CN100420045C - Gallium nitride series light-emitting diode - Google Patents
Gallium nitride series light-emitting diode Download PDFInfo
- Publication number
- CN100420045C CN100420045C CNB2004100801434A CN200410080143A CN100420045C CN 100420045 C CN100420045 C CN 100420045C CN B2004100801434 A CNB2004100801434 A CN B2004100801434A CN 200410080143 A CN200410080143 A CN 200410080143A CN 100420045 C CN100420045 C CN 100420045C
- Authority
- CN
- China
- Prior art keywords
- alloy
- layer
- gallium nitride
- thin layer
- nitride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical class [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 title claims abstract description 81
- 229910002601 GaN Inorganic materials 0.000 claims abstract description 79
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 43
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims abstract description 43
- 229910052738 indium Inorganic materials 0.000 claims abstract description 18
- 239000000463 material Substances 0.000 claims abstract description 16
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims abstract description 15
- AJGDITRVXRPLBY-UHFFFAOYSA-N aluminum indium Chemical compound [Al].[In] AJGDITRVXRPLBY-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910001020 Au alloy Inorganic materials 0.000 claims description 45
- 229910000990 Ni alloy Inorganic materials 0.000 claims description 21
- 239000000203 mixture Substances 0.000 claims description 20
- 229910001252 Pd alloy Inorganic materials 0.000 claims description 15
- 229910001260 Pt alloy Inorganic materials 0.000 claims description 15
- 229910000599 Cr alloy Inorganic materials 0.000 claims description 9
- 238000005253 cladding Methods 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- 239000000758 substrate Substances 0.000 claims description 7
- 239000013078 crystal Substances 0.000 claims description 6
- 229910052718 tin Inorganic materials 0.000 claims description 6
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 5
- 150000004767 nitrides Chemical class 0.000 claims description 4
- 229910000952 Be alloy Inorganic materials 0.000 claims description 3
- 229910000531 Co alloy Inorganic materials 0.000 claims description 3
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 claims description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 3
- 229910020068 MgAl Inorganic materials 0.000 claims description 3
- 229910001128 Sn alloy Inorganic materials 0.000 claims description 3
- 229910006404 SnO 2 Inorganic materials 0.000 claims description 3
- 229910001362 Ta alloys Inorganic materials 0.000 claims description 3
- 229910001069 Ti alloy Inorganic materials 0.000 claims description 3
- -1 TiWN x Inorganic materials 0.000 claims description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 3
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 claims description 3
- NWAIGJYBQQYSPW-UHFFFAOYSA-N azanylidyneindigane Chemical compound [In]#N NWAIGJYBQQYSPW-UHFFFAOYSA-N 0.000 claims description 3
- 239000004065 semiconductor Substances 0.000 claims description 3
- 229910052596 spinel Inorganic materials 0.000 claims description 3
- 239000011029 spinel Substances 0.000 claims description 3
- 238000003475 lamination Methods 0.000 claims 1
- 239000010410 layer Substances 0.000 description 108
- 229910010271 silicon carbide Inorganic materials 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000007788 roughening Methods 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
Images
Landscapes
- Led Devices (AREA)
Abstract
本发明涉及一种氮化镓系发光二极管。其结构与现有的氮化镓系发光二极管最主要的差异是,利用氮化硅(SiN)、氮化硅与未掺杂的氮化铟镓(InGaN)形成的短周期(Short Period)超晶格(Superlattice)结构、和氮化硅与未掺杂的氮化铝铟镓(AlGaInN)形成的短周期超晶格结构中的一种,形成位于p型接触层上的薄层。在该薄层上,由于其氮化硅材质的成长,使得氮化镓系发光二极管的表面被微粗化。这样,可以避免氮化镓系发光二极管比空气具有高的折射率导致内部全反射,进而提升氮化镓系发光二极管的外部量子效率以及发光效率。
The present invention relates to a gallium nitride-based light-emitting diode. The main difference between its structure and the existing gallium nitride-based light-emitting diode is that a thin layer located on a p-type contact layer is formed by using one of silicon nitride (SiN), a short period superlattice structure formed by silicon nitride and undoped indium gallium nitride (InGaN), and a short period superlattice structure formed by silicon nitride and undoped aluminum indium gallium nitride (AlGaInN). On the thin layer, due to the growth of its silicon nitride material, the surface of the gallium nitride-based light-emitting diode is slightly roughened. In this way, the gallium nitride-based light-emitting diode can be prevented from having a higher refractive index than air, resulting in total internal reflection, thereby improving the external quantum efficiency and luminous efficiency of the gallium nitride-based light-emitting diode.
