CN100502213C - Resonance converter and method for realizing light load and no-load voltage stabilization thereof - Google Patents
Resonance converter and method for realizing light load and no-load voltage stabilization thereof Download PDFInfo
- Publication number
- CN100502213C CN100502213C CNB2006100956504A CN200610095650A CN100502213C CN 100502213 C CN100502213 C CN 100502213C CN B2006100956504 A CNB2006100956504 A CN B2006100956504A CN 200610095650 A CN200610095650 A CN 200610095650A CN 100502213 C CN100502213 C CN 100502213C
- Authority
- CN
- China
- Prior art keywords
- circuit
- circuit stage
- load
- stage
- diode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 24
- 230000006641 stabilisation Effects 0.000 title abstract description 6
- 238000011105 stabilization Methods 0.000 title abstract description 6
- 238000006243 chemical reaction Methods 0.000 claims abstract description 49
- 239000003990 capacitor Substances 0.000 claims description 17
- 238000001914 filtration Methods 0.000 claims description 8
- 230000033228 biological regulation Effects 0.000 claims description 6
- 238000004804 winding Methods 0.000 claims description 6
- 230000001939 inductive effect Effects 0.000 claims description 3
- 230000006798 recombination Effects 0.000 claims 4
- 238000005215 recombination Methods 0.000 claims 4
- 238000010586 diagram Methods 0.000 description 24
- 230000003071 parasitic effect Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P80/00—Climate change mitigation technologies for sector-wide applications
- Y02P80/10—Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
Landscapes
- Dc-Dc Converters (AREA)
Abstract
本发明是指一种谐振转换器及实现其轻载以及空载稳压的方法,该谐振转换器包括一转换电路级、一二极管整流电路级、一滤波及负载电路级、一逻辑电路、一驱动器及一能量反馈电路;该方法是当该滤波及负载电路级轻载或空载时,将能量自该滤波及负载电路级反馈至该转换电路级。
The present invention refers to a resonant converter and a method for achieving light-load and no-load voltage stabilization thereof. The resonant converter includes a conversion circuit stage, a diode rectifier circuit stage, a filter and load circuit stage, a logic circuit, a driver and an energy feedback circuit. The method is that when the filter and load circuit stage is light-loaded or no-loaded, energy is fed back from the filter and load circuit stage to the conversion circuit stage.
Description
技术领域 technical field
本发明涉及一种谐振转换器及实现其轻载以及空载稳压的方法,尤其涉及应用于电源供应器(power supply)的谐振直流-直流转换器。The invention relates to a resonant converter and a method for realizing its light-load and no-load voltage stabilization, in particular to a resonant DC-DC converter applied to a power supply.
背景技术 Background technique
直流-直流转换器的发展趋势如同大部分的电源产品一样,朝着高效率(HighEfficiency)、高功率密度(High Power Density)、高可靠性(High Reliability)以及低成本(Low Cost)的方向发展。请参阅图1,其为现有的直流-直流转换器的方块图,在图1中,直流-直流转换器10由转换电路级11、二极管整流电路级12、以及滤波及负载电路级13所构成;其工作原理为,直流电压Vin先经过转换电路级11接受高频截波,再经过二极管整流电路级12接受整流,最后被送至滤波及负载电路级13接受滤波后至负载。The development trend of DC-DC converters, like most power products, is towards high efficiency (High Efficiency), high power density (High Power Density), high reliability (High Reliability) and low cost (Low Cost). . Please refer to FIG. 1, which is a block diagram of an existing DC-DC converter. In FIG. Its working principle is that the DC voltage Vin first passes through the
在这种直流-直流转换器当中,由于能量从转换电路级11传送至滤波及负载电路级13,是一种单向的传送途径,因此在电路工作在轻载或空载时,会出现输出电压不稳定的情形,具体参照图2(a)为例。In this kind of DC-DC converter, since the energy is transmitted from the
