CN100507253C - A multi-tube pulse detonation combustion chamber and its detonation method - Google Patents
A multi-tube pulse detonation combustion chamber and its detonation method Download PDFInfo
- Publication number
- CN100507253C CN100507253C CNB2007100188970A CN200710018897A CN100507253C CN 100507253 C CN100507253 C CN 100507253C CN B2007100188970 A CNB2007100188970 A CN B2007100188970A CN 200710018897 A CN200710018897 A CN 200710018897A CN 100507253 C CN100507253 C CN 100507253C
- Authority
- CN
- China
- Prior art keywords
- detonation
- chamber
- unit
- jet
- detonation chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000005474 detonation Methods 0.000 title claims abstract description 378
- 238000000034 method Methods 0.000 title claims abstract description 14
- 238000002485 combustion reaction Methods 0.000 title abstract description 51
- 238000011144 upstream manufacturing Methods 0.000 claims description 13
- 230000037452 priming Effects 0.000 claims 11
- 230000000977 initiatory effect Effects 0.000 claims 3
- 238000010304 firing Methods 0.000 claims 1
- 230000000644 propagated effect Effects 0.000 claims 1
- 239000000203 mixture Substances 0.000 abstract description 18
- 239000007789 gas Substances 0.000 description 18
- 238000005429 filling process Methods 0.000 description 7
- 230000001902 propagating effect Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 238000004200 deflagration Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Landscapes
- Fluidized-Bed Combustion And Resonant Combustion (AREA)
Abstract
Description
技术领域 technical field
本发明涉及动力领域,尤其是一种脉冲爆震燃烧室,还涉及其起爆方法。The invention relates to the field of power, in particular to a pulse detonation combustion chamber and its detonation method.
背景技术 Background technique
自然界有两种燃烧波:一种是爆燃波,另一种是爆震波。爆震波以每秒几千米的速度向未燃混合物传播。爆震波本质上是激波后跟一个燃烧波。爆震波能产生极高的燃气压力(大于15至55个大气压)和燃气温度(大于2800K),由于爆震波传播速度极快,其后的燃烧过程可视为等容燃烧过程,因而其燃烧效率很高。由于脉冲爆震循环的高效率,以及脉冲工作模式,这使它对推进系统有很大的吸引力。当工作频率达到较高的频率时可以认为能够产生稳定的推力,一般要求能够达到100Hz以上。因而如何提高脉冲爆震发动机的工作频率是很多研究者正在努力的方向。There are two kinds of combustion waves in nature: one is deflagration wave and the other is detonation wave. The detonation wave propagates toward the unburned mixture at a speed of several kilometers per second. A detonation wave is essentially a shock wave followed by a combustion wave. The detonation wave can generate extremely high gas pressure (greater than 15 to 55 atmospheres) and gas temperature (greater than 2800K). Due to the extremely fast propagation speed of the detonation wave, the subsequent combustion process can be regarded as a constant volume combustion process, so its combustion efficiency very high. Due to the high efficiency of the pulse detonation cycle, and the pulse mode of operation, this makes it very attractive for propulsion systems. When the working frequency reaches a higher frequency, it can be considered to be able to generate a stable thrust, which is generally required to be above 100Hz. Therefore, how to increase the operating frequency of the pulse detonation engine is the direction that many researchers are working on.
经典循环过程的脉冲爆震发动机,一端开口,另一端间歇喷注燃料和氧化剂的混合物,然后点火起爆,爆震波传出爆震室,然后填充隔离气体,进入下一个循环。The pulse detonation engine of the classic cycle process is open at one end, and the mixture of fuel and oxidant is injected intermittently at the other end, and then ignited and detonated. The detonation wave is transmitted out of the detonation chamber, and then filled with isolation gas to enter the next cycle.