Description
技术领域 technical field
本发明涉及一种氮化镓系发光二极管,特别是涉及一种表面微粗化(Micro-roughened)的高亮度氮化镓系发光二极管。The invention relates to a gallium nitride-based light-emitting diode, in particular to a high-brightness gallium nitride-based light-emitting diode with a Micro-roughened surface.
背景技术 Background technique
氮化镓(GaN)系发光二极管,由于可以通过控制材料的组成来制作出各种色光的发光二极管,因此其相关技术成为近年来产业界与学术界积极研发的焦点。学术界与产业界对氮化镓系发光二极管的研究重点之一是,了解氮化镓系发光二极管的发光特性,进而提出提升其发光效率与亮度的方法。这种高效率与高亮度的氮化镓系发光二极管,未来将可以有效应用于户外显示看板、车用照明等领域。Gallium Nitride (GaN)-based light-emitting diodes can produce light-emitting diodes of various colors by controlling the composition of materials, so its related technologies have become the focus of active research and development in the industry and academia in recent years. One of the research focuses of GaN-based light-emitting diodes in academia and industry is to understand the light-emitting characteristics of GaN-based light-emitting diodes, and then propose methods to improve their luminous efficiency and brightness. This high-efficiency and high-brightness gallium nitride-based light-emitting diode will be effectively used in outdoor display boards, automotive lighting and other fields in the future.
氮化镓系发光二极管的发光效率,主要和氮化镓系发光二极管的内部量子效率(Internal Quantum Efficiency)以及外部量子效率(External QuantumEfficiency)有关。前者和氮化镓系发光二极管主动层里电子电洞结合进而释放出光子的机率有关。电子电洞越容易复合,光子越容易产生,内部量子效率就越高,氮化镓系发光二极管的发光效率通常也就越高。后者则和光子不受氮化镓系发光二极管本身的吸收与影响、成功脱离氮化镓系发光二极管的机率有关。越多光子能释放到氮化镓系发光二极管之外,外部量子效率就越高,氮化镓系发光二极管的发光效率通常也就越高。The luminous efficiency of gallium nitride-based light-emitting diodes is mainly related to the internal quantum efficiency (Internal Quantum Efficiency) and external quantum efficiency (External Quantum Efficiency) of gallium nitride-based light-emitting diodes. The former is related to the probability of the combination of electrons and holes in the active layer of GaN-based light-emitting diodes to release photons. The easier it is for electron holes to recombine, the easier it is for photons to be generated, the higher the internal quantum efficiency, and the higher the luminous efficiency of gallium nitride-based light-emitting diodes. The latter is related to the probability that photons are not absorbed and affected by the GaN-based light-emitting diode itself, and successfully escape from the GaN-based light-emitting diode. The more photons that can be released out of the GaN-based LED, the higher the external quantum efficiency, and the luminous efficiency of the GaN-based LED is generally higher.
氮化镓系发光二极管的外部量子效率主要取决于其顶端表层的结构与其折射率。现有的氮化镓系发光二极管与空气的折射率分别是2.5和1。因为现有的氮化镓系发光二极管的折射率较高,很容易形成内部全反射。所产生出来的光子,由于内部全反射的缘故,很不容易释放到氮化镓系发光二极管之外,因而氮化镓系发光二极管的外部量子效率通常受到相当大的限制。The external quantum efficiency of GaN-based light-emitting diodes mainly depends on the structure and refractive index of the top surface layer. The refractive indices of existing gallium nitride-based light-emitting diodes and air are 2.5 and 1, respectively. Because the existing gallium nitride-based light-emitting diodes have a relatively high refractive index, it is easy to form internal total reflection. The generated photons are not easily released outside the GaN-based light-emitting diode due to internal total reflection, so the external quantum efficiency of the GaN-based light-emitting diode is usually considerably limited.
发明内容 Contents of the invention
本发明的目的是提供一种氮化镓系发光二极管,其可以实际解决前述相关技术中的限制及缺陷。The purpose of the present invention is to provide a gallium nitride-based light-emitting diode, which can actually solve the limitations and defects in the aforementioned related art.
为了实现上述目的,本发明提供了一种氮化镓系发光二极管,其包括:In order to achieve the above object, the present invention provides a gallium nitride-based light-emitting diode, which includes:
基板,其是由氧化铝单晶、6H-SiC、4H-SiC、Si、ZnO、GaAs、尖晶石(MgAl2O4)和晶格常数接近于氮化物半导体的单晶氧化物所制成;Substrates made of alumina single crystal, 6H-SiC, 4H-SiC, Si, ZnO, GaAs, spinel (MgAl 2 O 4 ) and single crystal oxides with lattice constants close to those of nitride semiconductors ;
缓冲层,其位于该基板的一个侧面上,由具有特定组成的氮化铝镓铟(AlaGabIn1-a-bN,0≤a,b<1,a+b≤1)所构成;a buffer layer, located on one side of the substrate, made of aluminum gallium indium nitride (Al a Ga b In 1-ab N, 0≤a, b<1, a+b≤1) with a specific composition;
n型接触层,其位于该缓冲层上,由氮化镓系材质所构成;an n-type contact layer, located on the buffer layer, is made of gallium nitride-based materials;
主动层,其位于该n型接触层上,且覆盖部份该n型接触层的上表面,由氮化铟镓所构成;an active layer, which is located on the n-type contact layer and covers part of the upper surface of the n-type contact layer, and is made of indium gallium nitride;
负电极,其位于该n型接触层未被该主动层覆盖的上表面上;a negative electrode on the upper surface of the n-type contact layer not covered by the active layer;
p型被覆层,其位于该主动层上,由p型氮化镓系材质所构成;a p-type cladding layer, located on the active layer, made of p-type GaN-based material;
p型接触层,其位于该p型被覆层上,由p型氮化镓所构成;a p-type contact layer, located on the p-type cladding layer, made of p-type gallium nitride;
微粗化薄层,其位于该p型接触层上,由氮化硅(SiN)、氮化硅与未掺杂的氮化铟镓(InGaN)组成的短周期超晶格结构、以及氮化硅与未掺杂的氮化铝铟镓(AlGaInN)组成的短周期超晶格结构三种材料中的一种所构成;Micro-roughened thin layer, which is located on the p-type contact layer, a short-period superlattice structure composed of silicon nitride (SiN), silicon nitride and undoped indium gallium nitride (InGaN), and nitride A short-period superlattice structure composed of silicon and undoped aluminum indium gallium nitride (AlGaInN) is composed of one of three materials;
透明导电层,其是位于该微粗化薄层上、且覆盖其部份表面的金属导电层或者透明氧化层,该金属导电层是由Ni/Au合金、Ni/Pt合金、Ni/Pd合金、Pd/Au合金、Pt/Au合金、Cr/Au合金、Ni/Au/Be合金、Ni/Cr/Au合金、Ni/Pt/Au合金、Ni/Pd/Au合金中的一种所构成,该透明氧化层是由ITO、CTO、ZnO:Al、ZnGa2O4、SnO2:Sb、Ga2O3:Sn、AgInO2:Sn、In2O3:Zn、CuAlO2、LaCuOS、NiO、CuGaO2、SrCu2O2中的一种所构成;以及The transparent conductive layer is a metal conductive layer or a transparent oxide layer that is located on the micro-roughened thin layer and covers part of its surface. The metal conductive layer is made of Ni/Au alloy, Ni/Pt alloy, Ni/Pd alloy , Pd/Au alloy, Pt/Au alloy, Cr/Au alloy, Ni/Au/Be alloy, Ni/Cr/Au alloy, Ni/Pt/Au alloy, Ni/Pd/Au alloy, The transparent oxide layer is made of ITO, CTO, ZnO:Al, ZnGa 2 O 4 , SnO 2 :Sb, Ga 2 O 3 :Sn, AgInO 2 :Sn, In 2 O 3 :Zn, CuAlO 2 , LaCuOS, NiO, Composed of one of CuGaO 2 and SrCu 2 O 2 ; and
正电极,其位于该微粗化薄层上的未被该透明导电层覆盖的表面上,由Ni/Au合金、Ni/Pt合金、Ni/Pd合金、Ni/Co合金、Pd/Au合金、Pt/Au合金、Ti/Au合金、Cr/Au合金、Sn/Au合金、Ta/Au合金、TiN、TiWNx(x≥0)、WSiy(y≥0)中的一种所构成。The positive electrode, which is located on the surface of the micro-roughened thin layer not covered by the transparent conductive layer, is made of Ni/Au alloy, Ni/Pt alloy, Ni/Pd alloy, Ni/Co alloy, Pd/Au alloy, One of Pt/Au alloy, Ti/Au alloy, Cr/Au alloy, Sn/Au alloy, Ta/Au alloy, TiN, TiWN x (x≥0), WSi y (y≥0).
本发明所提出的氮化镓系发光二极管,其结构与现有的氮化镓系发光二极管最主要的差异是,利用氮化硅(SiN)、氮化硅与未掺杂的氮化铟镓(InGaN)形成的短周期(Short Period)超晶格(Superlattice)结构、和氮化硅与未掺杂的氮化铝铟镓(AlGaInN)形成的短周期超晶格结构中的一种,形成位于p型接触层上的薄层。在该薄层上,由于其氮化硅材质的成长,使得氮化镓系发光二极管的表面被微粗化。这样,可以避免氮化镓系发光二极管比空气具有高的折射率导致内部全反射,进而提升氮化镓系发光二极管的外部量子效率以及发光效率。The main difference between the GaN-based light-emitting diode proposed by the present invention and the existing GaN-based light-emitting diode is that it uses silicon nitride (SiN), silicon nitride and undoped InGaN One of the short period (Short Period) superlattice (Superlattice) structure formed by (InGaN) and the short period superlattice structure formed by silicon nitride and undoped aluminum indium gallium nitride (AlGaInN), forming A thin layer on the p-type contact layer. On the thin layer, due to the growth of the silicon nitride material, the surface of the gallium nitride-based light-emitting diode is slightly roughened. In this way, the internal total reflection caused by the higher refractive index of the GaN-based light-emitting diodes than air can be avoided, thereby improving the external quantum efficiency and luminous efficiency of the GaN-based light-emitting diodes.
图1是现有的以及依据本发明制作的氮化镓系发光二极管在不同的注入电流下的亮度数据图。如图1所示,氮化镓系发光二极管具有前述由氮化硅与未掺杂的氮化铟镓(In0.2Ga0.8N)所形成的短周期超晶格薄层,其显著地要比现有的氮化镓系发光二极管具有更好的发光效率。Fig. 1 is a diagram of brightness data of GaN-based light-emitting diodes produced under different injection currents in the prior art and according to the present invention. As shown in Figure 1, GaN-based light-emitting diodes have the aforementioned short-period superlattice thin layer formed by silicon nitride and undoped indium gallium nitride (In 0.2 Ga 0.8 N), which is significantly larger than Existing gallium nitride-based light-emitting diodes have better luminous efficiency.
除了上述的优点,由于形成该薄层的材料的低能隙特性,还可以使得氮化镓系发光二极管的金属电极以及透明导电层和薄层之间的电阻,要比现有氮化镓系发光二极管的前二者和p型接触层之间的电阻更低,因此也更容易形成欧姆接触。In addition to the above-mentioned advantages, due to the low energy gap characteristics of the material forming the thin layer, the metal electrode of the gallium nitride-based light-emitting diode and the resistance between the transparent conductive layer and the thin layer can also be made better than the existing gallium nitride-based light-emitting diodes. The resistance between the first two of the diode and the p-type contact layer is lower, so it is also easier to form an ohmic contact.
附图说明 Description of drawings
下面结合附图和具体实施方式,对本发明进行更详细的说明。The present invention will be described in more detail below in conjunction with the accompanying drawings and specific embodiments.
图1是现有的以及依据本发明制作的氮化镓系发光二极管在不同的注入电流下的亮度数据图;Fig. 1 is the luminance data graph of the existing gallium nitride-based light-emitting diodes manufactured according to the present invention under different injection currents;
图2是本发明的氮化镓系发光二极管的实施例1的示意图;2 is a schematic diagram of Embodiment 1 of the gallium nitride-based light-emitting diode of the present invention;
图3是本发明的氮化镓系发光二极管的实施例2的示意图;3 is a schematic diagram of Embodiment 2 of the gallium nitride-based light-emitting diode of the present invention;
图4是本发明的氮化镓系发光二极管的实施例3的示意图。FIG. 4 is a schematic view of Embodiment 3 of the gallium nitride-based light-emitting diode of the present invention.
具体实施方式 Detailed ways
实施例1Example 1
图2是本发明的氮化镓系发光二极管的实施例1的示意图。如图2所示,该实施例1是以C-Plane或R-Plane或A-Plane的氧化铝单晶(Sapphire)或碳化硅(6H-SiC或4H-SiC)作为基板10,其它可用于基板10的材质还包括Si、ZnO、GaAs或尖晶石(MgAl2O4),或是晶格常数接近于氮化物半导体的单晶氧化物。然后,在该基板10的一个侧面形成由具有特定组成的氮化铝镓铟(AlaGabIn1-a-bN,0≤a,b<1,a+b≤1)所构成的缓冲层20、以及在该缓冲层20上的n型接触层30,该n型接触层30是由氮化镓(GaN)系材质构成。接着,在该n型接触层30上形成主动层40,该主动层40是由氮化铟镓所构成、而且覆盖部份n型接触层30的上表面。在n型接触层30上表面未被主动层40覆盖的部份,另外形成有负电极42。FIG. 2 is a schematic view of Embodiment 1 of the gallium nitride-based light-emitting diode of the present invention. As shown in Figure 2, this embodiment 1 uses C-Plane or R-Plane or A-Plane alumina single crystal (Sapphire) or silicon carbide (6H-SiC or 4H-SiC) as the
该实施例1接着在主动层40上形成p型被覆层50。该p型被覆层50是由氮化镓系材质所构成。在该p型被覆层50上,接着是材质为p型氮化镓的p型接触层60。在该p型接触层60上,即为本发明重点的微粗化薄层70。在该实施例1中,微粗化薄层70是由氮化硅(SidNe,0<d,e<1)所构成,其厚度介于2~50之间、成长温度介于600℃~1100℃之间。In Example 1, a p-
在微粗化薄层70上方,该实施例1进一步分别形成互不重叠的正电极80与透明导电层82。该正电极80可以是由Ni/Au合金、Ni/Pt合金、Ni/Pd合金、Ni/Co合金、Pd/Au合金、Pt/Au合金、Ti/Au合金、Cr/Au合金、Sn/Au合金、Ta/Au合金、TiN、TiWNx(x≥0)、WSiy(y≥0)等中的一种、或其它类似金属材料所构成。该透明导电层82可以是金属导电层或是透明氧化层。该金属导电层是由Ni/Au合金、Ni/Pt合金、Ni/Pd合金、Pd/Au合金、Pt/Au合金、Cr/Au合金、Ni/Au/Be合金、Ni/Cr/Au合金、Ni/Pt/Au合金、Ni/Pd/Au合金及其它类似材料之一所构成。该透明氧化层是由ITO、CTO、ZnO:Al、ZnGa2O4、SnO2:Sb、Ga2O3:Sn、AgInO2:Sn、In2O3:Zn、CuAlO2、LaCuOS、NiO、CuGaO2、SrCu2O2中的一种所构成。On the micro-roughened
实施例2Example 2
图3是本发明的氮化镓系发光二极管的实施例2的示意图。如图3所示,该实施例2和实施例1具有相同的结构与成长方式。唯一的差别是在微粗化薄层所用的材质与结构。在该实施例2中,微粗化薄层72是由氮化硅薄层721与氮化铟镓薄层722交互重复层叠所形成的短周期超晶格结构。每一个氮化硅薄层721,均是由具有其特定组成的氮化硅(SifNgN,0<f,g<1)所构成,其厚度均介于2~20之间、成长温度亦均介于600℃~1100℃之间。不同的氮化硅薄层721的氮化硅组成(即前述分子式的参数f,g)不一定相同。每一个氮化铟镓薄层722,均是由未掺杂、具有其特定组成的氮化铟镓(InhGa1-hN,0<h≤1)所构成,其厚度均介于2~20之间、成长温度亦均介于600℃~1100℃之间。不同的氮化铟镓薄层722的氮化铟镓组成(即前述分子式的参数h)不一定相同。FIG. 3 is a schematic diagram of Embodiment 2 of the GaN-based light-emitting diode of the present invention. As shown in FIG. 3 , the embodiment 2 and the embodiment 1 have the same structure and growth method. The only difference is the material and structure used in the micro-roughening thin layer. In the second embodiment, the micro-roughened
在该微粗化薄层72中,最底层(即直接位于p型接触层上)可以是氮化硅薄层721,其上再依次层叠氮化铟镓薄层722、氮化硅薄层721,依此类推。或者最底层也可以是氮化铟镓薄层722,其上再依次层叠氮化硅薄层721、氮化铟镓薄层722,依此类推。氮化硅薄层721与氮化铟镓薄层722依此方式交互重复层叠,其重复次数大于或等于二(即氮化硅薄层721的层数与氮化铟镓薄层722的层数均大于或等于二)。微粗化薄层72的总厚度不超过200 In the micro-roughened
实施例3Example 3
图4是本发明的氮化镓系发光二极管的实施例3的示意图。如图4所示,该实施例3和上述实施例1、2具有相同的结构与成长方式。唯一的差别是在微粗化薄层所用的材质与结构。在该实施例3中,微粗化薄层74是由氮化硅薄层741与氮化铝铟镓薄层742交互重复层叠所形成的短周期超晶格结构。每一个氮化硅薄层741,均是由具有其特定组成的氮化硅(SiiNjN,0<i,j<1)所构成,其厚度均介于2~20之间、成长温度亦均介于600℃~1100℃之间。不同的氮化硅薄层741的氮化硅组成(即前述分子式的参数i,j)不一定相同。每一个氮化铝铟镓薄层742,均是由未掺杂、具有其特定组成的氮化铝铟镓(AlmInnGa1-m-nN,0<m,n<1,m+n<1)所构成,其厚度均介于2~20之间、成长温度亦均介于600℃~1100℃之间。不同的氮化铝铟镓薄层742的氮化铝铟镓组成(即前述分子式的参数m,n)不一定相同。FIG. 4 is a schematic view of Embodiment 3 of the gallium nitride-based light-emitting diode of the present invention. As shown in FIG. 4 , this embodiment 3 has the same structure and growth method as the above-mentioned embodiments 1 and 2. The only difference is the material and structure used in the micro-roughening thin layer. In the third embodiment, the micro-roughened
在该微粗化薄层74中,最底层(即直接位于p型接触层上)可以是氮化硅薄层741,其上再依次层叠氮化铝铟镓薄层742、氮化硅薄层741,依此类推。或者最底层也可以是氮化铝铟镓薄层742,其上再依次层叠氮化硅薄层741、氮化铝铟镓薄层742,依此类推。氮化硅薄层741与氮化铝铟镓薄层742依此方式交互重复层叠,其重复次数大于或等于二(即氮化硅薄层741的层数与氮化铝铟镓薄层742的层数均大于或等于二)。微粗化薄层74的总厚度不超过200 In the micro-roughened
在前述的三个实施例中,由于微粗化薄层中氮化硅材质的成长,使得氮化镓系发光二极管的表面被微粗化。这样可以避免氮化镓系发光二极管比空气具有高的折射率而导致内部全反射,进而提升氮化镓系发光二极管的外部量子效率以及发光效率。In the foregoing three embodiments, the surface of the gallium nitride-based light-emitting diode is micro-roughened due to the growth of the silicon nitride material in the micro-roughened thin layer. In this way, the internal total reflection caused by the higher refractive index of the GaN-based light-emitting diodes than air can be avoided, thereby improving the external quantum efficiency and luminous efficiency of the GaN-based light-emitting diodes.
以上所述的仅为用以解释本发明的较佳实施例,并非以任何方式对本发明进行限制,因此,凡在相同的发明精神下所作的有关本发明的任何修饰或变更,均仍应包括在本发明的保护范畴内。The above descriptions are only preferred embodiments for explaining the present invention, and are not intended to limit the present invention in any way. Therefore, any modification or change related to the present invention made under the same spirit of the invention should still include Within the scope of protection of the present invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100801434A CN100420045C (en) | 2004-09-23 | 2004-09-23 | Gallium nitride series light-emitting diode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100801434A CN100420045C (en) | 2004-09-23 | 2004-09-23 | Gallium nitride series light-emitting diode |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1753199A CN1753199A (en) | 2006-03-29 |
CN100420045C true CN100420045C (en) | 2008-09-17 |
Family
ID=36679956
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2004100801434A Expired - Lifetime CN100420045C (en) | 2004-09-23 | 2004-09-23 | Gallium nitride series light-emitting diode |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100420045C (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008071038A1 (en) * | 2006-12-15 | 2008-06-19 | Podium Photonics (Guangzhou) Ltd. | Gan led chip and the method of the same |
KR100974923B1 (en) * | 2007-03-19 | 2010-08-10 | 서울옵토디바이스주식회사 | Light emitting diode |
CN101420003B (en) * | 2007-10-24 | 2011-11-30 | 泰谷光电科技股份有限公司 | Manufacturing method of light emitting diode |
CN102169929A (en) * | 2011-02-25 | 2011-08-31 | 聚灿光电科技(苏州)有限公司 | Manufacturing method of light-emitting diode (LED) with high light-extraction rate |
CN103178184A (en) * | 2011-12-23 | 2013-06-26 | 亿光电子工业股份有限公司 | LED structure |
CN105350074A (en) * | 2015-11-03 | 2016-02-24 | 湘能华磊光电股份有限公司 | Epitaxial growth method for improving LED epitaxial crystal quality |
CN115064622B (en) * | 2022-08-18 | 2022-11-18 | 江西兆驰半导体有限公司 | Composite N-type GaN layer, light-emitting diode epitaxial wafer and preparation method thereof |
CN118538843B (en) * | 2024-07-26 | 2024-09-27 | 江西兆驰半导体有限公司 | Epitaxial wafer of light-emitting diode and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6172382B1 (en) * | 1997-01-09 | 2001-01-09 | Nichia Chemical Industries, Ltd. | Nitride semiconductor light-emitting and light-receiving devices |
US20020096687A1 (en) * | 2001-01-19 | 2002-07-25 | Daniel Kuo | Light emitting diode |
US20040159851A1 (en) * | 2003-02-13 | 2004-08-19 | Edmond John Adam | Group III nitride contact structures for light emitting devices |
-
2004
- 2004-09-23 CN CNB2004100801434A patent/CN100420045C/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6172382B1 (en) * | 1997-01-09 | 2001-01-09 | Nichia Chemical Industries, Ltd. | Nitride semiconductor light-emitting and light-receiving devices |
US20020096687A1 (en) * | 2001-01-19 | 2002-07-25 | Daniel Kuo | Light emitting diode |
US20040159851A1 (en) * | 2003-02-13 | 2004-08-19 | Edmond John Adam | Group III nitride contact structures for light emitting devices |
Also Published As
Publication number | Publication date |
---|---|
CN1753199A (en) | 2006-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008172040A (en) | Semiconductor light emitting element, method of manufacturing semiconductor light emitting element, backlight, display and electronic equipment | |
US20070267636A1 (en) | Gallium-Nitride Based Light-Emitting Diode Structure With High Reverse Withstanding Voltage And Anti-ESD Capability | |
US7049638B2 (en) | High-brightness gallium-nitride based light emitting diode structure | |
US20070187697A1 (en) | Nitride based MQW light emitting diode having carrier supply layer | |
CN108140700A (en) | Luminescent device | |
CN109742203A (en) | A kind of iii-nitride light emitting devices | |
US7180096B2 (en) | Gallium-nitride based light-emitting diode structure with high reverse withstanding voltage and anti-ESD capability | |
CN115692566A (en) | Nitride Light Emitting Diodes | |
CN100420045C (en) | Gallium nitride series light-emitting diode | |
EP1677365A2 (en) | Semiconductor light emitting diode having textured structure and method of manufacturing the same | |
CN100372135C (en) | High-brightness gallium nitride light-emitting diode structure | |
US7180097B2 (en) | High-brightness gallium-nitride based light emitting diode structure | |
CN102544290B (en) | Nitride semiconductor light emitting diode element | |
US7442962B2 (en) | High-brightness gallium-nitride based light emitting diode structure | |
CN100524850C (en) | Gallium Nitride Light Emitting Diode Structure | |
CN102005515A (en) | Light emitting diode with low-temperature interlayer of gallium nitride series | |
US7345321B2 (en) | High-brightness gallium-nitride based light emitting diode structure | |
CN100418237C (en) | N-type contact layer structure of gallium nitride multiple quantum well light-emitting diode | |
CN100479210C (en) | Multiple quantum well nitride light emitting diode with carrier providing layer | |
KR100836132B1 (en) | Nitride-based Semiconductor Light-Emitting Diodes | |
JP4036857B2 (en) | High brightness gallium nitride light emitting diode | |
TWI239665B (en) | Structure of gallium-nitride based (GaN-based) light-emitting diode with high luminance | |
JP4084787B2 (en) | Gallium nitride light emitting diode | |
CN201766092U (en) | Gallium nitride based light-emitting diode with low-temperature intermediate layer | |
TWI455355B (en) | Light emitting diode structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C41 | Transfer of patent application or patent right or utility model | ||
TR01 | Transfer of patent right |
Effective date of registration: 20091211 Address after: Taoyuan County of Taiwan Province Co-patentee after: LUMENS Limited by Share Ltd. Patentee after: FORMOSA EPITAXY INCORPORATION Address before: Taoyuan County of Taiwan Province Patentee before: Formosa Epitaxy Incorporation |
|
CX01 | Expiry of patent term |
Granted publication date: 20080917 |
|
CX01 | Expiry of patent term |