图2(a)为典型的传统全桥式LLC(电感-电感-电容)转换器的电路图,其一般采用脉波频率调变(Pulse Frequency Modulation,PFM)技术。在图2(a)中,全桥式LLC转换器20主要包括由开关Q1~Q4和谐振电容C1和谐振电感L1和激磁电感L2以及变压器T1构成的转换电路级、二极管D1~D2构成的二极管整流电路级、以及滤波电容Cout构成的滤波及负载电路级等三个部份。其中,Q1与Q2、Q3与Q4分别构成了两个桥臂,Q1与Q4、Q3与Q2的驱动信号各以接近50%的占空比进行开关动作。在两桥臂的中点上连接着彼此串联的谐振电容C1、谐振电感L1以及变压器T1的一次侧,而激磁电感L2则与变压器T1的一次侧并联。另一方面,变压器T1的二次侧采用中央抽头(Center Tap)的架构,利用两个二极管D1、D2采用全波整流模式,而输出端则直接采用电容Cout以进行滤波稳压。Figure 2(a) is a circuit diagram of a typical traditional full-bridge LLC (inductance-inductance-capacitance) converter, which generally uses Pulse Frequency Modulation (PFM) technology. In FIG. 2(a), the full-
对于采用二极管整流的谐振型转换器来说,在其工作频率范围内,存在着一个最小电压增益;前述全桥式LLC转换器20在工作频率最高时可获得的最小电压增益即为一例。一般转换器在其工作范围内的增益会设计成大于上述的最小电压增益,这个时候的转换器理论上是可以实现完全空载的稳定运作。然而实际上,由于元件的寄生参数(例如:变压器一、二次侧的寄生电容等)所引起的寄生振荡的存在,如果转换器所采用的是单向导电性的二极管(例如:图2(a)所示者),那么过多的能量便会注入输出端而导致输出电压升高,其结果为在轻载或空载时,系统常会出现不稳定的状况。For a resonant converter using diode rectification, there is a minimum voltage gain within its operating frequency range; the above-mentioned minimum voltage gain of the full-
针对上述问题,现有技术中至少出现了以下四种解决方案试图加以解决之。In view of the above problems, at least the following four solutions appear in the prior art to try to solve them.
第一种方法是将注入至输出端的过多能量消耗掉,实际的做法是在输出端加上一个适当的假负载。然而,假负载的存在会使得系统的效率降低,空载损耗增加,成本和体积也会随之加大。The first method is to dissipate the excess energy injected into the output. The practical way is to add an appropriate dummy load to the output. However, the existence of dummy load will reduce the efficiency of the system, increase the no-load loss, and increase the cost and volume accordingly.
第二种方法是添加一个独立的辅助电路,在空载或轻载时关闭主要电路,而采用该辅助电路来维持输出电压。这种方法虽然不会增加额外的损耗,但是控制上需要进行负载电压大小的判断以及辅助电路与主要电路之间的切换,不但增加了控制的难度,系统的动态性能也会因此而大幅下降,同时成本也会增加。The second method is to add an independent auxiliary circuit, which shuts down the main circuit at no load or light load, and uses this auxiliary circuit to maintain the output voltage. Although this method will not increase additional loss, it needs to judge the load voltage and switch between the auxiliary circuit and the main circuit in the control, which not only increases the difficulty of control, but also greatly reduces the dynamic performance of the system. At the same time, the cost will increase.
第三种方法系采用间歇式工作模式(Burst Mode)来控制输入至输出的能量大小。The third method is to use the intermittent working mode (Burst Mode) to control the amount of energy from input to output.
第四种方法系阻止过多的能量在空载时注入输出端,其可以通过改变谐振参数或是谐振阻抗等来实现,已知的解决方案有下列三种:The fourth method is to prevent excessive energy from being injected into the output terminal at no-load, which can be achieved by changing the resonance parameters or resonance impedance, etc. There are three known solutions:
(1)US5,388,040号发明(1) Invention No. US5,388,040
请参阅图2(b),其为US5,388,040号发明所揭示的传统全桥式LLC转换器的电路图,全桥式LLC转换器21中与前述图2(a)相同的元件标示相同的图示符号。Please refer to Fig. 2 (b), which is a circuit diagram of a traditional full-bridge LLC converter disclosed by No. US5,388,040 invention. display symbol.
US5,388,040号发明所采用的是改变谐振参数的方法,如图2(b)所示,其是在主要电路中添加一个与激磁电感L2串联的开关Sa。透过控制该开关Sa来调整等效激磁电感的大小,在轻载或是空载的情况下,开通该开关Sa后,整个主要电路的等效激磁电感便会减小,于是在一定的工作频率范围内,整个主要电路的最小电压增益会减小,整个主要电路便能稳定地工作。US5,388,040 invention adopts the method of changing the resonance parameters, as shown in Fig. 2(b), which is to add a switch Sa in series with the excitation inductance L2 in the main circuit. By controlling the switch Sa to adjust the size of the equivalent magnetizing inductance, in the case of light load or no load, after the switch Sa is turned on, the equivalent magnetizing inductance of the entire main circuit will be reduced, so in a certain working In the frequency range, the minimum voltage gain of the entire main circuit will decrease, and the entire main circuit can work stably.
(2)JP8,033,329号发明(2) JP8,033,329 invention
请参阅图2(c),其为JP8,033,329号发明所揭示的传统全桥式LLC转换器的电路图,全桥式LLC转换器22中与前述图2(a)相同的元件标示相同的图示符号。Please refer to Fig. 2(c), which is a circuit diagram of a traditional full-bridge LLC converter disclosed in invention No. JP8,033,329, and the same components as those in the aforementioned Fig. 2(a) in the full-
JP8,033,329号发明所采用的是改变谐振阻抗的方法,如图2(c)所示。其是在谐振电容C1、谐振电感L1及变压器T1一次侧所构成的谐振回路上增加一个由电感L2及电容C2所构成的并联谐振单元,以增加转换器22在空载或轻载时该谐振回路的阻抗,从而达到使系统稳定的作用。但其缺点在于,主要电路在工作于轻载或空载时,该并联谐振单元会承受很大的电压电流应力。JP8,033,329 invention adopts the method of changing the resonance impedance, as shown in Fig. 2(c). It is to add a parallel resonant unit composed of inductance L2 and capacitor C2 to the resonant circuit formed by resonant capacitor C1, resonant inductance L1 and the primary side of transformer T1, so as to increase the resonance of
(3)JP2,106,164号发明件(3) Invention No. JP2,106,164
请参阅图2(d),其为JP2,106,164号发明所揭示的传统全桥式LLC转换器的电路图,全桥式LLC转换器23中与前述图2(a)相同的元件标示相同的图示符号。Please refer to Fig. 2 (d), which is a circuit diagram of a traditional full-bridge LLC converter disclosed by No. JP2, 106, and No. 164 invention. In the full-bridge LLC converter 23, the same components as in the aforementioned Fig. 2 (a) are marked with the same figure display symbol.
JP2,106,164号发明所采用的方法如图2(d)所示。其是在谐振电容C1处并联一个由辅助开关S及电阻R所构成的串联电路,通过该串联电路可以在空载时将谐振电容C1上的能量消耗掉,以避免过多的能量被注入输出端。The method adopted in JP2,106,164 invention is shown in Fig. 2(d). It is a series circuit composed of an auxiliary switch S and a resistor R connected in parallel at the resonant capacitor C1. Through this series circuit, the energy on the resonant capacitor C1 can be consumed at no-load to avoid excessive energy being injected into the output end.
申请人鉴于现有技术的缺陷,经悉心试验与研究,并一本锲而不舍的精神,终构思出本发明,以下为本发明的简要说明。In view of the defects of the prior art, the applicant finally conceived the present invention after careful testing and research, and a persistent spirit. The following is a brief description of the present invention.
发明内容 Contents of the invention
本发明的主要目的为提出一种谐振转换器及实现其轻载以及空载稳压的方法,以解决转换器在轻载或空载时由于寄生参数的影响所产生整个电路工作不稳定的问题。The main purpose of the present invention is to propose a resonant converter and its light-load and no-load voltage stabilization method to solve the problem of unstable operation of the entire circuit due to the influence of parasitic parameters when the converter is light-loaded or no-loaded .
本发明的主要构想为提出一种谐振转换器,相较于现有技术,额外地具有一种能量反馈电路,能将过多通过整流二极管注入至转换器输出端的能量重新反馈至转换器输入端,这种电路结构所带来的损耗很小,采用较简单的控制即可实现。The main idea of the present invention is to propose a resonant converter, which additionally has an energy feedback circuit compared with the prior art, which can refeed back the excess energy injected into the output end of the converter through the rectifier diode to the input end of the converter , the loss caused by this circuit structure is very small, and it can be realized with a relatively simple control.
本发明提出了一种谐振转换器,包括:一转换电路级;一二极管整流电路级,串联耦接于所述转换电路级,对所述转换电路级的输出进行整流;一滤波及负载电路级,串联耦接于所述二极管整流电路级,对所述二极管整流电路级的输出进行滤波;一逻辑电路,耦接于所述转换电路级,响应所述转换电路级而产生一逻辑信号;一驱动器,串联耦接于所述逻辑电路,接收所述逻辑信号并产生一驱动信号;以及一能量反馈电路,耦接于所述转换电路级、所述滤波及负载电路级及所述驱动器,当所述滤波及负载电路级轻载或空载时,所述能量反馈电路接收所述驱动信号将一能量自所述滤波及负载电路级反馈至所述转换电路级。The present invention proposes a resonant converter, comprising: a conversion circuit stage; a diode rectification circuit stage coupled in series to the conversion circuit stage to rectify the output of the conversion circuit stage; a filter and load circuit stage , coupled in series to the diode rectifier circuit stage, filtering the output of the diode rectifier circuit stage; a logic circuit, coupled to the conversion circuit stage, generating a logic signal in response to the conversion circuit stage; a driver, coupled in series to the logic circuit, receiving the logic signal and generating a drive signal; and an energy feedback circuit, coupled to the conversion circuit stage, the filter and load circuit stage and the driver, when When the filter and load circuit stage is light-loaded or unloaded, the energy feedback circuit receives the driving signal and feeds back energy from the filter and load circuit stage to the conversion circuit stage.
本发明的次要构想为提出一种实现谐振转换器轻载以及空载稳压的方法,将转换器输出端的能量通过实体电路路径或感应电路路径以反馈至转换器输入端,实现转换器完全空载的稳定营运。The secondary idea of the present invention is to propose a method for realizing light-load and no-load voltage regulation of a resonant converter, which feeds back the energy at the output end of the converter to the input end of the converter through a physical circuit path or an inductive circuit path, so as to realize the complete conversion of the converter. Stable operation with no load.
本发明提出了一种实现谐振转换器轻载以及空载稳压的方法,其中,所述谐振转换器包括一转换电路级、一二极管整流电路级、一滤波及负载电路级以及一逻辑电路,所述二极管整流电路级串联耦接于所述转换电路级以对所述转换电路级的输出进行整流,所述滤波及负载电路级串联耦接于所述二极管整流电路级以对所述二极管整流电路级的输出进行滤波,所述逻辑电路耦接于所述转换电路级并响应所述转换电路级而产生一逻辑信号,所述方法包括下列步骤:当所述滤波及负载电路级轻载或空载时,通过响应所述逻辑信号将一能量自所述滤波及负载电路级反馈至所述转换电路级。The present invention proposes a method for realizing light-load and no-load voltage regulation of a resonant converter, wherein the resonant converter includes a conversion circuit stage, a diode rectification circuit stage, a filter and load circuit stage, and a logic circuit, The diode rectification circuit stage is coupled in series to the conversion circuit stage to rectify the output of the conversion circuit stage, and the filter and load circuit stage is coupled in series to the diode rectification circuit stage to rectify the diode The output of the circuit stage is filtered, and the logic circuit is coupled to the conversion circuit stage and generates a logic signal in response to the conversion circuit stage. The method includes the following steps: when the filter and load circuit stage is lightly loaded or At no load, an energy is fed back from the filter and load circuit stage to the conversion circuit stage in response to the logic signal.
本发明需通过下列附图及详细说明,以便更深入地了解:The present invention needs to pass through following accompanying drawing and detailed description, so that understand more deeply:
附图说明 Description of drawings
图1:传统直流-直流转换器的方块图。Figure 1: Block diagram of a conventional DC-DC converter.
图2(a):传统全桥式LLC转换器的电路图。Figure 2(a): Circuit diagram of a traditional full-bridge LLC converter.
图2(b):US5,388,040号发明所揭示的传统全桥式LLC转换器的电路图。Fig. 2(b): The circuit diagram of the traditional full-bridge LLC converter disclosed in US5,388,040 invention.
图2(c):JP8,033,329号发明所揭示的传统全桥式LLC转换器的电路图。Fig. 2(c): The circuit diagram of the traditional full-bridge LLC converter disclosed in JP8,033,329 invention.
图2(d):JP2,106,164号发明所揭示的传统全桥式LLC转换器的电路图。Fig. 2(d): The circuit diagram of the traditional full-bridge LLC converter disclosed in JP2,106,164 invention.
图3:本发明谐振转换器一较佳实施例的方块图。Figure 3: Block diagram of a preferred embodiment of the resonant converter of the present invention.
图4:本发明谐振转换器一较佳实施例的电路图。Figure 4: Circuit diagram of a preferred embodiment of the resonant converter of the present invention.
图5(a)~(f):本发明能量反馈电路的多种配置方式的电路图。Figure 5(a)~(f): Circuit diagrams of various configurations of the energy feedback circuit of the present invention.
图6(a)~(e):本发明能量反馈电路与二极管整流电路级耦接的多种配置方式的电路图。图7:图4的谐振转换器的波形图。Fig. 6(a)-(e): Circuit diagrams of multiple configurations of the stage coupling of the energy feedback circuit and the diode rectification circuit of the present invention. Figure 7: Waveform diagram of the resonant converter of Figure 4.
图8:本发明的能量反馈电路的另一种配置方式的电路图。Fig. 8: A circuit diagram of another configuration of the energy feedback circuit of the present invention.
图9:采用图8架构的本发明另一较佳实施例的电路图。FIG. 9 is a circuit diagram of another preferred embodiment of the present invention adopting the architecture of FIG. 8 .
具体实施方式 Detailed ways
请参阅图3,其为本发明一较佳实施例的方块图。此外在图3中,与前述图1相同的方块标示相同的图示符号。其中,转换器30由一转换电路级11、一二极管整流电路级12、一滤波及负载电路级13、一逻辑电路31、一驱动器32以及一能量反馈电路33所构成。Please refer to FIG. 3 , which is a block diagram of a preferred embodiment of the present invention. In addition, in FIG. 3 , the same blocks as those in FIG. 1 are denoted by the same symbols. Wherein, the converter 30 is composed of a
在图3中,该二极管整流电路级12串联耦接于该转换电路级11以对该转换电路级11的输出进行整流,该滤波及负载电路级13串联耦接于该二极管整流电路级12以对该二极管整流电路级12的输出进行滤波,该逻辑电路31耦接于该转换电路级11以响应该转换电路级11而产生一逻辑信号,该驱动器32串联耦接于该逻辑电路31以接收该逻辑信号并产生一驱动信号,该能量反馈电路33则耦接于该转换电路级11、该滤波及负载电路级13以及该驱动器32;而当该滤波及负载电路级13轻载或空载时,该能量反馈电路33接收该驱动信号将一能量自该滤波及负载电路级13反馈至该转换电路级11。In FIG. 3 , the diode
以实际的电路配置图来看,请参阅图4,其为本发明一较佳实施例的电路图。在图4中,与前述图3相同的方块标示相同的图示符号。其中,谐振转换器40为一串联谐振转换器,其由传统的直流-直流转换器10、逻辑电路31、驱动器32以及能量反馈电路33所构成。For the actual circuit configuration, please refer to FIG. 4 , which is a circuit diagram of a preferred embodiment of the present invention. In FIG. 4 , the same blocks as in the aforementioned FIG. 3 are denoted by the same symbols. Wherein, the
在图4中,转换电路级包括:由晶体管开关Q1~Q4所构成的一输入电压产生电路、谐振电容C1、谐振电感L1、一激磁电感L2以及变压器T1。该激磁电感L2并联于该变压器T1一次侧之后再与该谐振电路串联,虽然此实施例以四个晶体管开关Q1~Q4所构成的全桥电路作为该输入电压产生电路,但也可利用两个晶体管开关所构成的半桥电路作为该输入电压产生电路。In FIG. 4 , the conversion circuit stage includes: an input voltage generating circuit composed of transistor switches Q1 ˜ Q4 , a resonant capacitor C1 , a resonant inductor L1 , a magnetizing inductor L2 and a transformer T1 . The magnetizing inductance L2 is connected in parallel to the primary side of the transformer T1 and then connected in series with the resonant circuit. Although this embodiment uses a full bridge circuit composed of four transistor switches Q1~Q4 as the input voltage generation circuit, two A half-bridge circuit composed of transistor switches is used as the input voltage generating circuit.
在图4中,耦接于变压器T1二次侧的依次是二极管整流电路级、以及滤波及负载电路级。在此实施例中,虽然二极管整流电路级是由二极管D1、D2所构成的一二极管全波整流电路,使用但其也可一二极管半波整流电路或是一二极管全桥整流电路。而滤波及负载电路级则包括一电容Cout,至于负载则未加以绘制。In FIG. 4 , the diode rectifier circuit stage, filter and load circuit stage are coupled to the secondary side of the transformer T1 in sequence. In this embodiment, although the diode rectifier circuit stage is a diode full-wave rectifier circuit composed of diodes D1 and D2, it can also be a diode half-wave rectifier circuit or a diode full-bridge rectifier circuit. The filter and load circuit stage includes a capacitor Cout, and the load is not drawn.
在图4中,逻辑电路31的配置电路虽然以电阻Ra、二极管Da1、电容Ca以及与门等元件来制作,但其配置方式并非仅限于此例,本领域普通技术人员得以在满足相同功能的前提之下轻易构思出其他型态的逻辑电路31。In Fig. 4, although the configuration circuit of
在图4中,能量反馈电路33虽然以晶体管开关Sa以及与二极管D1反向的二极管Da来制作,但其配置方式并非仅限于此例,本领域普通技术人员得以在满足相同功能的前提之下轻易构思出其他型态的能量反馈电路33。以本发明的技术来说,能量反馈电路33的配置系包括至少一开关,因此,能量反馈电路33配置方式可以是图5(a)所示的单一开关、图5(b)所示的单一晶体管开关Sa、图5(c)所示的单一晶体管开关Sa与二极管Da的串联连接、图5(d)所示的单一晶体管开关Sa与电阻Ra的串联连接、图5(e)所示的单一晶体管开关Sa与电阻Ra与二极管Da的串联连接、或是图5(f)所示的两个晶体管开关Sa的串联连接。只要能够将能量从输出端传递至输入端,能量反馈电路33可以是单个开关也可以是多个开关组合而成,且其可以是单向开关也可以是双向开关,这些开关可以有内阻,也可以采用外部串联电阻,惟其基本特征是能提供图5中从B点传至A点的可控的能量通道。In FIG. 4, although the
前面已提过,二极管整流电路级可以是二极管半波整流电路,也可以是二极管全波整流电路或二极管全桥整流电路,图6(a)~(c)即分别为以图5(a)的配置作为能量反馈电路并与三种二极管整流电路级耦接的电路图。如图6(a)~(c)所示的结构,能量反馈电路皆是单一条实体电路路径,其能量反馈电路的频率最多等于转换电路级的开关频率,即在一个开关周期内,最多实现一次从输出到输入的能量反馈,当然也可以多个开关周期实现一次能量反馈。而图6(d)及图6(e)则提供了两条实体电路路径,其在二极管整流电路级的每个二极管上都并联了一开关管,通过增加使用能量反馈单元(开关)来实现一个开关周期内可以反馈能量两次;As mentioned earlier, the diode rectifier circuit stage can be a diode half-wave rectifier circuit, a diode full-wave rectifier circuit or a diode full-bridge rectifier circuit. The circuit diagram of the configuration as an energy feedback circuit coupled with three diode rectification circuit stages. As shown in Figure 6(a)~(c), the energy feedback circuit is a single physical circuit path, and the frequency of the energy feedback circuit is at most equal to the switching frequency of the conversion circuit stage, that is, within one switching cycle, at most An energy feedback from output to input can of course also be realized with multiple switching cycles. Figure 6(d) and Figure 6(e) provide two physical circuit paths, which are connected in parallel with a switch tube on each diode of the diode rectification circuit stage, and are realized by adding an energy feedback unit (switch) Energy can be fed back twice in one switching cycle;
以下配合图7的波形图说明前述图4的运作方式。The operation mode of the above-mentioned FIG. 4 is described below with the waveform diagram of FIG. 7 .
逻辑电路31的输入信号即为晶体管开关Q1与Q4的驱动信号gQ1、以及晶体管开关Q3与Q2的驱动信号gQ2。驱动信号gQ2经由电阻Ra、二极管Da1和电容Ca网络后下降沿被延时而得到信号u1,再与驱动信号gQ1进行与操作后得到一个上升沿与驱动信号gQ1同步、但是脉波宽度不大于驱动信号gQ1的逻辑信号u2。逻辑信号u2经过驱动器32放大后用来驱动能量反馈电路33的晶体管开关Sa。晶体管开关Sa与二极管Da串联后与主功率二极管D1并联,能提供与二极管D1相反方向的单向能量传递,所以在整体上,由晶体管开关Sa、二极管Da和二极管D1所构成的单元可以实现能量的双向传递。当二极管D1所在的变压器T1二次侧绕组电压u3上升为正时,此时开通晶体管开关Sa。如果在空载时有过多能量传递至输出端,那么此时输出端电压将大于电压u3,因此有电流从输出端流向变压器T1的一次侧,从而实现了能量的反馈。而当负载加重时,电压u3大于输出端电压,此时电流由二极管D1流向输出,由于存在二极管Da,因此晶体管开关Sa上并无电流通过,因此,能量传递电路33对于主要电路在负载加重时的工作状态无影响,并且晶体管开关Sa与二极管Da可以采用较小规格的元件。The input signal of the
请参阅图8,其为本发明的能量反馈电路的另一种配置方式的电路图,不同于图5的实体电路路径,图8中所采用的是感应电路路径;也即,利用一个辅助的二次侧绕组与一个开关S构成能量反馈电路81,以控制能量往一次侧反馈。该能量反馈电路81可用于各种输出滤波模式的转换器,若输出滤波模式同样采用电容直接滤波,则该架构等效于图6(b)所示的架构。此外,该开关S同样可以使用图5(a)~(f)的配置方式来取代,只要其能提供从输出端至输入端的可控的能量通道即可。对于如图6(c)般的二极管全桥整流电路而言,此种架构可以省用一个开关元件。Please refer to Fig. 8, which is a circuit diagram of another configuration mode of the energy feedback circuit of the present invention, which is different from the physical circuit path in Fig. 5, what is adopted in Fig. 8 is an inductive circuit path; that is, an auxiliary two The secondary winding and a switch S form an
请参阅图9,其为采用图8架构的本发明另一较佳实施例的电路图,其波形图同图7所示。Please refer to FIG. 9 , which is a circuit diagram of another preferred embodiment of the present invention adopting the architecture of FIG. 8 , and its waveform diagram is the same as that shown in FIG. 7 .
在图9中,与前述图3、图4、图8相同的方块标示相同的图示符号。其中,谐振转换器90为一串联谐振转换器,由传统的直流-直流转换器10、逻辑电路31、驱动器32以及能量反馈电路81所构成。然而,此时输入电压产生电路为由两个晶体管开关Q1、Q2所构成的半桥电路,二极管整流电路级为二极管全波整流电路,而能量反馈电路81由一个辅助的二次侧绕组、晶体管开关Sa以及二极管Da所构成。In FIG. 9 , the blocks that are the same as those in the aforementioned FIG. 3 , FIG. 4 , and FIG. 8 are denoted by the same symbol. Wherein, the resonant converter 90 is a series resonant converter, which is composed of a conventional DC-
逻辑电路31与图4中的逻辑电路完全相同,最后产生一个上升沿与驱动信号gQ1同步、但是脉波宽度不大于驱动信号gQ1的逻辑信号u2;当然也可以使用现有的反激电路同步整流控制的方法来产生控制信号。而当变压器二次侧的辅助绕组的电压u3上升为正时,此时开通晶体管开关Sa。如果在空载时有过多能量传递至输出端,那么此时输出端电压大于电压u3,有电流从输出端流向变压器T1的一次侧,从而实现了能量的反馈,保证了空载的稳定营运。同样的,当负载加重时,电压u3大于输出端电压,由于存在二极管Da,因此晶体管开关Sa上并无电流通过,因此,能量传递电路81对于主要电路在负载加重时的工作状态无影响,并且晶体管开关Sa与二极管Da可以采用较小规格的元件。The
综上所述,本发明提供一种谐振转换器及实现其轻载以及空载稳压的方法,为了解决由于能量单向传递而造成轻载或空载时的系统不稳定问题,增加一能量反馈电路来实现能量的双向传递,将过多通过整流二极管注入至输出端的能量反馈至输入端,从而保证系统的稳定营运,增加的能量反馈电路不但对于主要电路在负载加重时的工作状态无影响,并且所使用的晶体管开关与二极管可以采用较小规格的元件。。To sum up, the present invention provides a resonant converter and a method for realizing its light-load and no-load voltage stabilization. The feedback circuit is used to realize the two-way transmission of energy, and the excessive energy injected into the output terminal through the rectifier diode is fed back to the input terminal, so as to ensure the stable operation of the system. The added energy feedback circuit not only has no effect on the working state of the main circuit when the load is increased , and the used transistor switches and diodes can use smaller size components. .
本发明得由本领域普通技术人员任施匠思而为诸般修饰,然皆不脱权利要求所欲保护者。The present invention can be modified in various ways by those of ordinary skill in the art, all without departing from what is intended to be protected by the claims.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006100956504A CN100502213C (en) | 2006-06-22 | 2006-06-22 | Resonance converter and method for realizing light load and no-load voltage stabilization thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006100956504A CN100502213C (en) | 2006-06-22 | 2006-06-22 | Resonance converter and method for realizing light load and no-load voltage stabilization thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101093961A CN101093961A (en) | 2007-12-26 |
CN100502213C true CN100502213C (en) | 2009-06-17 |
Family
ID=38992049
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2006100956504A Active CN100502213C (en) | 2006-06-22 | 2006-06-22 | Resonance converter and method for realizing light load and no-load voltage stabilization thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100502213C (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101604904B (en) * | 2008-06-11 | 2011-07-13 | 康舒科技股份有限公司 | Switching Mode Power Supply Improves Light Load Efficiency |
CN103795251A (en) * | 2012-10-29 | 2014-05-14 | 台达电子工业股份有限公司 | Power converter and control method thereof |
CN104967349A (en) * | 2015-06-23 | 2015-10-07 | 四川蜀旺科技有限公司 | Circuit capable of reducing loss of switch transistor and driving schedule method |
CN104963972A (en) * | 2015-06-30 | 2015-10-07 | 浙江玛拓驱动设备有限公司 | Exciting controller of electromagnetic brake |
CN108028605B (en) * | 2015-09-18 | 2020-05-12 | 株式会社村田制作所 | Converter with hold-up operation |
EP3376659A1 (en) * | 2017-03-17 | 2018-09-19 | Fronius International GmbH | Welding current source |
JP6939203B2 (en) * | 2017-07-28 | 2021-09-22 | スミダコーポレーション株式会社 | Circulating current reduction circuit, transformer unit |
CN109428491B (en) * | 2017-09-01 | 2021-08-06 | 明纬(广州)电子有限公司 | Control circuit for reducing light load and no-load loss of LLC resonant converter |
CN108494256B (en) * | 2018-03-15 | 2020-02-14 | 湖北理工学院 | Energy feedback LLC resonant converter light-load voltage modulation system and modulation strategy |
CN111262448B (en) * | 2020-03-16 | 2021-03-09 | 武汉理工大学 | Full-bridge LLC direct-current charging device and design method thereof |
CN112152462B (en) * | 2020-08-27 | 2021-10-15 | 东南大学 | A light-load control method for energy feedback of Buck-Boost LLC two-stage converter |
CN113938020B (en) * | 2021-09-18 | 2024-06-18 | 广州金升阳科技有限公司 | Half-bridge LLC resonant converter |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1116785A (en) * | 1994-08-08 | 1996-02-14 | 何湘宁 | Inverted bridge absorption circuit energe passive feedback network |
US5644480A (en) * | 1993-11-15 | 1997-07-01 | Matsushita Electric Works, Ltd. | Power source device |
US6320763B2 (en) * | 2000-01-11 | 2001-11-20 | Murata Manufacturing Co., Ltd. | Switching power supply unit |
-
2006
- 2006-06-22 CN CNB2006100956504A patent/CN100502213C/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5644480A (en) * | 1993-11-15 | 1997-07-01 | Matsushita Electric Works, Ltd. | Power source device |
CN1116785A (en) * | 1994-08-08 | 1996-02-14 | 何湘宁 | Inverted bridge absorption circuit energe passive feedback network |
US6320763B2 (en) * | 2000-01-11 | 2001-11-20 | Murata Manufacturing Co., Ltd. | Switching power supply unit |
Also Published As
Publication number | Publication date |
---|---|
CN101093961A (en) | 2007-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100502213C (en) | Resonance converter and method for realizing light load and no-load voltage stabilization thereof | |
TWI683522B (en) | High frequency time-division multi-phase power converter | |
US7692937B2 (en) | Resonant converter and voltage stabilizing method thereof | |
JP5088386B2 (en) | Switching power supply | |
CN101686015B (en) | Forward-Flyback Converter with Active Clamp | |
CN103312171B (en) | Isolated soft switching double tube positive exciting resonance DC/DC circuit | |
CN101777844B (en) | Resonant converter with phase-shifted output routing | |
CN106411139B (en) | A Control Method of Wide Output Range LLC Converter | |
CN101997421B (en) | Resonant converter with overcurrent protection device and its control method | |
JP5018960B2 (en) | Isolated switching power supply | |
CN101854120A (en) | A High Efficiency Multifunctional Flyback Converter | |
CN106981994A (en) | A kind of single tube both-end inversion isolated form DC DC booster converters | |
TWI297977B (en) | Soft switching dc-dc converter | |
CN201623633U (en) | Full-Bridge Phase-Shift Converter with Zero-Voltage Switching Auxiliary Circuit | |
TWI495245B (en) | Method of controlling phase-shift full-bridge converter at light load operation | |
KR20140091191A (en) | Single Stage AC/DC converter | |
CN111010044B (en) | Magnetically integrated double-active-bridge converter | |
CN104578718B (en) | Light load control method of phase-shifted full-bridge converter | |
CN111404382A (en) | Switching power supply circuit | |
TW201334387A (en) | Direct current/direct current converter | |
WO2020143275A1 (en) | Improved flyback converter | |
CN206620056U (en) | A kind of LLC DC converters of self-driving type synchronous rectification | |
CN100446388C (en) | power supply with low standby loss | |
CN106972755A (en) | A kind of single tube both-end inversion isolated form DC DC booster converter control methods | |
CN114915173A (en) | Soft Cut Power Converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |