路5及接口电路6,其中:中央控制器2与显示器1、机床操作面板3通信,并通过ISA总线与轴控制电路5及接口电路6通信,控制程序安装在中央控制器2的FLASH或DOM型存储器中,实现控制数控机床模糊PID控制;为了确保控制装置控制性能与开放特性,装置的软件平台采用具有实时扩展的通用操作系统RTLinux。As shown in Figure 3, the implementation device of the fuzzy PID control method for CNC machine tools is based on the ISA bus and powered by a power supply 4, including:
具体如下:details as follows:
TFT型显示器1的尺寸为10.4″,采用640 X 480的显示方式,支持16位增强色。The size of the
中央控制器2采用标准的工控板卡,CPU采用Intel的PentiumMMX,主频200MHz,内存32M,支持FLASH与DOM两种方式,存储容量64M。Central controller 2 adopts standard industrial control board, CPU adopts Intel Pentium MMX, main frequency is 200MHz, memory is 32M, supports FLASH and DOM two ways, storage capacity is 64M.
机床操作面板3是人机交互的界面,完成键盘编辑、显示信息和图形及完成对机床操作的等功能。操作面板包括主键盘板、功能键盘板、钥匙开关和LCD指示灯、波段开关、急停开关、循环启动,循环停止按钮等(为现有技术)。The machine tool operation panel 3 is an interface for human-computer interaction, and completes functions such as keyboard editing, displaying information and graphics, and completing the operation of the machine tool. The operation panel comprises a main keyboard board, a function keyboard board, a key switch and an LCD indicator light, a band switch, an emergency stop switch, a cycle start, and a cycle stop button (for prior art).
电源4为数控系统提供+5V、+12V、-12V三种直流电源。它具有高效率,高可靠性,低输出纹波与噪声的特点。电源单元主要由工业用开关电源T-50B、电源控制板、电源输入板、电源EMI滤波器四部分组成(为市购产品)。The power supply 4 provides three DC power supplies of +5V, +12V and -12V for the numerical control system. It features high efficiency, high reliability, low output ripple and noise. The power supply unit is mainly composed of industrial switching power supply T-50B, power supply control board, power input board, and power supply EMI filter (commercially available products).
轴控制电路5以现场可编程门阵列FPGA为核心,其电路结构框图如图4所示。它根据机床伺服轴的控制要求,提供D/A输出接口、编码器输入接口、开关信号接口、测头信号接口、显示灯信号接口、输入输出电路接口、编码器故障检测接口、ISA总线接口,并由现场可编程门阵列提供控制逻辑。其中D/A输出接口提供伺服驱动的控制信号,编码器输入接口检测伺服电机中编码器的位置信号,开关信号接口检测机床伺服轴的回零点与极限位置,测头信号接口检测测头的在线位置信号,显示灯信号接口提供轴控制中的执行状态,输入输出电路接口为接口电路提供控制信号,编码器故障检测接口检测编码器的故障。其中上述接口电路均为标准电路(市购产品),电路产生信号最后通过ISA总线接口电路与装置中的中央控制器进行通信,由其上的控制软件完成机床伺服轴的控制功能。The core of axis control circuit 5 is Field Programmable Gate Array FPGA, and its circuit structure block diagram is shown in Fig. 4 . According to the control requirements of the servo axis of the machine tool, it provides D/A output interface, encoder input interface, switch signal interface, probe signal interface, display light signal interface, input and output circuit interface, encoder fault detection interface, ISA bus interface, And the control logic is provided by the field programmable gate array. Among them, the D/A output interface provides the control signal of the servo drive, the encoder input interface detects the position signal of the encoder in the servo motor, the switch signal interface detects the zero return point and limit position of the servo axis of the machine tool, and the probe signal interface detects the on-line of the probe The position signal and display lamp signal interface provide the execution state in the axis control, the input and output circuit interface provides the control signal for the interface circuit, and the encoder fault detection interface detects the fault of the encoder. Wherein the above-mentioned interface circuits are all standard circuits (commercially available products), and the signals generated by the circuit finally communicate with the central controller in the device through the ISA bus interface circuit, and the control software on it completes the control function of the machine tool servo axis.
