[go: up one dir, main page]

CN100474771C - 具有声学效应材料的器件 - Google Patents

具有声学效应材料的器件 Download PDF

Info

Publication number
CN100474771C
CN100474771C CNB018162703A CN01816270A CN100474771C CN 100474771 C CN100474771 C CN 100474771C CN B018162703 A CNB018162703 A CN B018162703A CN 01816270 A CN01816270 A CN 01816270A CN 100474771 C CN100474771 C CN 100474771C
Authority
CN
China
Prior art keywords
filter
acoustic effect
effect material
constant
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB018162703A
Other languages
English (en)
Other versions
CN1466813A (zh
Inventor
T·奥斯特塔格
C·科尔登
W·瑞勒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Siemens Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Corp filed Critical Siemens Corp
Publication of CN1466813A publication Critical patent/CN1466813A/zh
Application granted granted Critical
Publication of CN100474771C publication Critical patent/CN100474771C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
    • H03L7/18Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6403Programmable filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J3/00Continuous tuning
    • H03J3/02Details
    • H03J3/06Arrangements for obtaining constant bandwidth or gain throughout tuning range or ranges
    • H03J3/08Arrangements for obtaining constant bandwidth or gain throughout tuning range or ranges by varying a second parameter simultaneously with the tuning, e.g. coupling bandpass filter
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J3/00Continuous tuning
    • H03J3/28Continuous tuning of more than one resonant circuit simultaneously, the tuning frequencies of the circuits having a substantially constant difference throughout the tuning range
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J5/00Discontinuous tuning; Selecting predetermined frequencies; Selecting frequency bands with or without continuous tuning in one or more of the bands, e.g. push-button tuning, turret tuner
    • H03J5/02Discontinuous tuning; Selecting predetermined frequencies; Selecting frequency bands with or without continuous tuning in one or more of the bands, e.g. push-button tuning, turret tuner with variable tuning element having a number of predetermined settings and adjustable to a desired one of these settings
    • H03J5/0245Discontinuous tuning using an electrical variable impedance element, e.g. a voltage variable reactive diode, in which no corresponding analogue value either exists or is preset, i.e. the tuning information is only available in a digital form
    • H03J5/0272Discontinuous tuning using an electrical variable impedance element, e.g. a voltage variable reactive diode, in which no corresponding analogue value either exists or is preset, i.e. the tuning information is only available in a digital form the digital values being used to preset a counter or a frequency divider in a phase locked loop, e.g. frequency synthesizer
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/0805Details of the phase-locked loop the loop being adapted to provide an additional control signal for use outside the loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
    • H03H9/02Details
    • H03H2009/02165Tuning
    • H03H2009/02173Tuning of film bulk acoustic resonators [FBAR]
    • H03H2009/02188Electrically tuning
    • H03H2009/02196Electrically tuning operating on the FBAR element, e.g. by direct application of a tuning DC voltage

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Oscillators With Electromechanical Resonators (AREA)

Abstract

本发明涉及具有声学效应材料的器件,其声学常数至少可以部分地被改变。所述声学效应材料至少部分地处于相变点和/或在相变点附近。

Description

具有声学效应材料的器件
技术领域
本发明涉及滤波器形式的具有声学效应材料的器件以及运行这种器件的方法。
背景技术
因为移动电信系统标准在世界范围内不同,而且在发送范围内根据所需带宽的不同而提出越来越多的不同标准,所以人们希望有一种可以覆盖所有这些标准或者至少这些标准的一部分的移动电信装置。在这种情况下,出现了发送频带和接收频带处于不同的频率问题,此外还有不同带宽的问题。因此迫切地需要可以电子调谐的电信装置滤波器,使之可以通过软件把电话调节到所希望的标准。
目前还没有解决以上问题的调谐滤波器。当前应对的方法是采用电信技术中得到检验的表面波滤波器(OFW滤波器)并按照需要在这些滤波器之间来回切换。OFW器件以多种多样的形式用作可无线电请求的或者自行发送传感器、识别标志或者滤波器。现有技术的实施形式公开于:例如,DE 198 60 058 Cl、EP 0 746 775 B1、EP 0 655 701 B1、EP 0 651 344 B1、EP 0 619 906 B1、US 5 691 698、US 5 841 214、US5 966 008、US 5 910 779,US 6 029 324、US 6 084 503。
OFW滤波器本身以其稳定性而著称从而遗憾地不能够调谐或者只能在非常窄的限界内调谐。在一个装置中使用多个滤波器当然会导致需要较大的位置并且提高了成本,因为针对每个标准分别需要一个滤波器。所述的OFW滤波器还不能用半导体技术集成化,所以必须遵从混合电路方案。
为了至少绕开这种混合电路方案,人们一再提出用体波工作的FBARS(薄膜体波谐振器),所述的FBARS可以至少部分兼容CMOS地制造。然而这里对每个标准也需要自身的滤波器甚至于多个滤波器。这种方法的主要问题在于,在生产技术上没有掌握所要求的频率精度,从而不能批量生产,也就不能降低成本。
由EP 0 834 989 A2公知一种FBAR,其弹性常数可以至少部分地改变。然而这种改变却小得不能够抵消制造波动,更谈不到实现可调谐滤波器。
R.E.N ewnham,A.Amin:“Smart System:Microphones,fishFarming,and beyond”CHEMTECH,[Online] Band 29,Nr.12,ol.December 1999,38-46页,American Chemical Society公开具有临近第二相变点组成的压电陶瓷。用来测量传感器中的负荷并且在致动器中产生负荷。
US-A-4,464,639说明了铁电晶体的特性,特别是在这种晶体中铁电和压电状态之间的关系,以及电场引起的压力和负荷可改变性。此外还说明了在居里点从铁电相到顺电相的相变。该文献说明一种通过高于相变温度极化来调节晶体频率特性的方法,和用这种方法的运行,其中可以达到叉指式变换器的双倍频率。最后示出了一种滤波器的应用,所述滤波器在相变温度以上被制造,在相变温度以下运行。
发明内容
因此本发明的任务是,提出一种滤波器,在运行过程中,其声学常数可以在这样的程度上进行改变:借助于各所考虑电信标准的频率范围内的控制来调节该声学常数。这里,声学常数特别被理解为弹性常数,譬如刚性,以及密度。所述的材料常数确定音速,从而确定声学效应材料中的声振动的频率。
所述的任务通过一种滤波器,尤其是用于电信装置的滤波器以及运行具有声学效应材料的滤波器的方法解决。所述滤波器具有声学效应材料,所述材料的声学常数至少可以部分地改变以在运行过程中调谐所述滤波器,在运行过程中为了调谐所述滤波器,所述的声学效应材料至少部分地处在相变点和/或在相变点附近。在所述方法中,改变所述声学效应材料的声学常数以在运行过程中调谐滤波器,并且在运行过程中为了调谐滤波器,所述的所述声学效应材料至少部分地运行在相变点和/或在相变点附近。
本发明基于以下认识:在材料的相变点和/或相变点附近可以获得大的声学常数改变。通过改变声学效应材料的声学常数可以用所希望的方式调节声学效应材料中传播的声波的频率。这不论是对表面波还是体波都适用,从而可以选择性地构成滤波器以利用表面波和/或体波工作。如果所述滤波器的具有声学效应材料至少部分是压电材料,那么可追溯到公知的把电磁波转换成声波的技术。因此尤其可以设想表面波器件上装入叉指式换能器,或者在体波器件的声学效应材料的两个相对侧面上设置电极。
如果可以把声学效应材料的声学常数影响得产生至少0.5%的速度改变,就说明接近相变点。这足以补偿制造波动。然而最好更充分应用为最少1%、5%的速度改变,特别是10%的速度改变。
用压电材料作声学效应材料时优选地把相变点选在铁电相与顺电相之间的相变点。这里声学效应材料的声学常数可以在宽的范围内改变,尤其是通过改变压电耦合改变。为了能够较大程度地充分利用压电效应把电磁波耦合进声学效应材料中的声波,此时,最好应当在相变点的铁电相一侧工作。
如果声学效应材料的一个空间上确定的部分处在第一相,而另一个空间上确定的部分在第二相,就可以避免直接在相变点按照Kramers-Kronig关系出现的衰减。
优选地,所述滤波器含有改变声学效应材料的声学常数的装置和/或含有这种装置的连接端口。所述的装置例如可以具有尤其是在声学效应材料上施加电压的元件,借助于所述电压可以改变材料的声学常数。施加电压的元件例如可以用安排在所述滤波器上尤其是安排在声学效应材料上的电极的形式构成。对于交流电压也可以采用感应性工作元件。
改变声学常数的装置也可以具有调节温度,尤其调节声学效应材料温度的元件,借助于所述温度可以改变材料的声学常数。改变温度的元件可以以加热和/或冷却装置的形式构成。尤其可以考虑珀耳贴元件。
改变声学常数的装置也可以具有调节其它热力学量,例如压力,尤其调节声学效应材料中的压力的元件,借助于所述压力就可以改变材料的声学常数。
所述的滤波器优选地实施为表面波器件、体波器件或者静电耦合的薄膜振子,尤其是在其声学效应材料方面确定尺寸使之可以用作为所希望的频率范围内的滤波器。
在根据本发明的运行具有声学效应材料的滤波器的方法中,改变所述声学效应材料的声学常数,其中声学效应材料至少部分地处在相变点和/或在相变点附近。
附图说明
在所述方法中有利地采用上述类型的滤波器,和
本发明的其它重要特征和优点由参照附图对一个实施例的说明给出。附图中
图1是具有声学效应材料的滤波器,和
图2是控制所述滤波器的电路。
具体实施方式
图1中示出具有声学效应材料2的器件1形式的滤波器。所述的声学效应材料2由压电物质例如LiNbO3、LiTaO3、Bi12GeO20、Li2B4O7、AlPO4、GaAs、ZnO和/或石英构成。
声学效应材料至少部分地处于相变点和/或在相变点附近。所述的相变点尤其是铁电材料的居里点。众所周知,在居里点附近介电常数ε随着温度发生强烈变化,另外也随着所加的电场发生强烈变化。这种变化通过压电耦合改变材料的刚性c:
c = c 0 + d 2 ϵ .
式中c0代表没有压电效应时的吸音材料的刚性,而d代表声学效应材料的压电常数。介电常数ε、刚性c、c0和压电常数d一般为张量。
如果ε的值很大,譬如在居里点就是这样的情况,从而通过压电效应使声学效应材料得到的压电刚性化(piezoelectric stiffening)式中可以去掉
d2/ε,
从而得到近于不存在压电效应的刚性。反之,如果ε下降,就会出现加强的刚性。这里声学效应材料在其总体涉及的体积内自行改变。
声学常数的这种改变性有很大的不稳定性,尤其是与温度相关。另一种不稳定性来自于制造,也可来自于可能发生的老化。为了控制所有的这些不稳定性,需要可以据以进行调节的固定基准。在这种情况下,不稳定性的时间常数非常不同。制造确定的不稳定性与时间无关,因此可以通过施加电压的U的校正值U制造加以补偿,该校正值存储于固定的存储器中。补偿老化稳定性的校正值U老化却需要不时地设定为最新状态。这种老化效应中当然地还包括所有电子线路自身出现的效应。相反地,补偿温度的校正值U温度却需要不断地更新,因为不仅缓慢改变的环境温度起作用,而且温度本身可也在运行中改变(自身发热)。
除了校正电压外,如果是可连续调谐的滤波器最后还要能够自行连续调谐频率,以能够设定相应的频带及频率f设定。为此,施加电压U设定
总之在两个在声学效应材料2上平面布置的电极3、4上叠加有上述所有电压:
UFBAR=U设定+U老化+U制造+U温度+U复位
由实施为FBAR的器件1产生的频率f实际与固定基准频率f基准相关。其中不断地跟踪调节UFBAR直至f实际-f基准为所希望的值f设定-f基准。这里还补偿上以上没有专门说明的所有可能的其它效应。
此外在声学效应材料2上还安排有珀耳贴元件5,用所述的珀耳贴元件5通过加热或冷却声学效应材料达到温度补偿。这里,在较好的热绝缘和较小的热容(薄膜)的情况下,加热及冷却声学效应材料的时间常数较小。
除了用FBARS作体积厚度振子外,本发明的一个扩展还在于,在压电耦合薄膜振子中加入声致改变层(MEMS),如例如Clark T.-C.Nguyen:“Micromachining Technologies for MiniaturizedCommunication Devices”,Proceedings of SPIE,Santa Clara,Canifonia,1998,第24-38页所述。其中改变振动薄膜的刚性从而同样得到频率调谐。这种谐振器的最好在中间频率范围使用,与放在前端区的厚度振子不同。利用这个扩展不仅能够使前端滤波器,还能够使中间频率滤波器可以采用半导体技术进行集成,连同与之相关联的优点。前端滤波器和中间频率滤波器甚至制造在带有部分共用的控制和调节装置的芯片上。
图2是控制的举例。其中两个根据本发明的器件1、1`实施为单门谐振器(Eintorresonator)并且安排成可调谐的梯形滤波器。经输入端6向可调谐的梯形滤波器中输入输入信号,其中器件1`被串联接入信号通道,而器件1被并联接地。用上述的方式经控制电压U1、U2控制这两个器件的声学常数从而控制其频率。从微控制器9经D/A转换器7、8调节控制电压U1、U2。在可调谐梯形滤波器的输出端12可以引出以所希望的方式滤波的有用信号。
在与信号通道串联连接的器件1`的输出端上设有用于测量接收场强的装置10。由测量接收场强的装置10所测量的接收场强经A/D转换器11馈送到微控制器9。
器件1、1`构成的与接收方串联的梯形滤波器由微处理器9在其中间频率上失谐直到测量接收场强的装置10的输出达到最大的接收场强。
此外并不是一定要无间隙地覆盖当前的移动通信中800MHz至2.5GHz范围的整个频带。覆盖900MHz至2GHz就足够了。这里对FBARS可以应用谐波。较低的频率范围由基波覆盖,而较高的范围则采用一次谐波。通过在FBARS的薄膜结构中的适当电极构形和相应的控制可以达到模式选择,也就是所述的滤波器最好要么以基波运行要么以谐波运行。

Claims (10)

1.滤波器,所述滤波器具有声学效应材料(2),所述材料(2)的声学常数至少可以部分地改变以在运行过程中调谐所述滤波器,
其特征在于,
为了在运行过程中调谐所述滤波器,所述的声学效应材料至少部分地处在相变点和/或在相变点附近。
2.如权利要求1所述的滤波器,
其特征在于,
所述滤波器是用于电信装置的滤波器。
3.如权利要求1所述的滤波器,
其特征在于,
所述声学效应材料(2)至少部分地是压电材料。
4.如权利要求3所述的滤波器,
其特征在于,
相变点是铁电相与顺电相之间的相变点。
5.如权利要求1-4之一所述的滤波器,
其特征在于,
所述声学效应材料(2)的一部分处于一个相,而声学效应材料(2)的另一部分处于另一相。
6.如权利要求1-4之一所述的滤波器,
其特征在于,
所述滤波器(1)具有改变声学效应材料的声学常数的装置(3、4、5)和/或这种装置的连接端口。
7.如权利要求6所述的滤波器,
其特征在于,
用于改变声学常数的装置(3、4)具有在声学效应材料(2)上施加电压的元件,借助于所述电压可以改变声学效应材料(2)的声学常数。
8.如权利要求6所述的滤波器,
其特征在于,
用于改变声学常数的装置(5)具有调节温度的元件,借助于所述温度可以改变声学效应材料(2)的声学常数。
9.如权利要求1-4所述的滤波器,
其特征在于,
所述的滤波器(1)是表面波器件、体波器件或者薄膜振子。
10.运行具有声学效应材料(2)的滤波器(1)的方法,其中
-改变所述声学效应材料(2)的声学常数以在运行过程中调谐滤波器,并且
-为了在运行过程中调谐所述滤波器,所述的所述声学效应材料(2)至少部分地运行在相变点和/或在相变点附近。
CNB018162703A 2000-09-25 2001-09-20 具有声学效应材料的器件 Expired - Lifetime CN100474771C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10047379.2 2000-09-25
DE10047379A DE10047379B4 (de) 2000-09-25 2000-09-25 Bauelement mit akustisch aktivem Material
DE10047359.2 2000-09-25

Publications (2)

Publication Number Publication Date
CN1466813A CN1466813A (zh) 2004-01-07
CN100474771C true CN100474771C (zh) 2009-04-01

Family

ID=7657489

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB018162703A Expired - Lifetime CN100474771C (zh) 2000-09-25 2001-09-20 具有声学效应材料的器件

Country Status (5)

Country Link
US (1) US6847271B2 (zh)
EP (1) EP1323232B1 (zh)
CN (1) CN100474771C (zh)
DE (2) DE10047379B4 (zh)
WO (1) WO2002025811A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060001329A1 (en) * 2004-06-30 2006-01-05 Valluri Rao FBAR device frequency stabilized against temperature drift
US7675388B2 (en) * 2006-03-07 2010-03-09 Agile Rf, Inc. Switchable tunable acoustic resonator using BST material
DE102006039515B4 (de) * 2006-08-23 2012-02-16 Epcos Ag Drehbewegungssensor mit turmartigen Schwingstrukturen
DE102006048879B4 (de) * 2006-10-16 2018-02-01 Snaptrack, Inc. Elektroakustisches Bauelement
US9584092B2 (en) * 2015-04-14 2017-02-28 International Business Machines Corporation Mechanical resonator with a spring-mass system comprising a phase-change material

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3840826A (en) * 1973-08-16 1974-10-08 Rca Corp Variable delay devices using ferroelastic-ferroelectric materials
CA1080031A (en) * 1976-06-30 1980-06-24 Protecon B.V. Press for separating meat and bones
US4464639A (en) * 1982-09-17 1984-08-07 Rockwell International Corporation Ferroelectric surface acoustic wave devices
JPH0511227A (ja) * 1991-02-08 1993-01-19 Olympus Optical Co Ltd 音響光学素子
DE59205787D1 (de) 1992-01-03 1996-04-25 Siemens Ag Passiver oberflächenwellen-sensor, der drahtlos abfragbar ist
DE4336504C1 (de) 1993-10-26 1995-03-02 Siemens Ag Mit akustischen Oberflächenwellen arbeitende Identifizierungsmarke
DE4336897C1 (de) 1993-10-28 1995-03-09 Siemens Ag Identifizierungssystem mit OFW-ID-Tags
US5446306A (en) * 1993-12-13 1995-08-29 Trw Inc. Thin film voltage-tuned semiconductor bulk acoustic resonator (SBAR)
DE4405647C2 (de) 1994-02-22 1999-04-15 Siemens Ag Mit akustischen Oberflächenwellen arbeitende Identifizierungsmarke
DE59509359D1 (de) 1994-04-15 2001-08-02 Siemens Ag Sensorsystem
WO1996008047A2 (en) 1994-09-06 1996-03-14 Philips Electronics N.V. Electroluminescent device comprising a transparent structured electrode layer made from a conductive polymer
US6084503A (en) 1995-04-18 2000-07-04 Siemens Aktiengesellschaft Radio-interrogated surface-wave technology sensor
DE19514342C1 (de) 1995-04-18 1996-02-22 Siemens Ag Stromwandler, geeignet zur Stromstärkemessung an/in auf Hochspannung liegenden elektrischen Einrichtungen
JPH09147284A (ja) 1995-11-07 1997-06-06 Siemens Ag 表面音響波により作動する無線問合わせ装置
EP1007349B1 (en) 1995-11-22 2004-09-29 THE GOVERNMENT OF THE UNITED STATES OF AMERICA, as represented by THE SECRETARY OF THE NAVY Patterned conducting polymer surfaces and process for preparing the same and devices containing the same
DE19622013A1 (de) 1996-05-31 1997-12-11 Siemens Ag Mit akustischen Oberflächenwellen arbeitendes akustoelektronisches Bauelement
US5714917A (en) * 1996-10-02 1998-02-03 Nokia Mobile Phones Limited Device incorporating a tunable thin film bulk acoustic resonator for performing amplitude and phase modulation
US5992215A (en) * 1997-05-29 1999-11-30 Sensor Research And Development Corp. Surface acoustic wave mercury vapor sensors
US6045977A (en) 1998-02-19 2000-04-04 Lucent Technologies Inc. Process for patterning conductive polyaniline films
JP2003530750A (ja) * 2000-04-06 2003-10-14 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 共振器を有するチューニング可能なフィルタ構成
US6724280B2 (en) * 2001-03-27 2004-04-20 Paratek Microwave, Inc. Tunable RF devices with metallized non-metallic bodies
JP3944372B2 (ja) * 2001-09-21 2007-07-11 株式会社東芝 圧電薄膜振動子及びこれを用いた周波数可変共振器

Also Published As

Publication number Publication date
DE10047379B4 (de) 2004-07-15
DE50102863D1 (de) 2004-08-19
EP1323232A1 (de) 2003-07-02
US6847271B2 (en) 2005-01-25
US20040104789A1 (en) 2004-06-03
EP1323232B1 (de) 2004-07-14
DE10047379A1 (de) 2002-04-25
CN1466813A (zh) 2004-01-07
WO2002025811A1 (de) 2002-03-28

Similar Documents

Publication Publication Date Title
Cassella et al. Aluminum nitride cross-sectional Lamé mode resonators
KR100669088B1 (ko) 압전 진동자, 이를 이용한 필터 및 압전 진동자의 조정 방법
CN100566154C (zh) 多模薄膜弹性波谐振器滤波器
CN100571030C (zh) 压电谐振滤波器和双工器
US7135940B2 (en) Tunable filter and portable telephone
US7365619B2 (en) BAW apparatus
US7893784B2 (en) Composite resonance circuit and oscillation circuit using the circuit
KR101918282B1 (ko) 체적 음향 공진기를 이용한 rf 필터 및 rf 트랜시버
JP4468185B2 (ja) 等しい共振周波数を有する共振器フィルタ構造体
US20070052327A1 (en) Acoustic wave resonator with integrated temperature control for oscillator purposes
US20180323769A1 (en) Acoustic wave resonator, acoustic wave filter, multiplexer, communication apparatus, and method designing acoustic wave resonator
US7196452B2 (en) Film acoustic wave device, manufacturing method and circuit device
US7847647B2 (en) Oscillator circuit with acoustic single-port surface wave resonators
CN100474771C (zh) 具有声学效应材料的器件
JP2005529535A (ja) 調整可能なフィルタおよび周波数調整方法
KR20030004114A (ko) 압전 공진기, 그 제조 방법, 압전 필터, 그 제조 방법,듀플렉서, 및 전자 통신 장치
US20060202782A1 (en) Oscillator with acoustic surface wave resonators
Ralib et al. Silicon compatible Acoustic wave resonators: Design, fabrication and performance
US6950640B2 (en) FM detector circuit
JP2002290197A (ja) 圧電共振子およびこの圧電共振子を用いたfm検波回路
CN112964384A (zh) 一种谐振器型无线无源温度传感器及工作方法
US6320300B1 (en) Piezoelectric array devices
Yen et al. Synthesis of narrowband AlN Lamb wave ladder-type filters based on overhang adjustment
Nordin et al. RF oscillator implementation using integrated CMOS surface acoustic wave resonators
US5469010A (en) Method of adjusting frequency of NS-GT cut quartz resonator

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: PAM SA

Free format text: FORMER OWNER: BENQ MOBILE GMBH + CO. OHG

Effective date: 20131025

Owner name: BENQ MOBILE GMBH + CO. OHG

Free format text: FORMER OWNER: BENQ CORP.

Effective date: 20131025

Owner name: BENQ CORP.

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT

Effective date: 20131025

Owner name: HEWLETT PACKARD DEVELOPMENT CO., LLP

Free format text: FORMER OWNER: PAM SA

Effective date: 20131025

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; TO: TAIWAN, CHINA

TR01 Transfer of patent right

Effective date of registration: 20131025

Address after: Texas, USA

Patentee after: HEWLETT-PACKARD DEVELOPMENT Co.,L.P.

Address before: California, USA

Patentee before: PALM, Inc.

Effective date of registration: 20131025

Address after: California, USA

Patentee after: PALM, Inc.

Address before: Munich, Germany

Patentee before: BenQ Mobile GmbH & Co. OHG

Effective date of registration: 20131025

Address after: Munich, Germany

Patentee after: BenQ Mobile GmbH & Co. OHG

Address before: Taoyuan, Taiwan, China

Patentee before: Benq Corp.

Effective date of registration: 20131025

Address after: Taoyuan, Taiwan, China

Patentee after: Benq Corp.

Address before: Munich, Germany

Patentee before: Siemens AG

ASS Succession or assignment of patent right

Owner name: HEWLETT PACKARD DEVELOPMENT CO., LLP

Free format text: FORMER OWNER: PAM SA

Effective date: 20140102

Owner name: PAM SA

Free format text: FORMER OWNER: HEWLETT PACKARD DEVELOPMENT CO., LLP

Effective date: 20131231

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20140102

Address after: Texas, USA

Patentee after: HEWLETT-PACKARD DEVELOPMENT Co.,L.P.

Address before: California, USA

Patentee before: PALM, Inc.

Effective date of registration: 20131231

Address after: California, USA

Patentee after: PALM, Inc.

Address before: Texas, USA

Patentee before: HEWLETT-PACKARD DEVELOPMENT Co.,L.P.

ASS Succession or assignment of patent right

Owner name: QUALCOMM INC.

Free format text: FORMER OWNER: HEWLETT PACKARD DEVELOPMENT CO., LLP

Effective date: 20140227

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20140227

Address after: California, USA

Patentee after: QUALCOMM Inc.

Address before: Texas, USA

Patentee before: HEWLETT-PACKARD DEVELOPMENT Co.,L.P.

CX01 Expiry of patent term

Granted publication date: 20090401

CX01 Expiry of patent term