这种方式的发动机通常需要一个高能电容点火系统或者现在刚刚兴起的瞬态等离子点火系统,电容点火系统大脉冲能量需求通常要超过2000J,等离子点火系统通常需要1-10J,由于每一个循环都要点火,高频工作时功率要求非常之大,超过数千瓦,关键问题是这两种系统很难小型化,轻型化。当爆震室内径很大时,即便使用高能电点火系统,也很难快速形成爆震波,为了快速起爆,出现了起爆管。起爆管本身就是一套复杂的脉冲爆震火箭发动机系统,也离不开电点火系统和独立隔离气系统。因而使用起爆管的脉冲爆震发动机更加复杂。对于吸气式脉冲爆震发动机,由于空气中氮气的稀释作用,使得混合物敏感性大幅下降,直接起爆所需要的能量和功率都大幅增大,直接起爆的经济性下降。若使用低能量点火源,着火延迟时间大大增加,而且爆燃向爆震转变的距离和时间也都很长。This type of engine usually requires a high-energy capacitor ignition system or the transient plasma ignition system that has just emerged. The large pulse energy demand of the capacitor ignition system usually exceeds 2000J, and the plasma ignition system usually requires 1-10J. Since each cycle requires Ignition and high-frequency operation require a very large power, exceeding several thousand watts. The key problem is that these two systems are difficult to miniaturize and lighten. When the diameter of the detonation chamber is large, it is difficult to quickly form a detonation wave even if a high-energy electric ignition system is used. In order to detonate quickly, a detonator tube appears. The detonator itself is a complex pulse detonation rocket engine system, which is also inseparable from the electric ignition system and independent gas isolation system. Thus, pulse detonation engines using detonators are more complex. For the air-breathing pulse detonation engine, due to the dilution of nitrogen in the air, the sensitivity of the mixture is greatly reduced, the energy and power required for direct detonation are greatly increased, and the economy of direct detonation is reduced. If a low-energy ignition source is used, the ignition delay time is greatly increased, and the distance and time for the transition from deflagration to detonation are also very long.
发明内容 Contents of the invention
为了克服现有技术脉冲爆震燃烧室严重依赖大功率的脉冲点火单元的缺点,本发明提供了一种多管脉冲爆震燃烧室,可以不需要脉冲点火源进行高频工作。In order to overcome the disadvantage that the pulse detonation combustion chamber in the prior art relies heavily on a high-power pulse ignition unit, the present invention provides a multi-tube pulse detonation combustion chamber, which can work at high frequency without a pulse ignition source.
本发明还提供涉及所述多管脉冲爆震燃烧室的起爆方法。The invention also provides a detonation method related to the multi-tube pulse detonation combustion chamber.
本发明解决其技术问题所采用的技术方案是:包括多套爆震单元,每个单元包括爆震室入口1、起爆射流入口4、爆震室2、起爆射流出口5、爆震室出口3和启动起爆装置6,爆震室入口1和爆震室出口3位于爆震室2两端,爆震室入口1在最上游,起爆射流入口4靠近并位于爆震室入口1下游,起爆射流出口5靠近并位于爆震室出口3上游,起爆射流出口5与下一个相邻爆震单元的起爆射流入口4相连,多个爆震单元连接以后,最后一个爆震单元的起爆射流出口5和最初爆震单元的起爆射流入口4相连接,首尾相连,共同构成了多个爆震室入口1和多个爆震室出口3的圆环形燃烧室。连接在一起的起爆射流出口5和起爆射流入口4共同构成了射流传播管8。启动起爆装置6安装在其中一个爆震单元的爆震室2上。The technical solution adopted by the present invention to solve the technical problem is: comprising multiple sets of detonation units, each unit comprising a detonation chamber inlet 1, a detonation jet inlet 4, a detonation chamber 2, a detonation jet outlet 5, and a
本发明的起爆方法是,当所有爆震单元的爆震室入口1都有可爆混合气以相同的条件充满整个爆震室2时,启动起爆装置6工作,形成向下游传播的爆震波,爆震波传播到起爆射流出口5后,大部分通过爆震室出口3排出,一部分爆震波通过起爆射流出口5传播到下一个爆震单元的起爆射流入口4,从而在下一个爆震单元的爆震室2内快速形成爆震波,爆震波在这个爆震室2中迅速向下游传播到起爆射流出口5,这样不断向下游传递。对于单个爆震单元,当爆震波从爆震室出口3排出以后,会有一道膨胀波从爆震室出口3反向向爆震室入口1传播,从而爆震室内的压力下降,等压力下降到特定值以后,可燃混合气重新冲入爆震室入口1,开始该爆震单元新一轮的填充过程。当爆震波传播到最后一个爆震单元的起爆射流出口5后又回到了装有启动起爆装置6的爆震单元,此时装有启动起爆装置6的该爆震单元已经完成废气排放和可爆混合气的填充过程,爆震射流传入该单元的爆震室2后迅速形成了爆震波,启动起爆装置6不再工作。这样对于单个爆震单元来讲,其工作周期就等于爆震射流进入相邻爆震单元起爆射流入口4的时间差乘以该组燃烧室的爆震单元的个数。燃烧室爆震单元的个数取决于可爆混合气填满爆震室2所需要的时间与燃气在爆震室2中膨胀时间的比值,在亚声速燃烧条件下通常需要4-6个以上的爆震单元。对于本发明的燃烧室所有爆震单元,起爆以后不再需要外部点火系统,爆震波可以在燃烧室内自行传播而不熄灭,依靠封闭多管间循环依次传播的模式,利用燃烧室爆震燃烧自身能量产生高频爆震波射流,实现单管高频脉冲工作。The detonation method of the present invention is that when the detonation chamber inlets 1 of all detonation units have detonable mixed gas to fill the whole detonation chamber 2 with the same conditions, start the
作为本发明的第一种优选方案,当一组爆震单元的个数为某整数M的N倍时,可以在相隔M-1个爆震单元的N个爆震单元上都安装启动起爆装置6,启动时,同时起爆N个启动起爆装置6,可以始终有N个爆震波在相互追赶,同时流动状态和对燃烧室的作用力可以在多管圆环形燃烧室周向均匀分布。As the first preferred solution of the present invention, when the number of a group of detonation units is N times of a certain integer M, start detonation devices can be installed on the N detonation units separated by M-1
作为本发明的第二种优选方案,可以在多管圆环形燃烧室径向布置多圈多管圆环形燃烧室,使其同轴并联,更有效的利用来流迎风面积。每圈至少一个爆震单元上安装有启动起爆装置6且每圈的启动起爆装置数量相同,各圈的启动起爆装置周向均匀分布。As the second preferred solution of the present invention, multiple rings of multi-tube annular combustion chambers can be radially arranged in the multi-tube annular combustion chamber, so that they are coaxially connected in parallel, and the windward area of the incoming flow can be more effectively utilized. At least one detonation unit in each circle is equipped with a starting detonating
作为本发明的第三种优选方案,在装有启动起爆装置6的爆震单元的起爆射流入口4处,安装启动阀门7,以保证启动时燃烧波不会从射流传播管8向上一个爆震单元传播。当启动起爆装置6工作时启动阀门7关闭,等启动阀门7上游爆震室2中形成爆震波后启动阀门7开启,并在燃烧室正常工作时一直保持常开状态。As the third preferred solution of the present invention, at the detonation jet inlet 4 of the detonation unit equipped with the
作为本发明的第四种优选方案,本发明的多管圆环形燃烧室可以安装在一个旋转轴9上,多管圆环形燃烧室自身的回转轴与旋转轴9重合,依靠爆震室2产生的排气射流推动整个燃烧室旋转,旋转的燃烧室使得爆震室入口1的来流条件更加有利。As the fourth preferred solution of the present invention, the multi-tube annular combustion chamber of the present invention can be installed on a rotating shaft 9, and the rotating shaft of the multi-tube annular combustion chamber itself coincides with the rotating shaft 9, relying on the detonation chamber The exhaust jet flow generated by 2 drives the entire combustion chamber to rotate, and the rotating combustion chamber makes the flow conditions at the entrance 1 of the detonation chamber more favorable.
本发明的起爆方法的一种优选方案是,当所有爆震单元的爆震室入口1都有可爆混合气以相同的条件充满整个爆震室2时,关闭启动阀门7,启动起爆装置6工作,形成向下游传播的爆震波,爆震波传播到起爆射流出口5后,大部分通过爆震室出口3排出,一部分爆震波通过起爆射流出口5传播到下一个爆震单元的起爆射流入口4,从而在下一个爆震单元的爆震室2内快速形成爆震波,爆震波在这个爆震室2中迅速向下游传播到起爆射流出口5,这样不断向下游传递。对于单个爆震单元,当爆震波从爆震室出口3排出以后,会有一道膨胀波从爆震室出口3反向向爆震室入口1传播,从而爆震室内的压力下降,等压力下降到特定值以后,可燃混合气重新冲入爆震室入口1,开始该爆震单元新一轮的填充过程。另外在膨胀阶段,由于下游爆震室已经形成爆震波,已燃气体会通过射流传播管8从下游爆震室逆向回喷。等启动阀门7上游爆震室2中形成爆震波后启动阀门7开启,当爆震波传播到启动阀门7后又回到了装有启动起爆装置6的爆震单元,此时装有启动起爆装置6的该爆震单元已经完成废气排放和可爆混合气的填充过程,爆震射流传入该单元的爆震室2后迅速形成了爆震波,启动起爆装置6不再工作。这样对于单个爆震单元来讲,其工作周期就等于爆震射流进入相邻爆震单元起爆射流入口4的时间差乘以该组燃烧室的爆震单元的个数。燃烧室爆震单元的个数取决于可爆混合气填满爆震室2所需要的时间与燃气在爆震室2中膨胀时间的比值,在亚声速燃烧条件下通常需要4-6个以上的爆震单元。并且启动阀门7在燃烧室正常工作时一直保持常开状态。A kind of preferred scheme of detonation method of the present invention is, when the detonation chamber inlet 1 of all detonation units has detonable mixed gas to be full of whole detonation chamber 2 with identical condition, close start valve 7,
本发明的有益效果是:本发明的起爆方法使爆震波的起爆接近于直接起爆,燃烧波在爆震室2内的停留时间非常短。实验表明当爆震单元的起爆射流入口4和起爆射流出口5相距0.8m时,爆震波进入相邻爆震单元起爆射流入口4的时间差在1.2ms左右,因此4个这样的爆震单元组成的多管爆震燃烧室的单管工作频率可以超过200Hz,8个这样的爆震单元组成的多管爆震燃烧室的单管工作频率也可以超过100Hz。本发明获得了不依赖高能高频脉冲点火系统即可获得很高工作频率的多管脉冲爆震燃烧室,可用于替代现有燃气轮机的主燃烧室,加力燃烧室,或者作为旋转冲压发动机的燃烧室。The beneficial effects of the present invention are: the detonation method of the present invention makes the detonation wave detonation close to direct detonation, and the residence time of the combustion wave in the detonation chamber 2 is very short. Experiments show that when the distance between the detonation jet inlet 4 and the detonation jet outlet 5 of the detonation unit is 0.8m, the time difference between the detonation wave entering the detonation jet inlet 4 of the adjacent detonation unit is about 1.2ms, so four such detonation units consist of The single-tube operating frequency of the multi-tube detonation combustor can exceed 200 Hz, and the single-tube operating frequency of the multi-tube detonation combustor composed of 8 such detonation units can also exceed 100 Hz. The present invention obtains a multi-tube pulse detonation combustor that can obtain a very high operating frequency without relying on a high-energy high-frequency pulse ignition system, and can be used to replace the main combustion chamber and afterburner of an existing gas turbine, or as a rotary ramjet combustion chamber.
下面结合附图和实施例对本发明进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and embodiments.
附图说明 Description of drawings
图1是本发明启动过程示意图;Fig. 1 is a schematic diagram of the start-up process of the present invention;
图2是本发明工作过程示意图;Fig. 2 is a schematic diagram of the working process of the present invention;
图3是本发明实施例1的结构图;Fig. 3 is a structural diagram of Embodiment 1 of the present invention;
图4是本发明实施例2的结构图;Fig. 4 is the structural diagram of embodiment 2 of the present invention;
图5是本发明实施例3的结构图。Fig. 5 is a structural diagram of
图中,1-爆震室入口,2-爆震室,3-爆震室出口,4-起爆射流入口,5-起爆射流出口,6-启动起爆装置,7-启动阀门,8-射流传播管。In the figure, 1-detonation chamber entrance, 2-detonation chamber, 3-detonation chamber exit, 4-detonation jet inlet, 5-detonation jet outlet, 6-start detonation device, 7-start valve, 8-jet propagation Tube.
具体实施方式 Detailed ways
装置实施例1:参照图3,包括6个爆震单元通过射流传播管8前后连接在一起,组成一圈圆环形的多管脉冲爆震燃烧室,每个爆震单元包括爆震室入口1,爆震室2,爆震室出口3和射流传播管8,射流传播管8包括连接在一起的上一级爆震单元的起爆射流出口5和下一级爆震单元的起爆射流入口4,爆震室入口1和爆震室出口3位于爆震室2两端,爆震室入口1在最上游,起爆射流入口4靠近并位于爆震室入口1下游,起爆射流出口5靠近并位于爆震室出口3上游,多个爆震单元连接以后,形成首尾相连的局面。其中一个爆震单元上安装有启动起爆装置6,同时在这个爆震单元上游的射流传播管8上安装启动阀门7。可爆混合气沿垂直于爆震室入口1的方向流入爆震室2,当所有爆震单元的爆震室入口1都有可爆混合气以相同的条件充满整个爆震室2时,关闭启动阀门7,启动起爆装置6工作,形成向下游传播的爆震波,爆震波传播到射流传播管8后,大部分通过爆震室出口3排出,一部分爆震波通过射流传播管8传播到下一个爆震单元的爆震室2内,快速形成爆震波,这样不断传递,爆震波传播到最后一个爆震单元的起爆射流出口5后又回到了装有启动起爆装置6的爆震单元,打开启动阀门7,装有启动起爆装置6的该爆震单元已经完成废气排放和可爆混合气的填充过程,爆震射流传入该单元的爆震室2后迅速形成了爆震波,启动起爆装置6不再工作。此后,燃烧室进入稳定循环,不再需要外部点火设备,启动阀门7常开。Device Embodiment 1: Referring to Figure 3, it includes 6 detonation units connected together through the
装置实施例2:参照图4,包括两圈圆环形的多管脉冲爆震燃烧室,每圈多管脉冲爆震燃烧室分别由6个爆震单元通过射流传播管8前后连接在一起,每个爆震单元包括爆震室入口1,爆震室2,爆震室出口3和射流传播管8,射流传播管8包括连接在一起的上一级爆震单元的起爆射流出口5和下一级爆震单元的起爆射流入口4,爆震室入口1和爆震室出口3位于爆震室2两端,爆震室入口1在最上游,起爆射流入口4靠近并位于爆震室入口1下游,起爆射流出口5靠近并位于爆震室出口3上游,多个爆震单元连接以后,形成首尾相连的局面。其中一个爆震单元上安装有启动起爆装置6,内圈的启动起爆装置6与外圈的启动起爆装置6关于多管环形燃烧室所在的圆环中轴对称。可爆混合气沿垂直于爆震室入口1的方向流入爆震室2,当所有爆震单元的爆震室入口1都有可爆混合气以相同的条件充满整个爆震室2时,两个启动起爆装置6同时工作,在各自所在的爆震室2中形成向下游传播的爆震波,爆震波传播到射流传播管8后,大部分通过爆震室出口3排出,一部分爆震波通过射流传播管8传播到下一个爆震单元的爆震室2内,快速形成爆震波,这样内外两圈燃烧室中分别传递,爆震波传播到内外两圈各自的最后一个爆震单元的起爆射流出口5后又回到了装有启动起爆装置6的爆震单元,而且装有启动起爆装置6的该爆震单元已经完成废气排放和可爆混合气的填充过程,爆震射流传入该单元的爆震室2后迅速形成了爆震波,启动起爆装置6不再工作。此后,燃烧室进入稳定循环,不再需要外部点火设备。Device embodiment 2: referring to Fig. 4, it includes two ring-shaped multi-tube pulse detonation combustion chambers, and each ring of multi-tube pulse detonation combustion chambers is respectively connected together by 6 detonation units through the
装置实施例3:参照图5,包括12个爆震单元通过射流传播管8前后连接在一起,组成一圈圆环形的多管脉冲爆震燃烧室,燃烧室安装在一个旋转轴9上,可以旋转,爆震单元包括爆震室入口1,爆震室2,爆震室出口3和射流传播管8,射流传播管8包括连接在一起的上一级爆震单元的起爆射流出口5和下一级爆震单元的起爆射流入口4,爆震室入口1和爆震室出口3位于爆震室2两端,爆震室入口1在最上游,起爆射流入口4靠近并位于爆震室入口1下游,起爆射流出口5靠近并位于爆震室出口3上游,多个爆震单元连接以后,形成首尾相连的局面。每相隔3个爆震单元的爆震单元上安装一个启动起爆装置6,也就是总共安装3个启动起爆装置6并在多管脉冲爆震燃烧室所在的圆环上均匀分布。可爆混合气沿垂直于爆震室入口1的方向流入爆震室2,当所有爆震单元的爆震室入口1都有可爆混合气以相同的条件充满整个爆震室2时,三个启动起爆装置6同时工作,分别在各自所在的爆震室2中形成向下游传播的爆震波,爆震波传播到射流传播管8后,大部分通过爆震室出口3排出,一部分爆震波通过射流传播管8传播到下一个爆震单元的爆震室2内,快速形成爆震波,这样不断传递,爆震波传播到下一个装有启动起爆装置6的爆震单元爆震室2时,该爆震单元已经完成废气排放和可爆混合气的填充过程,爆震射流传入该单元的爆震室2后迅速形成了爆震波,启动起爆装置6不再工作。这样就形成了三个爆震波相互追赶的局面,此后,燃烧室进入稳定循环,不再需要外部点火设备。Device Embodiment 3: Referring to Fig. 5, it includes 12 detonation units connected back and forth through the
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2007100188970A CN100507253C (en) | 2007-10-18 | 2007-10-18 | A multi-tube pulse detonation combustion chamber and its detonation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2007100188970A CN100507253C (en) | 2007-10-18 | 2007-10-18 | A multi-tube pulse detonation combustion chamber and its detonation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101144442A CN101144442A (en) | 2008-03-19 |
CN100507253C true CN100507253C (en) | 2009-07-01 |
Family
ID=39207137
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2007100188970A Expired - Fee Related CN100507253C (en) | 2007-10-18 | 2007-10-18 | A multi-tube pulse detonation combustion chamber and its detonation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100507253C (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101787939B (en) * | 2009-12-29 | 2012-07-25 | 西北工业大学 | Detonation chamber with jetting mechanism |
CN101718236A (en) * | 2010-02-10 | 2010-06-02 | 周林 | Multitube pulse detonation combustion chamber communicated with jet deflector |
CN101806260B (en) * | 2010-03-04 | 2012-01-11 | 西北工业大学 | Multitube parallel pulse detonation combustion chamber and ignition detonation method thereof |
CN102383971A (en) * | 2010-07-09 | 2012-03-21 | 靳北彪 | Multilevel hot stamping engine |
CN101968013B (en) * | 2010-11-03 | 2013-04-24 | 南京航空航天大学 | Single-tube rotary valve type double-bypass pulse detonation engine |
CN102042121A (en) * | 2010-12-23 | 2011-05-04 | 西北工业大学 | Detonation tube structure of multi-tube pulse detonation engine |
CN103899436B (en) * | 2014-04-01 | 2016-01-13 | 西北工业大学 | A spiral multi-channel pulse detonation engine |
CN104154567B (en) * | 2014-08-06 | 2015-12-09 | 西安热工研究院有限公司 | A rotary detonation combustor |
CN105201726B (en) * | 2015-09-06 | 2017-06-16 | 北京大学 | A kind of multi-channel synchronous igniting test system |
CN106338083B (en) * | 2016-09-06 | 2019-04-05 | 西北工业大学 | A kind of minute yardstick knock system of variable boundary condition |
CN107143432B (en) * | 2017-06-06 | 2018-10-02 | 兴化市联富食品有限公司 | High-piezoelectricity plasma gas relay couples spark knock engine before a kind of detonation wave |
WO2019147213A1 (en) * | 2018-01-24 | 2019-08-01 | Андрей Павлович ЛИТВИНЕНКО | Turbine installation |
US11320147B2 (en) * | 2018-02-26 | 2022-05-03 | General Electric Company | Engine with rotating detonation combustion system |
US11572840B2 (en) * | 2019-12-03 | 2023-02-07 | General Electric Company | Multi-mode combustion control for a rotating detonation combustion system |
CN112610984B (en) * | 2020-12-14 | 2022-11-11 | 上海航天化工应用研究所 | Gas isolating device suitable for high temperature and high pressure |
CN117028076B (en) * | 2023-10-09 | 2024-01-09 | 北京星河动力装备科技有限公司 | Rocket engine starting method and rocket |
-
2007
- 2007-10-18 CN CNB2007100188970A patent/CN100507253C/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN101144442A (en) | 2008-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100507253C (en) | A multi-tube pulse detonation combustion chamber and its detonation method | |
US7100360B2 (en) | Pulsed combustion engine | |
US6983586B2 (en) | Two-stage pulse detonation system | |
CN101806260B (en) | Multitube parallel pulse detonation combustion chamber and ignition detonation method thereof | |
CA2452972C (en) | Methods and apparatus for generating gas turbine engine thrust | |
CN109028151B (en) | Multi-chamber rotary detonation combustor | |
US8650856B2 (en) | Fluidic deflagration-to-detonation initiation obstacles | |
US9027324B2 (en) | Engine and combustion system | |
US6928804B2 (en) | Pulse detonation system for a gas turbine engine | |
US10436110B2 (en) | Rotating detonation engine upstream wave arrestor | |
US12092336B2 (en) | Turbine engine assembly including a rotating detonation combustor | |
CN106640420A (en) | Pulse detonation engine with air entering from side portion | |
US7131260B2 (en) | Multiple detonation initiator for frequency multiplied pulsed detonation combustion | |
CN201696167U (en) | A multi-tube parallel pulse detonation combustor | |
US20160102609A1 (en) | Pulse detonation combustor | |
EP3056713B1 (en) | Exhaust mixer for wave rotor assembly | |
CN108757220A (en) | A kind of pulse detonation combustion engine of rear end igniting | |
US6904750B2 (en) | Integral pulse detonation system for a gas turbine engine | |
KR101388098B1 (en) | Consecutive self-cyclic clustering system of detonation combustors | |
US20150323189A1 (en) | Multi-fuel turbine combustor, multi-fuel turbine comprising such a combustor and corresponding method | |
CN115355543A (en) | A composite rotary detonation combustion device | |
EP1435440B1 (en) | Pulsed combustion engine | |
RU2724559C1 (en) | Turbojet aircraft engine | |
US3508398A (en) | Resonant combustor with spiral exhaust passageways | |
CN115263609A (en) | Modular secondary detonation engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090701 Termination date: 20111018 |