CN100490325C - Voltage conversion circuit - Google Patents
Voltage conversion circuit Download PDFInfo
- Publication number
- CN100490325C CN100490325C CNB2005100853537A CN200510085353A CN100490325C CN 100490325 C CN100490325 C CN 100490325C CN B2005100853537 A CNB2005100853537 A CN B2005100853537A CN 200510085353 A CN200510085353 A CN 200510085353A CN 100490325 C CN100490325 C CN 100490325C
- Authority
- CN
- China
- Prior art keywords
- output node
- voltage conversion
- voltage
- input signal
- power supply
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 76
- 230000000295 complement effect Effects 0.000 claims abstract description 51
- 230000005611 electricity Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 14
- 239000000470 constituent Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Landscapes
- Logic Circuits (AREA)
Abstract
Description
技术领域 technical field
本发明涉及集成电路(integrated circuit),尤其涉及一种电压转换器(level shifter)电路,在低电压电源关掉(OFF)时,能将输出节点的电压位准(voltage level)闩锁(latch)在低电压电源关掉前的状态。The present invention relates to an integrated circuit (integrated circuit), in particular to a level shifter circuit capable of latching the voltage level of an output node when a low-voltage power supply is turned off (OFF). ) before the low-voltage power supply is turned off.
背景技术 Background technique
集成电路有时会包含两个运作在不同电压位准或电源域(power domain)的电路。例如,集成电路的核心(core)部分在运作时的电压位准VDDL(例如3.3V)通常会低于输入/输出(I/O)电路的电压位准VDDH(例如5V),以减少功率损耗并因此可使用较小的晶体管(transistor),从而缩小整个晶粒(die)的尺寸。因此,集成电路常利用电压转换器来调整输入信号的电压位准,使输出信号在较高或较低电压位准的另一个电源定域电路能正确地运作。An integrated circuit sometimes includes two circuits that operate at different voltage levels or power domains. For example, the voltage level VDDL (such as 3.3V) of the core part of the integrated circuit is usually lower than the voltage level VDDH (such as 5V) of the input/output (I/O) circuit to reduce power loss. And therefore can use smaller transistors (transistor), thereby reducing the size of the entire die (die). Therefore, integrated circuits often use voltage converters to adjust the voltage level of the input signal, so that another power localization circuit whose output signal is at a higher or lower voltage level can operate correctly.
图1为现有电压转换电路的构成电路图。由图1可知,电压转换电路100具有输入单元11、电压转换单元12与输出单元13的结构。供应输入单元11的第一电源的电压位准VDDL低于供应电压转换单元12与输出单元13的第二电源的电压位准VDDH。输入单元11接收前级输入信号INP后,产生输入信号IN与反相输入信号XIN。为达到省电目的,经常会将低电压的第一电源关掉。将第一电源关掉后,n沟道晶体管105、107的栅极(gate)端电压会降至临界电压Vt之下,使得n沟道晶体管105、107关闭以及互补输出节点111、输出节点112浮接(float)。最差的状况是,若节点111、112的电压刚好停在VDDH/2附近,将造成输出单元13的反相器108、109的漏电(static current drain)现象。这是因为仅靠着两颗p沟道金氧半(PMOS)晶体管104、106只能将一个节点(111或112)拉至VDDH,另外一节点缺少对地的漏电路径会停在VDDH/2,进而造成反相器108、109中的p沟道金氧半(PMOS)晶体管与n沟道金氧半(NMOS)晶体管(图中未显示)同时导通,使高电压的第二电源有漏电现象。另外,由于此时输出端110的电压是不确定的,有可能会造成后级的错误。FIG. 1 is a circuit diagram of a conventional voltage conversion circuit. It can be seen from FIG. 1 that the
图2为另一现有电压转换电路的构成电路图。如图2所示,电压转换器200也包含输入单元11、电压转换单元22与输出单元13。只是电压转换单元22在原有的图1的电压转换单元12中加入两颗p沟道晶体管204、206,以增加节点111或112的电压下降速度。如同上述,当低电压的第一电源关掉之后,n沟道晶体管105、107的栅极端电压会降至临界电压Vt之下,使得n沟道晶体管105、107关闭,p沟道晶体管204、206则为导通状态。其余的情况跟图1一样,节点111、112也会浮接,若节点111、112的电压刚好停在VDDH/2附近,将造成高电压的第二电源的漏电现象,同时,输出端110的电压也不确定。FIG. 2 is a circuit diagram of another conventional voltage conversion circuit. As shown in FIG. 2 , the
图3为再一现有电压转换电路的构成电路图。参考图3,美国专利文献第6,600,358号提出一种在低电压电源关掉时不漏电的电压转换电路300,利用一低电压检测器(low voltage detector)320来检测低电压的电源。当低电压的第一电源关掉时,通过将输入端101与输出端110隔离,可以避免因栅极端浮接所产生的漏电现象。然而,此电压转换电路的输出端110在第一电源关掉后就会固定在一种电压准位,而非维持在低电压电源关掉前的状态。此外,低电压检测器320所需的晶体管很多,并会随着两个不同电源定域的高低电压差变大,而需要更多级来做低电压的检测。另外,此电压转换电路300的电路布局(1ayout)面积会比现有的大上许多。FIG. 3 is a circuit diagram of another conventional voltage conversion circuit. Referring to FIG. 3 , US Patent No. 6,600,358 proposes a
图4为又一现有电压转换电路的构成电路图。参考图4,美国专利文献第6,819,159号提出一种电压转换电路400,由两组电压转换器430、440及二颗晶体管405、407所组成,利用晶体管405、407来加快输出端110的电压往下掉的速度。当第一电源关掉时,若两组电压转换430、440完全匹配,晶体管405、407可以当成互补输出节点111、输出节点112对地的漏电途径,不会造成其它的漏电现象。不过,因包含两组电压转换器430、440的关系,电压转换器电路400所占用的电路面积较大。两组电压转换器430、440的电路布局也需匹配,电路设计难度较高。FIG. 4 is a structural circuit diagram of another conventional voltage conversion circuit. Referring to FIG. 4 , U.S. Patent No. 6,819,159 proposes a voltage conversion circuit 400, which is composed of two sets of voltage converters 430, 440 and two transistors 405, 407. The transistors 405, 407 are used to speed up the voltage of the
类似以上的电压转换电路,可说是不胜枚举,然而无论采用何种设计方式,其目的就是能准确地调整输入信号的电压位准。然而,在低电压电源关掉的情况下,电路依然不漏电并可确定输出端的电压位准,同时符合电路面积小与设计简单等条件,才是最实用的电压转换电路。There are countless voltage conversion circuits like the ones mentioned above, but no matter what design method is adopted, the purpose is to accurately adjust the voltage level of the input signal. However, when the low-voltage power supply is turned off, the circuit still does not leak current and can determine the voltage level of the output terminal. It is the most practical voltage conversion circuit that meets the conditions of small circuit area and simple design.
发明内容 Contents of the invention
鉴于上述问题,本发明的目的在于提供一种电压转换器,即使在低电压电源关掉时,可将输出节点的电压闩锁在低电压电源关掉前的电压位准。In view of the above problems, an object of the present invention is to provide a voltage converter that can latch the voltage of the output node at the voltage level before the low voltage power supply is turned off even when the low voltage power supply is turned off.
为达到上述目的,本发明的电压转换电路将以第一电源作为动作电源的一输入信号与一反相输入信号转换为以第二电源作为动作电源的一输出信号;In order to achieve the above object, the voltage conversion circuit of the present invention converts an input signal using the first power supply as the operating power supply and an inverting input signal into an output signal using the second power supply as the operating power supply;
此电压转换电路具有一电压转换单元,以第二电源作为动作电源并接收所述输入信号与反相输入信号后产生输出信号,电压转换单元具有一输出节点与一互补输出节点;一闩锁单元,以第二电源作为动作电源,并分别电连接至所述输出节点、互补输出节点与一接地端,在第一电源关掉时,闩锁单元将此二个输出节点的电压位准闩锁在第一电源关掉前的状态,所述第一电源的电压高于第二电源的电压。The voltage conversion circuit has a voltage conversion unit, which uses the second power supply as the operating power supply and generates an output signal after receiving the input signal and the inverted input signal. The voltage conversion unit has an output node and a complementary output node; a latch unit , using the second power supply as the operating power supply, and electrically connected to the output node, the complementary output node and a ground terminal respectively, when the first power supply is turned off, the latch unit latches the voltage levels of the two output nodes In the state before the first power supply is turned off, the voltage of the first power supply is higher than the voltage of the second power supply.
所述闩锁单元包括:一第一n沟道晶体管,其漏极电连接至所述互补输出节点、栅极电连接至所述输出节点以及源极接地;The latch unit includes: a first n-channel transistor, the drain of which is electrically connected to the complementary output node, the gate is electrically connected to the output node, and the source is grounded;
一第二n沟道晶体管,其漏极电连接至所述输出节点、栅极电连接至所述互补输出节点以及源极接地。A second n-channel transistor has a drain electrically connected to the output node, a gate electrically connected to the complementary output node, and a source connected to ground.
所述电压转换电路还包括:一输入单元,以所述第一电源作为动作电源,该输入单元接收一前级输入信号,并产生所述输入信号与反相输入信号。The voltage conversion circuit further includes: an input unit, using the first power supply as an operating power supply, the input unit receives a previous input signal, and generates the input signal and an inverted input signal.
所述输入单元包括:The input unit includes:
一第一反相器,接收所述前级输入信号,并产生所述反相输入信号;A first inverter, receiving the preceding input signal and generating the inverted input signal;
一第二反相器,与所述第一反相器串联连接,并产生所述输入信号。A second inverter is connected in series with the first inverter and generates the input signal.
所述电压转换电路还包括:一输出单元,以所述第二电源作为动作电源,该输出单元接收所述输出节点的信号,并产生所述输出信号与一反相输出信号。The voltage conversion circuit further includes: an output unit, using the second power supply as an operating power supply, the output unit receives the signal of the output node, and generates the output signal and an inverted output signal.
所述输出单元包括:The output unit includes:
一第三反相器,接收所述输出节点的信号,并产生所述反相输出信号;a third inverter, receiving the signal of the output node and generating the inverted output signal;
一第四反相器,与所述第三反相器串联连接,并产生所述输出信号。A fourth inverter is connected in series with the third inverter and generates the output signal.
所述电压转换单元包括:The voltage conversion unit includes:
一第一p沟道晶体管,其源极连接至所述第二电源,漏极定义为所述互补输出节点,而栅极连接于所述输出节点;a first p-channel transistor, the source of which is connected to the second power supply, the drain is defined as the complementary output node, and the gate is connected to the output node;
一第二p沟道晶体管,其源极连接至所述第二电源,漏极定义为所述输出节点,而栅极连接于所述互补输出节点;a second p-channel transistor, the source of which is connected to the second power supply, the drain is defined as the output node, and the gate is connected to the complementary output node;
一第三n沟道晶体管,其栅极接收所述输入信号,漏极电连接至所述互补输出节点,而源极接地;a third n-channel transistor having a gate receiving said input signal, a drain electrically connected to said complementary output node, and a source connected to ground;
一第四n沟道晶体管,其栅极接收所述反相输入信号,漏极电连接至所述输出节点,而源极接地。A fourth n-channel transistor, the gate of which receives the inverted input signal, the drain electrically connected to the output node, and the source grounded.
所述电压转换单元包括:The voltage conversion unit includes:
一第一p沟道晶体管,其源极连接至所述第二电源,而栅极连接于所述输出节点;a first p-channel transistor with its source connected to the second power supply and its gate connected to the output node;
一第二p沟道晶体管,其源极连接至所述第二电源,而栅极连接于所述互补输出节点;a second p-channel transistor with its source connected to the second power supply and its gate connected to the complementary output node;
一第三p沟道晶体管,其源极连接至所述第一p沟道晶体管的漏极,漏极定义为所述互补输出节点,而栅极接收所述输入信号;a third p-channel transistor, the source of which is connected to the drain of said first p-channel transistor, the drain being defined as said complementary output node, and the gate receiving said input signal;
一第四p沟道晶体管,其源极连接至所述第二p沟道晶体管的漏极,漏极定义为所述输出节点,而栅极接收所述反相输入信号;a fourth p-channel transistor, the source of which is connected to the drain of the second p-channel transistor, the drain being defined as the output node, and the gate receiving the inverted input signal;
一第三n沟道晶体管,其栅极接收所述输入信号,漏极电连接至所述互补输出节点,而源极接地;a third n-channel transistor having a gate receiving said input signal, a drain electrically connected to said complementary output node, and a source connected to ground;
一第四n沟道晶体管,其栅极接收所述反相输入信号,漏极电连接至所述输出节点,而源极接地。A fourth n-channel transistor, the gate of which receives the inverted input signal, the drain electrically connected to the output node, and the source grounded.
相较于现有的电压转换电路电路,本发明仅增加两颗n沟道晶体管就解决了低电压电源关掉时电路的漏电现象,在增加最小的电路面积情况下,便达到省电的目的。同时,电压转换电路的输出电压维持在低电压电源关掉前的状态,使后级电路正常工作。Compared with the existing voltage conversion circuit, the invention only adds two n-channel transistors to solve the leakage phenomenon of the circuit when the low-voltage power supply is turned off, and achieves the purpose of saving power while increasing the minimum circuit area . At the same time, the output voltage of the voltage conversion circuit is maintained at the state before the low-voltage power supply is turned off, so that the subsequent stage circuit can work normally.
附图说明 Description of drawings
图1为一现有的电压转换电路的构成电路图;Fig. 1 is the constituent circuit diagram of an existing voltage conversion circuit;
图2为另一现有的电压转换电路的构成电路图;Fig. 2 is the composition circuit diagram of another existing voltage conversion circuit;
图3为再一现有的电压转换电路的构成电路图;FIG. 3 is a circuit diagram of another existing voltage conversion circuit;
图4为又一现有的电压转换电路的构成电路图;FIG. 4 is a circuit diagram of another existing voltage conversion circuit;
图5为本发明电压转换电路的构成电路图;Fig. 5 is the constituent circuit diagram of the voltage conversion circuit of the present invention;
图6为本发明第一实施例的电压转换电路结构电路图;Fig. 6 is a circuit diagram of the voltage conversion circuit structure of the first embodiment of the present invention;
图7为本发明第二实施例的电压转换电路结构电路图。FIG. 7 is a circuit diagram of the voltage conversion circuit structure of the second embodiment of the present invention.
具体实施方式 Detailed ways
图5为本发明的电压转换电路的构成电路图。参考图5,本发明的电压转换电路500包括电压转换单元12与闩锁单元54。电压转换单元12主要作用是将二个互补输入信号(即输入信号IN与反相输入信号XIN)的振幅电压范围从0-VDDL转换为振幅电压范围0-VDDH(VDDL<VDDH)的输出信号。其中,互补输入信号IN、XIN是由以低电压VDDL的第一电源作为动作电源的电路所供应。电压转换单元12与闩锁单元54则以比第一电源的电压高的第二电源VDDH作为动作电源。闩锁单元54主要作用是在低电压的第一电源关掉(Poweroff)后,将互补输出节点111与输出节点112的电压闩锁在第一电源关掉前的状态。FIG. 5 is a circuit diagram showing the configuration of the voltage conversion circuit of the present invention. Referring to FIG. 5 , the
电压转换单元12包括一第一p沟道晶体管104、一第二p沟道晶体管106、第一晶体管装置505与第二晶体管装置507。闩锁单元54电连接至输出节点112、互补输出节点111与接地端(图中未示出)。The
第一p沟道晶体管104与第二p沟道晶体管106,分别电连接至第二电源。第一晶体管装置505接收输入信号IN,并分别电连接至第一p沟道晶体管104的漏极、第二p沟道晶体管106的栅极以及闩锁单元54。第二晶体管装置507则接收反相输入信号XIN,并分别电连接至第一p沟道晶体管104的栅极、第二p沟道晶体管106的漏极以及闩锁单元54。The first p-
图6为本发明第一实施例的电压转换电路的结构电路图。参考图6,第一实施例的电压转换电路600包括输入单元11、电压转换单元12、输出单元13与闩锁单元54。输入单元11是以低电压VDDL的第一电源作为动作电源,电压转换单元12、输出单元13与闩锁单元54则以比第一电源的电压高的第二电源VDDH作为动作电源。FIG. 6 is a structural circuit diagram of the voltage conversion circuit according to the first embodiment of the present invention. Referring to FIG. 6 , the
输入单元11与现有的电压转换电路相同,包括二个串联的反相器,即第一反相器102、第二反相器103。第一反相器102接收前级输入信号INP的后,产生反相输入信号XIN。第二反相器103接收反相输入信号XIN的后,产生输入信号IN。输出单元13与现有的电压转换电路相同,包括二个串联的反相器108、109。反相器102、103、108、109均可利用一n沟道晶体管和一p沟道晶体管所组成的互补晶体管对来实施。The
在本实施例中第一晶体管装置与第二晶体管装置分别利用n沟道晶体管105、107来实施。因此,电压转换单元12包括了一第一p沟道晶体管104、一第二p沟道晶体管106、n沟道晶体管105、107。闩锁单元54则包括二个n沟道晶体管605、607,n沟道晶体管605的漏极电连接至互补输出节点111、栅极电连接至输出节点112以及源极接地。n沟道晶体管607的漏极电连接至输出节点112、栅极电连接至互补输出节点111以及源极接地。In the present embodiment the first transistor arrangement and the second transistor arrangement are implemented with n-
在第一电源打开(ON)的情况下,若输入信号IN为高逻辑位准(logic high)VDDL、反相输入信号XIN为低逻辑位准(logic low)GND,则n沟道晶体管105导通,互补输出节点111的电压被拉到低逻辑位准GND。然后,第二p沟道晶体管106导通,输出节点112的电压被拉到高逻辑位准VDDH,从而造成n沟道晶体管605导通,加快了互补输出节点111往下拉的速度。另一方面,若输入信号IN为低逻辑位准GND、反相输入信号XIN为高逻辑位准VDDL,则n沟道晶体管107导通,输出节点112的电压被拉到低逻辑位准GND。然后,第一p沟道晶体管104导通,互补输出节点111的电压被拉到高逻辑位准VDDH,从而造成n沟道晶体管607导通,加快了输出节点112往下拉的速度。因此,包括闩锁单元54的电压转换电路600,缩短了互补输出节点111与输出节点112往下拉的时间(falling time),进而增加电压转换电路600的最高操作频率。When the first power supply is turned on (ON), if the input signal IN is a high logic level (logic high) VDDL, and the inverted input signal XIN is a low logic level (logic low) GND, then the n-
假设在第一电源关掉(OFF)之前,互补输出节点111与输出节点112分别为低逻辑位准与高逻辑位准。为了省电目的而将第一电源关掉后,n沟道晶体管105、107的栅极端电压会降至临界电压Vt之下,使得n沟道晶体管105、107关闭。此时,n沟道晶体管605会导通,以作为互补输出节点111对地的漏电途径。同时,第二p沟道晶体管106也导通,以作为输出节点112对第二电源的充电途径。因此,互补输出节点111与输出节点112分别维持在低逻辑位准与高逻辑位准。Assume that before the first power supply is turned off (OFF), the
另一方面,假设在第一电源关掉之前,互补输出节点111与输出节点112分别为高逻辑位准与低逻辑位准。在第一电源关掉后,n沟道晶体管607会导通,以作为互补输出节点112对地的漏电途径。同时,第一p沟道晶体管104也导通,以作为输出节点111对第二电源的充电途径。因此,互补输出节点111与输出节点112分别维持在高逻辑位准与低逻辑位准。On the other hand, assume that before the first power supply is turned off, the
所以,由于电压转换电路600包括闩锁单元54,在第一电源关掉后,互补输出节点111及输出节点112的电压可以快速的拉开至VDDH或GND,使互补输出节点111与输出节点112的电压可维持在第一电源关掉前的状态,使后级电路即使在第一电源关掉后依然能正常地工作,解决了现有电路中互补输出节点111及输出节点112由于浮接而停在VDDH/2,进而造成反相器108、109的漏电现象。同时,电压转换电路600在增加最小的电路面积情况下,达到第一电源可关掉的省电目的。Therefore, since the
图7为本发明第二实施例的电压转换电路结构电路图。参考图7,第二实施例的电压转换电路700包括输入单元11、电压转换单元22、输出单元13与闩锁单元54。电压转换单元22中的第一晶体管装置利用n沟道晶体管105和p沟道晶体管204所组成的互补晶体管对来实施,第二晶体管装置利用n沟道晶体管107和p沟道晶体管206所组成的互补晶体管对来实施。因此,电压转换单元22包括一第一p沟道晶体管104、一第二p沟道晶体管106、n沟道晶体管105、107以及p沟道晶体管204、206。互补晶体管对105、204的输出端通过互补输出节点111电连接至第二p沟道晶体管106的栅极与n沟道晶体管607的栅极。互补晶体管对107、206的输出端通过输出节点112电连接至第一p沟道晶体管106的栅极与n沟道晶体管605的栅极。FIG. 7 is a circuit diagram of the voltage conversion circuit structure of the second embodiment of the present invention. Referring to FIG. 7 , the
和第一实施例的电压转换电路600相较,加入p沟道晶体管204、206的电压转换电路700,有加快互补输出节点111与输出节点112的电压下降速度的效果。至于第二实施例其余的电路和第一实施例完全相同,不再赘述。Compared with the
上述实施例仅用于说明本发明,而并非用于限定本发明。The above-mentioned embodiments are only used to illustrate the present invention, but not to limit the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005100853537A CN100490325C (en) | 2005-07-26 | 2005-07-26 | Voltage conversion circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005100853537A CN100490325C (en) | 2005-07-26 | 2005-07-26 | Voltage conversion circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1905371A CN1905371A (en) | 2007-01-31 |
CN100490325C true CN100490325C (en) | 2009-05-20 |
Family
ID=37674531
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005100853537A Expired - Fee Related CN100490325C (en) | 2005-07-26 | 2005-07-26 | Voltage conversion circuit |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100490325C (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101753122B (en) * | 2008-10-29 | 2011-12-07 | 盛群半导体股份有限公司 | Potential shift circuit |
CN102800295A (en) * | 2012-09-03 | 2012-11-28 | 旭曜科技股份有限公司 | Latchable turn-over system |
CN105515560A (en) * | 2016-01-27 | 2016-04-20 | 灿芯半导体(上海)有限公司 | Voltage conversion circuit |
CN112311207A (en) * | 2020-11-17 | 2021-02-02 | 北京集创北方科技股份有限公司 | Voltage conversion device, power chip and electronic equipment |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6369612B1 (en) * | 2000-07-27 | 2002-04-09 | Xilinx, Inc. | High voltage level-shifter with tri-state output driver |
JP2003017997A (en) * | 2001-07-05 | 2003-01-17 | Ricoh Co Ltd | Level shift circuit |
-
2005
- 2005-07-26 CN CNB2005100853537A patent/CN100490325C/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6369612B1 (en) * | 2000-07-27 | 2002-04-09 | Xilinx, Inc. | High voltage level-shifter with tri-state output driver |
JP2003017997A (en) * | 2001-07-05 | 2003-01-17 | Ricoh Co Ltd | Level shift circuit |
Also Published As
Publication number | Publication date |
---|---|
CN1905371A (en) | 2007-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7368970B2 (en) | Level shifter circuit | |
US6700429B2 (en) | Semiconductor device | |
US7683668B1 (en) | Level shifter | |
JP5430507B2 (en) | Voltage level shifter | |
CN111357202B (en) | Transient Insensitive Level Shifter | |
US9806698B1 (en) | Circuit and method for a zero static current level shifter | |
US20080258790A1 (en) | Systems and Devices for Sub-threshold Data Capture | |
CN100490325C (en) | Voltage conversion circuit | |
TW202147778A (en) | Level shifter | |
CN112671391A (en) | Level conversion circuit | |
US11979155B2 (en) | Semiconductor integrated circuit device and level shifter circuit | |
Berg | Novel high speed differential CMOS flip-flop for ultra low-voltage appications | |
CN113726330A (en) | Level conversion circuit and chip | |
TWM616390U (en) | Low power voltage level shifter | |
TWM598009U (en) | Voltage level shifter having output control circuit | |
TWM586017U (en) | Low power level shifter circuit | |
CN217693293U (en) | Level shift circuit | |
TWI804248B (en) | Low propagation delay level shifter | |
US20030062924A1 (en) | Voltage translation circuit using a controlled transmission PMOS transistor | |
TWM645482U (en) | High speed voltage level converter having low power consumption | |
TWM647689U (en) | High speed voltage level converter with low power consumption | |
TWM626414U (en) | Voltage level converter with stack transistors | |
TWM635887U (en) | Low-power voltage level converter with contention reduction | |
TWM604082U (en) | Low power voltage level converter | |
TWM643260U (en) | High performance level shifting circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090520 Termination date: 20150726 |
|
EXPY | Termination of patent right or utility model |