轴控制电路由一块现场可编程门阵列提供控制逻辑,现场可编程门阵列采用通用器件。控制逻辑根据轴的控制功能,由超高速集成电路硬件描述语言VHDL编写,其功能框图如图5所示。其中地址译码逻辑、总线控制器、中断控制器为测头接口控制逻辑、编码器接口控制逻辑、编码器故障检测接口控制逻辑和D/A输出控制逻辑提供地址信号和控制命令信号。测头接口控制逻辑、编码器接口控制逻辑、编码器故障检测接口控制逻辑,根据地址信号和控制命令控制相应的接口电路完成装置的位置检测功能。D/A输出接口控制逻辑提供接口电路中D/A转换芯片所需的数据和控制信号,产生伺服驱动所需的模拟电压信号。输入输出控制逻辑和使能控制逻辑通过其接口电路提供输入、输出开关量控制信号。EEPROM接口和硬件狗为系统提供软硬件加密功能。灯、开关接口控制逻辑通过其接口电路为机床操作部件提供指示和操作信号。The control logic of the axis control circuit is provided by a field programmable gate array, and the field programmable gate array adopts general-purpose devices. The control logic is written by the ultra-high-speed integrated circuit hardware description language VHDL according to the control function of the axis, and its functional block diagram is shown in Figure 5. The address decoding logic, bus controller, and interrupt controller provide address signals and control command signals for probe interface control logic, encoder interface control logic, encoder fault detection interface control logic, and D/A output control logic. Probe interface control logic, encoder interface control logic, encoder fault detection interface control logic, control the corresponding interface circuit according to the address signal and control command to complete the position detection function of the device. The D/A output interface control logic provides the data and control signals required by the D/A conversion chip in the interface circuit, and generates the analog voltage signal required by the servo drive. The input and output control logic and the enabling control logic provide input and output switch control signals through their interface circuits. EEPROM interface and hardware dog provide software and hardware encryption functions for the system. The control logic of the light and switch interface provides instructions and operation signals for the machine tool operating parts through its interface circuit.
接口电路6为标准电路(市购产品),主要功能是提供隔离的64输入/48输出数字接口,起着装置与机床功能部件(如:各种开关、指示灯以及继电器)之间的信息传递作用。数控机床中各种开关(如限位开关等)的状态要通过数字输入端口读入到装置中,而数控机床控制面板上的指示灯以及继电器的通断,则通过接口电路6的数字输出端口进行控制。接口电路6的每个通道都是光电隔离的,增强了系统的抗干扰能力。The
其中,接口电路6采用两个D型37针插座为输入接口,每个插座有32通道;采用两个D型25孔插座为输出接口,每个插座有24通道。D型插座通过端子板与机床电器相连,构成了装置的机床电器控制回路。Among them, the
如图6-7所示,控制程序包括轴控(Axisctrl)、轴特性(AxisProperty)、轴约束(AxisConstraint)、轴设置(AxisSetpoint)、轴检测(AxisSense)、轴驱动(AxisAction)、轴模糊PID控制(AxisFuzzyPID)部分;以轴控为主程序,其中:轴特性记录轴的动态特性与静态特性,如时间常数、开环增益、闭环增益、死区、反向间隙等;轴约束记录轴的运动能力,如最大行程、软限程、硬限程等以轴运动的安全性;轴设置作为模糊PID控制与运动规划的接口,记录轴控制设置值;轴检测作为编码器的接口,检测轴的实际运行位置与速度;轴驱动作为伺服驱动的接口,提供伺服轴电机运转的信号;轴模糊PID控制按照模糊PID控制方法,调用轴特性、轴约束、轴检测、轴驱动的数据,实现轴运动的优化控制。As shown in Figure 6-7, the control program includes axis control (Axisctrl), axis properties (AxisProperty), axis constraints (AxisConstraint), axis settings (AxisSetpoint), axis detection (AxisSense), axis drive (AxisAction), axis fuzzy PID Control (AxisFuzzyPID) part; the axis control is the main program, in which: axis characteristics record the dynamic characteristics and static characteristics of the axis, such as time constant, open-loop gain, closed-loop gain, dead zone, backlash, etc.; axis constraints record the axis Motion capability, such as maximum stroke, soft limit, hard limit, etc., is based on the safety of axis movement; axis setting is used as the interface between fuzzy PID control and motion planning, and records the axis control setting value; axis detection is used as the interface of the encoder to detect the axis The actual running position and speed of the axis; the shaft drive serves as the interface of the servo drive to provide the signal of the servo shaft motor running; the axis fuzzy PID control uses the data of the axis characteristics, axis constraints, axis detection, and axis drive according to the fuzzy PID control method to realize the axis Optimal control of movement.
轴模糊PID控制具有如下数据结构:Axis fuzzy PID control has the following data structure:
-PIDParam,保存PID调节器的比例、积分、微分三个控制参数Kp、Ki、Kd的值、初值和最大值;-PIDParam, save the value, initial value and maximum value of the three control parameters K p , K i , K d of the PID regulator's proportional, integral and differential;
-fuzzyRuleSet,以表格的方式存贮模糊控制规则;-fuzzyRuleSet, store fuzzy control rules in the form of tables;
-fuzzyInSet以模糊结构定义输入模糊集;-fuzzyInSet defines the input fuzzy set with a fuzzy structure;
-fuzzyOutSet以模糊结构定义输出模糊集;-fuzzyOutSet defines the output fuzzy set with a fuzzy structure;
其模糊结构如下:Its fuzzy structure is as follows:
struct FUZZY_STRUCTstruct FUZZY_STRUCT
{{
double center[NUM_OF_MFS];/*输入输出论域内各个模糊集的中心*/double center[NUM_OF_MFS]; /*The center of each fuzzy set in the input and output universe*/
double deg_of_mbrship[NUM_OF_MFS];/*隶属度函数*/double deg_of_mbrship[NUM_OF_MFS]; /*Membership function*/
double spread;/*模糊集区间长度的一半*/double spread; /*half the length of the fuzzy set interval*/
double gain;/*模糊输入输出的系数*/double gain; /* coefficient of fuzzy input and output */
double error;/*模糊控制器的输入或输出值*/double error; /* input or output value of fuzzy controller */
}}
轴模糊PID控制包括:初始化操作、输入数据操作、误差判断操作、模糊化操作、模糊推理操作、解模糊化操作、增益控制操作、控制保护操作、PID控制操作、模糊PID控制操作,其中:Shaft fuzzy PID control includes: initialization operation, input data operation, error judgment operation, fuzzy operation, fuzzy reasoning operation, defuzzification operation, gain control operation, control protection operation, PID control operation, fuzzy PID control operation, wherein:
初始化操作(fuzzyInit()),包括对PID控制操作比例、积分、微分参数的初始化和模糊自整定机制参数初始化,具体为对数据结构PIDParam、fuzzyRuleSet、fuzzyInSet及fuzzyOutSet的初始化。The initialization operation (fuzzyInit()) includes the initialization of the PID control operation proportional, integral and differential parameters and the fuzzy self-tuning mechanism parameter initialization, specifically the initialization of the data structures PIDParam, fuzzyRuleSet, fuzzyInSet and fuzzyOutSet.
PID控制操作的比例、积分、微分参数初始化包括PID控制操作的比例、积分、微分参数初值的初始化以及PID控制操作的比例、积分、微分参数最大值的初始化;模糊自整定机制参数初始化包括对fuzzyInSet与fuzzyOutSet中隶属度函数、输入系数和输出系数与输入值和输出值的初始化,以及模糊推理规则fuzzyRuleSet的初始化。The initialization of the proportional, integral and differential parameters of the PID control operation includes the initialization of the initial value of the proportional, integral and differential parameters of the PID control operation and the initialization of the maximum value of the proportional, integral and differential parameters of the PID control operation; the parameter initialization of the fuzzy self-tuning mechanism includes Initialization of membership functions, input coefficients and output coefficients, input values and output values in fuzzyInSet and fuzzyOutSet, and initialization of fuzzy inference rules fuzzyRuleSet.
为了提高数控装置的控制精度,fuzzyInSet与fuzzyOutSet中输入系数和输出系数选择较大的参数,同时为了提高装置运行的稳定性,尽量减少PID调节器参数的变化次数和变化范围,即输入系数和输出系数选择较小的参数。因此,在选择输入、输出系数时,需要在装置的精度和稳定性之间折中。据此,本实施例设定输入系数与输出系数分别为1.5和4。In order to improve the control accuracy of the numerical control device, the input coefficient and output coefficient in fuzzyInSet and fuzzyOutSet select larger parameters. The coefficient selects the smaller parameter. Therefore, when selecting the input and output coefficients, it is necessary to compromise between the accuracy and stability of the device. Accordingly, in this embodiment, the input coefficient and the output coefficient are set to 1.5 and 4, respectively.
输入数据操作(inputError())由轴设置(AxisSetpoint)读取运动规划给出的设置值,由轴检测AxisSense读取当前轴实际位置值,形成模糊PID控制的误差e和误差变化率ec。The input data operation (inputError()) reads the setting value given by the motion planning from the axis setting (AxisSetpoint), and reads the actual position value of the current axis from the axis detection AxisSense to form the error e and error change rate ec of the fuzzy PID control.
误差判断操作(ctrlAccuracy())评价当前PID控制操作的执行情况;若当前控制误差较小,即若输入误差e的值小于系统的控制精度一个单位数量级,则说明当前PID控制操作的参数值较好,不需要调整,此时跳过模糊自整定相关模块,直接运行PID控制操作(即,PID调节器);否则运行模糊自整定相关模块,调整PID调节器的相关参数;The error judgment operation (ctrlAccuracy()) evaluates the execution of the current PID control operation; if the current control error is small, that is, if the value of the input error e is less than the control accuracy of the system by an order of magnitude, it means that the parameter value of the current PID control operation is relatively low. OK, no adjustment is needed, skip the fuzzy self-tuning related modules at this time, and directly run the PID control operation (that is, the PID regulator); otherwise run the fuzzy self-tuning related modules to adjust the relevant parameters of the PID regulator;
模糊化操作(fuzzy())将来自输入数据操作输入值按照模糊化方法和模糊隶属度函数,映射为一定区间上的模糊值,形成语言变量作为模糊推理操作的输入参数。基于数控装置对速度与精度的要求,操作采用误差e与误差变化率ec为模糊集上的论域;其中:The fuzzy operation (fuzzy()) maps the input value from the input data operation into a fuzzy value in a certain interval according to the fuzzy method and the fuzzy membership function, and forms a language variable as the input parameter of the fuzzy reasoning operation. Based on the speed and accuracy requirements of the numerical control device, the error e and the error change rate ec are used as the domain of discourse on the fuzzy set; where:
e={-0.75,-0.5,-0.25,0,0.25,0.5,0.75}e={-0.75, -0.5, -0.25, 0, 0.25, 0.5, 0.75}
ec={-0.15,-0.1,-0.05,0,0.05,0.1,0.15}ec={-0.15, -0.1, -0.05, 0, 0.05, 0.1, 0.15}
所对应的模糊子集为The corresponding fuzzy subset is
e,ec={LN(负方向偏大)、MN(负方向居中)、SN(负方向偏小)、ZZ(零)、SP(正方向偏小)、MP(正方向居中)、LP(正方向偏大)}e, ec={LN (the negative direction is too large), MN (the negative direction is centered), SN (the negative direction is small), ZZ (zero), SP (the positive direction is small), MP (the positive direction is centered), LP ( The positive direction is too large)}
为了使装置能对误差e和误差变化ec在较大范围内的变动做出实时响应,定义误差e和误差变化ec的隶属度函数为开区间,区间边界的隶属度函数选择梯形隶属度函数,其他为三角隶属度函数。In order to enable the device to respond in real time to changes in the error e and the error change ec in a large range, the membership function of the error e and the error change ec is defined as an open interval, and the membership function of the interval boundary is a trapezoidal membership function. Others are triangular membership functions.
模糊推理操作(fuzzyInf())根据模糊推理规则和模糊推理方法,推导出输入误差e和误差变化ec对应的参数Kp、Ki、Kd,该输出值的形式为模糊值;The fuzzy inference operation (fuzzyInf()) derives the parameters K p , K i , K d corresponding to the input error e and the error change ec according to the fuzzy inference rules and the fuzzy inference method, and the output value is in the form of a fuzzy value;
其中所述比例、积分、微分参数Kp、Ki、Kd推导规则的归纳:基于大量的工程实验,模糊推理方法选择乘积推理机,乘积推理机使用模糊并组合的独立推理原则,采用Mamdani积含义,所有t-范数算子都选用代数积算子,所有s-范数算子都选用最大算子。The induction of the proportional, integral and differential parameters K p , K i , and K d derivation rules: Based on a large number of engineering experiments, the fuzzy reasoning method selects the product reasoning machine, and the product reasoning machine uses the independent reasoning principle of fuzzy combination and Mamdani Product meaning, all t-norm operators use the algebraic product operator, and all s-norm operators use the maximum operator.
本实施例具体推导规则见表1、表2、表3。由规则表可以看出,数控装置轴控制规则是相互独立的。The specific derivation rules of this embodiment are shown in Table 1, Table 2, and Table 3. It can be seen from the rule table that the axis control rules of the CNC device are independent of each other.
表1 Kp的模糊规则表Table 1 Fuzzy rule table of K p
表2 Ki的模糊规则表Table 2 Fuzzy rule table of K i
表3 Kd的模糊规则表Table 3 Fuzzy rule table of K d
解模糊化操作(deFuzzy())对模糊推理操作的输出值根据输出隶属度函数进行解模糊化,得到PID控制操作的比例、积分、微分调节增益参数(Δp、Δi、Δd);为了使解模糊化的计算过程简便、直观合理,以提高装置的运行速度和控制精度,选择中心平均解模糊器作为解模糊器。The defuzzification operation (deFuzzy()) defuzzifies the output value of the fuzzy inference operation according to the output membership function, and obtains the proportional, integral, and differential adjustment gain parameters (Δp, Δi, Δd) of the PID control operation; in order to make the solution The calculation process of fuzzification is simple, intuitive and reasonable, in order to improve the running speed and control precision of the device, the center average defuzzifier is selected as the defuzzifier.
输出隶属度函数的确定与PID调节器参数的初值设定和PID调节器参数在每一控制循环周期内变化量的大小有关。PID控制操作参数的初值设定与稳态值之间的差别越小,所需要调整的变化量就越小,隶属度函数区间范围就越小。如果单周期内PID控制操作参数变化量大,则系统(本发明方法的实现装置)的执行效率高,但稳定性差,可能产生轴正超差;如果单周期内PID控制操作参数变化量小,则系统的稳定性好,但执行效率低,可能产生轴负超差。根据装置的上述特性,选取比例Δp的变化区间为[-1,+1],积分ΔI的变化区间为[-0.1,+0.1],微分Δd的变化区间为[-0.2,+0.2]。The determination of the output membership function is related to the initial value setting of the PID regulator parameters and the variation of the PID regulator parameters in each control cycle. The smaller the difference between the initial value setting and the steady-state value of the PID control operating parameters, the smaller the amount of change that needs to be adjusted, and the smaller the range of the membership function interval. If the PID control operating parameter variation is large in a single cycle, then the execution efficiency of the system (the realization device of the inventive method) is high, but the stability is poor, and the axis may be positively out of tolerance; if the PID control operating parameter variation is small in a single cycle, Then the stability of the system is good, but the execution efficiency is low, and the axis negative tolerance may occur. According to the above characteristics of the device, the change interval of the proportion Δp is selected as [-1, +1], the change interval of the integral ΔI is [-0.1, +0.1], and the change interval of the differential Δd is [-0.2, +0.2].
增益控制操作(gainCtrl())根据解模糊化操作得到的比例、积分、微分调节增益参数Δp、Δi、Δd的值来调整PID控制操作的比例、积分、微分参数Kp、Ki、Kd的值,调节原则为:The gain control operation (gainCtrl()) adjusts the proportional, integral, and differential parameters K p , K i , and K d of the PID control operation according to the value of the proportional, integral, and differential adjustment gain parameters Δp, Δi , and Δd obtained by the defuzzification operation value, the adjustment principle is:
{ej+ecj}p=pa×Δp{e j +ec j } p =p a ×Δp
{ej+ecj}i=ia×Δi (3){e j +ec j } i =i a ×Δi (3)
{ej+ecj}d=da×Δd{e j +ec j } d =d a ×Δd
其中pa、ia、da为大于零的实数,j为序数;其作用为增大或减小模糊自整定的速度。若pa、ia、da的值较大,则缩短PID控制操作参数的整定时间;若pa、ia、da的值较小,则能获得更加稳定、平滑的控制效果。Where p a , i a , d a are real numbers greater than zero, and j is an ordinal number; its function is to increase or decrease the speed of fuzzy self-tuning. If the values of p a , ia , and d a are large, the setting time of the PID control operation parameters will be shortened; if the values of p a , ia , and d a are small, a more stable and smooth control effect can be obtained.
控制保护操作(ctrlSafe())设定PID控制操作的比例、积分、微分参数调节的上限,防止由于某种原因超调产生严重后果。在数控装置的加工过程中,如果进给超过刀具的实际负载能力,不仅不能完成加工任务,而且可能造成刀具损伤,甚至人员伤亡,因此有必要设定PID控制操作参数的变化范围。其PID控制操作的比例、积分、微分参数的变化范围:如果PID控制操作的比例参数Kp大于设定的最大值pmax,则令控制操作的比例参数Kp的值等于设定的最大值pmax;如果PID控制操作的积分参数Ki大于设定的最大值imax,则令PID控制操作的积分参数Ki的值等于设定的最大值imax;如果PID控制操作的微分参数Kd大于设定的最大值dmax,则令PID控制操作的微分参数Kd的值等于设定的最大值dmax;其中,pmax、imax、dmax分别为PID控制操作的比例、积分、微分参数调节的上限,其具体值根据轴、刀具和电机的实际性能指标设定;The control protection operation (ctrlSafe()) sets the upper limit of the adjustment of the proportional, integral and differential parameters of the PID control operation to prevent serious consequences from overshooting for some reason. During the machining process of the CNC device, if the feed exceeds the actual load capacity of the tool, not only will the machining task not be completed, but it may cause tool damage and even casualties. Therefore, it is necessary to set the range of PID control operation parameters. The variation range of the proportional, integral and differential parameters of the PID control operation: if the proportional parameter K p of the PID control operation is greater than the set maximum value p max , then the value of the proportional parameter K p of the control operation is equal to the set maximum value p max ; if the integral parameter K i of the PID control operation is greater than the set maximum value i max , then make the value of the integral parameter K i of the PID control operation equal to the set maximum value i max ; if the differential parameter K of the PID control operation d is greater than the set maximum value d max , then the value of the differential parameter K d of the PID control operation is equal to the set maximum value d max ; among them, p max , i max , and d max are the proportion and integral of the PID control operation, respectively , The upper limit of differential parameter adjustment, the specific value is set according to the actual performance index of the axis, tool and motor;
PID控制操作(PIDCtrl())根据控制保护操作所得到比例、积分、微分参数Kp、Ki、Kd的值,采用传统的PID控制方法,实现对轴的控制功能;其输出结果经过数模变换,转变为电压值,实现对伺服轴的控制功能。The PID control operation (PIDCtrl()) adopts the traditional PID control method to realize the control function of the axis according to the values of the proportional, integral and differential parameters K p , K i , and K d obtained from the control and protection operation; Modulo conversion, converted into a voltage value, to achieve the control function of the servo axis.
如图8所示,模糊PID控制操作是调用上述输入数据、误差判断、模糊化、模糊推理、解模糊化、增益控制、控制保护及PID控制操作,实现对机床伺服轴的优化控制;具体流程为:首先进行输入数据操作,输入数据操作后进行误差判断操作,如有误差则依次进行模糊化操作、模糊推理操作、解模糊化操作、增益控制操作,再进入控制保护操作;如没有误差则直接至控制保护操作;最后进行PID控制操作。As shown in Figure 8, the fuzzy PID control operation is to call the above input data, error judgment, fuzzification, fuzzy reasoning, defuzzification, gain control, control protection and PID control operation to realize the optimal control of the servo axis of the machine tool; the specific process It is as follows: firstly perform the input data operation, and then perform the error judgment operation after the input data operation, if there is an error, perform the fuzzification operation, fuzzy reasoning operation, defuzzification operation, gain control operation, and then enter the control and protection operation; if there is no error, then Go directly to the control and protection operation; finally perform the PID control operation.
在上述软、硬结构的实现装置运行中,用户可通过人机接口输入工件程序,工件程序在任务协调的控制下,经解释器解释形成机床控制命令,机床控制命令经运动规划生成轴控制的设置值后,进入伺服轴的控制阶段。采用模糊PID方法的轴控制,可根据轴的运动状态在线调整控制参数,形成实现装置的智能化决策过程,其决策过程参见图8所示的模糊PID控制操作具体流程。轴控制以本发明实现装置的采样周期为运行周期,首先通过编码器接口电路检测轴的实际位置,实际位置值与设置值产生误差e与误差变化率ec,e与ec经模糊自整定的模糊化处理形成语言变量,语言变量通过模糊推理与解模糊化产生PID调节器的比例、积分、微分参数,在所述参数的控制下,PID调节器控制机床伺服轴的运动,从而完成一个伺服周期的决策与控制过程。During the operation of the realization device of the above-mentioned soft and hard structure, the user can input the workpiece program through the human-machine interface. Under the control of task coordination, the workpiece program is interpreted by the interpreter to form the machine tool control command, and the machine tool control command is generated by motion planning. After setting the value, enter the control phase of the servo axis. The shaft control using the fuzzy PID method can adjust the control parameters online according to the motion state of the shaft to form an intelligent decision-making process for the device. For the decision-making process, refer to the specific flow of the fuzzy PID control operation shown in Figure 8. The shaft control takes the sampling cycle of the device realized by the present invention as the operation cycle. First, the actual position of the shaft is detected through the encoder interface circuit. The actual position value and the set value generate an error e and an error change rate ec, and e and ec are fuzzy through fuzzy self-tuning. Linguistic variables are formed through fuzzy reasoning and defuzzification, and the proportional, integral, and differential parameters of the PID regulator are generated through fuzzy reasoning and defuzzification. Under the control of the parameters, the PID regulator controls the movement of the servo axis of the machine tool to complete a servo cycle decision-making and control process.
(3)本发明执行效果:(3) Execution effect of the present invention:
控制对象采用数控装置中常用的安川∑-2伺服与电机,其主要参数如下:The control object adopts Yaskawa Σ-2 servo and motor commonly used in numerical control devices, and its main parameters are as follows:
·最大转速=2000转/秒·Maximum speed = 2000 rev/s
·最大加工速度=10米/秒·Maximum processing speed = 10 m/s
·最大额定电压为=10伏·Maximum rated voltage = 10V
·机械螺距=6毫米· Mechanical pitch = 6 mm
本发明方法及所用智能型实现装置的主要参数如下:The main parameters of the inventive method and the intelligent realization device used are as follows:
·插补周期=0.002秒· Interpolation period = 0.002 seconds
·轴最大速度=10.00米/秒·Axis maximum speed = 10.00 m/s
·跟随误差=1.200毫米· Following error = 1.200mm
·最小跟随误差=0.010毫米·Minimum following error=0.010mm
·伺服周期=0.0005秒· Servo cycle = 0.0005 seconds
·p=70(PID控制参数Kp的初值)·p=70 (initial value of PID control parameter K p )
·i=0.1(PID控制参数Ki的初值)·i=0.1 (initial value of PID control parameter K i )
·d=0.05(PID控制参数Kd的初值)·d=0.05 (initial value of PID control parameter K d )
基于上述参数,采用本发明,伺服轴误差变化轨迹如图9所示(横坐标表示采样周期,纵坐标表示当前采样周期内的误差值),而采用传统的PID控制方法,伺服轴误差变化轨迹如图10所示。从伺服轴误差变化轨迹的对比可以得到如下结论:模糊PID控制方法的实现装置Based on the above parameters, adopt the present invention, the servo axis error change trajectory is as shown in Figure 9 (the abscissa represents the sampling period, and the ordinate represents the error value in the current sampling period), and adopts the traditional PID control method, the servo axis error change trajectory As shown in Figure 10. The following conclusions can be drawn from the comparison of the servo axis error change trajectory: the realization device of the fuzzy PID control method
1.模糊PID控制方法的实现装置执行效率高。本发明在大约80个采样周期内就实现控制目标,而PID控制方法需要100多个采样周期才到达控制目标;1. The realization device of the fuzzy PID control method has high execution efficiency. The present invention realizes the control target within about 80 sampling periods, while the PID control method needs more than 100 sampling periods to reach the control target;
2.模糊PID控制方法的实现装置控制精度高,控制曲线平滑。本发明控制过程中误差变化没有出现大的抖动现象。而PID控制过程中存在误差抖动。2. The realization of fuzzy PID control method The device has high control precision and smooth control curve. In the control process of the present invention, there is no large jitter phenomenon in the error change. However, there is error jitter in the PID control process.
3.模糊PID控制方法的实现装置动态性能好。因为对于相同初始化控制参数,本发明方法实现装置在控制过程中能够根据现场的实际运行工况调整PID调节器参数的值,所以比PID控制方法鲁棒性强。3. The realization of fuzzy PID control method has good dynamic performance of the device. Because for the same initialization control parameters, the method implementing device of the present invention can adjust the value of the PID regulator parameter according to the actual operating conditions on site during the control process, so it is more robust than the PID control method.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005100474259A CN100520650C (en) | 2005-10-17 | 2005-10-17 | Fuzzy PID control method and execution apparatus of numerical control machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005100474259A CN100520650C (en) | 2005-10-17 | 2005-10-17 | Fuzzy PID control method and execution apparatus of numerical control machine |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1952819A CN1952819A (en) | 2007-04-25 |
CN100520650C true CN100520650C (en) | 2009-07-29 |
Family
ID=38059189
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005100474259A Active CN100520650C (en) | 2005-10-17 | 2005-10-17 | Fuzzy PID control method and execution apparatus of numerical control machine |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100520650C (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI454335B (en) * | 2011-07-27 | 2014-10-01 | Nat Univ Chung Cheng | Learning control system for simultaneously reduction in process time and machining errors |
CN104155875A (en) * | 2014-07-18 | 2014-11-19 | 武汉滨湖电子有限责任公司 | Master-auxiliary shaft control method |
CN104155875B (en) * | 2014-07-18 | 2017-01-04 | 武汉滨湖电子有限责任公司 | A kind of principal and subordinate's shaft control method |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101329570B (en) * | 2007-06-20 | 2010-05-19 | 沈阳高精数控技术有限公司 | Synchronous serial bus type numerical control system |
CN101470436B (en) * | 2007-12-28 | 2011-02-09 | 中国科学院沈阳计算技术研究所有限公司 | Shaft movement control card with absolute coding value receiving function and its data conversion method |
CN102621892A (en) * | 2012-04-06 | 2012-08-01 | 杭州电子科技大学 | Control method of speed regulator of servo system of flat knitting machine |
CN102681489B (en) * | 2012-06-01 | 2014-01-15 | 南京航空航天大学 | Control method for motion stability and contour machining accuracy of multi-axis linkage CNC system |
CN103197596B (en) * | 2013-03-14 | 2015-10-28 | 天津大学 | A kind of digital control processing parameters self-adaptive fuzzy control rule optimization method |
CN103499985B (en) * | 2013-10-09 | 2016-07-06 | 中国科学院光电技术研究所 | Closed-loop control system and method for rapidly and smoothly driving servo motor |
CN104063546B (en) * | 2014-06-30 | 2017-02-22 | 河南科技大学 | Experiment platform for Dahlin algorithm |
CN105372990A (en) * | 2015-11-16 | 2016-03-02 | 青岛安倍康生物医药技术有限公司 | Blood cell count synchronization control method and applications |
CN106557072B (en) * | 2016-11-21 | 2019-03-15 | 广州中国科学院工业技术研究院 | The aided programming method of numerically controlled processing equipment execution program |
CN109986152A (en) * | 2017-12-29 | 2019-07-09 | 沈阳高精数控智能技术股份有限公司 | Numerical control device and its control method for spark erosion equipment |
CN108181817A (en) * | 2018-01-15 | 2018-06-19 | 中国人民解放军陆军装甲兵学院 | Fire control system modeling method |
CN108427327B (en) * | 2018-02-27 | 2020-05-08 | 深圳市海浦蒙特科技有限公司 | Control method and device for wire take-up motor of wire drawing machine, computer equipment and storage medium |
CN109782593B (en) * | 2019-01-09 | 2022-03-22 | 哈尔滨理工大学 | Control method of sharing factor fuzzy inference engine applied to hexapod robot |
CN110928239B (en) * | 2019-12-12 | 2020-11-13 | 山东大学 | Control method and system for feeding system of numerical control machine tool with time delay |
CN111528742A (en) * | 2020-06-10 | 2020-08-14 | 西京学院 | Nano sponge autonomous deep cleaning robot and control method |
CN111766777B (en) * | 2020-07-30 | 2023-06-16 | 北京环境特性研究所 | PID controller and PID control method |
CN112486099B (en) * | 2020-12-11 | 2021-11-09 | 中国工程物理研究院机械制造工艺研究所 | Ultra-precision lathe motion control method based on fuzzy PID self-setting calculation |
CN112859753B (en) * | 2021-01-19 | 2022-03-25 | 深圳市汇川技术股份有限公司 | Secondary development method, device and equipment for numerical control system and readable storage medium |
CN113625548B (en) * | 2021-08-11 | 2024-06-28 | 西安科技大学 | Meta-action unit rotating speed control method based on simulated annealing algorithm and fuzzy PID |
CN113671899A (en) * | 2021-08-12 | 2021-11-19 | 西安科技大学 | Piezoelectric actuation vibration suppression method for element action unit |
CN114264329A (en) * | 2021-12-25 | 2022-04-01 | 西安交通大学 | System and method for testing vibration reliability of photoelectric encoder based on fuzzy control |
-
2005
- 2005-10-17 CN CNB2005100474259A patent/CN100520650C/en active Active
Non-Patent Citations (1)
Title |
---|
嵌入式系统在机电控制中的应用. 陈光达,段宝岩,保宏,米建伟.电子机械工程,第20卷第3期. 2004 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI454335B (en) * | 2011-07-27 | 2014-10-01 | Nat Univ Chung Cheng | Learning control system for simultaneously reduction in process time and machining errors |
CN104155875A (en) * | 2014-07-18 | 2014-11-19 | 武汉滨湖电子有限责任公司 | Master-auxiliary shaft control method |
CN104155875B (en) * | 2014-07-18 | 2017-01-04 | 武汉滨湖电子有限责任公司 | A kind of principal and subordinate's shaft control method |
Also Published As
Publication number | Publication date |
---|---|
CN1952819A (en) | 2007-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100520650C (en) | Fuzzy PID control method and execution apparatus of numerical control machine | |
Su et al. | Contouring accuracy improvement using cross-coupled control and position error compensator | |
Cheng et al. | Contour error reduction for free-form contour following tasks of biaxial motion control systems | |
CN102075125B (en) | Method for controlling multi-axis linkage servo control systems of numerical control (NC) machine tools | |
Haber et al. | Embedded fuzzy-control system for machining processes: Results of a case study | |
CN100451891C (en) | Dynamic forward-looking processing method of small program segment and implementing device | |
CN110568761A (en) | On-line Optimizing Method of Feed Speed Based on Fuzzy Control | |
CN1936745A (en) | Inlaid numerical control system based on ARM and DSP | |
CN113848817B (en) | An intelligent five-axis control system and method | |
CN110968042A (en) | Numerical control chamfer parametric programming processing method based on motion card | |
CN202663351U (en) | Servo motor rotational speed control system based on fuzzy self-adaptive proportional-integral-derivative (PID) controllers | |
CN102323750A (en) | Embedded Nonlinear Pulse Cooperative Controller | |
CN110045597A (en) | The improvement fuzzy PID control method precisely to work for Tool monitoring mechanical arm | |
Zhu | Research on PLC DC Motor Speed Control System Based on Quantum Fuzzy Control Algorithm | |
CN212703693U (en) | Intelligent rolling mill thickness control system | |
CN117353616B (en) | Friction force feedforward compensation method and system of linear motor and storage medium | |
WO2017101700A1 (en) | Computer aided manufacturing method, device and system in direct communication with numerical control system | |
CN2906795Y (en) | Multi-axis hybrid control system for teaching based on multi-axis motion control card | |
CN205405098U (en) | Servo controller | |
Mrad et al. | Experimental comparative analysis of adaptive fuzzy logic controllers | |
CN113759851B (en) | Automatic control system and automatic control method | |
Xu et al. | An adaptive fuzzy controller for constant cutting force in end-milling processes | |
CN101477355A (en) | Numerical control system used for miniature cutter | |
Jee et al. | A self-organizing fuzzy logic control for friction compensation in feed drives | |
Zhang et al. | Energy consumption modeling and optimization of a hobbing machine tool considering multi-axis coupling |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |