[go: up one dir, main page]

CN100420045C - Gallium nitride series light-emitting diode - Google Patents

Gallium nitride series light-emitting diode Download PDF

Info

Publication number
CN100420045C
CN100420045C CNB2004100801434A CN200410080143A CN100420045C CN 100420045 C CN100420045 C CN 100420045C CN B2004100801434 A CNB2004100801434 A CN B2004100801434A CN 200410080143 A CN200410080143 A CN 200410080143A CN 100420045 C CN100420045 C CN 100420045C
Authority
CN
China
Prior art keywords
alloy
layer
gallium nitride
thin layer
nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB2004100801434A
Other languages
Chinese (zh)
Other versions
CN1753199A (en
Inventor
武良文
涂如钦
游正璋
温子稷
简奉任
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lumens Ltd By Share Ltd
Formosa Epitaxy Inc
Original Assignee
Formosa Epitaxy Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Formosa Epitaxy Inc filed Critical Formosa Epitaxy Inc
Priority to CNB2004100801434A priority Critical patent/CN100420045C/en
Publication of CN1753199A publication Critical patent/CN1753199A/en
Application granted granted Critical
Publication of CN100420045C publication Critical patent/CN100420045C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

本发明涉及一种氮化镓系发光二极管。其结构与现有的氮化镓系发光二极管最主要的差异是,利用氮化硅(SiN)、氮化硅与未掺杂的氮化铟镓(InGaN)形成的短周期(Short Period)超晶格(Superlattice)结构、和氮化硅与未掺杂的氮化铝铟镓(AlGaInN)形成的短周期超晶格结构中的一种,形成位于p型接触层上的薄层。在该薄层上,由于其氮化硅材质的成长,使得氮化镓系发光二极管的表面被微粗化。这样,可以避免氮化镓系发光二极管比空气具有高的折射率导致内部全反射,进而提升氮化镓系发光二极管的外部量子效率以及发光效率。

Figure 200410080143

The present invention relates to a gallium nitride-based light-emitting diode. The main difference between its structure and the existing gallium nitride-based light-emitting diode is that a thin layer located on a p-type contact layer is formed by using one of silicon nitride (SiN), a short period superlattice structure formed by silicon nitride and undoped indium gallium nitride (InGaN), and a short period superlattice structure formed by silicon nitride and undoped aluminum indium gallium nitride (AlGaInN). On the thin layer, due to the growth of its silicon nitride material, the surface of the gallium nitride-based light-emitting diode is slightly roughened. In this way, the gallium nitride-based light-emitting diode can be prevented from having a higher refractive index than air, resulting in total internal reflection, thereby improving the external quantum efficiency and luminous efficiency of the gallium nitride-based light-emitting diode.

Figure 200410080143

Description

氮化镓系发光二极管 Gallium Nitride Light Emitting Diodes

技术领域 technical field

本发明涉及一种氮化镓系发光二极管,特别是涉及一种表面微粗化(Micro-roughened)的高亮度氮化镓系发光二极管。The invention relates to a gallium nitride-based light-emitting diode, in particular to a high-brightness gallium nitride-based light-emitting diode with a Micro-roughened surface.

背景技术 Background technique

氮化镓(GaN)系发光二极管,由于可以通过控制材料的组成来制作出各种色光的发光二极管,因此其相关技术成为近年来产业界与学术界积极研发的焦点。学术界与产业界对氮化镓系发光二极管的研究重点之一是,了解氮化镓系发光二极管的发光特性,进而提出提升其发光效率与亮度的方法。这种高效率与高亮度的氮化镓系发光二极管,未来将可以有效应用于户外显示看板、车用照明等领域。Gallium Nitride (GaN)-based light-emitting diodes can produce light-emitting diodes of various colors by controlling the composition of materials, so its related technologies have become the focus of active research and development in the industry and academia in recent years. One of the research focuses of GaN-based light-emitting diodes in academia and industry is to understand the light-emitting characteristics of GaN-based light-emitting diodes, and then propose methods to improve their luminous efficiency and brightness. This high-efficiency and high-brightness gallium nitride-based light-emitting diode will be effectively used in outdoor display boards, automotive lighting and other fields in the future.

氮化镓系发光二极管的发光效率,主要和氮化镓系发光二极管的内部量子效率(Internal Quantum Efficiency)以及外部量子效率(External QuantumEfficiency)有关。前者和氮化镓系发光二极管主动层里电子电洞结合进而释放出光子的机率有关。电子电洞越容易复合,光子越容易产生,内部量子效率就越高,氮化镓系发光二极管的发光效率通常也就越高。后者则和光子不受氮化镓系发光二极管本身的吸收与影响、成功脱离氮化镓系发光二极管的机率有关。越多光子能释放到氮化镓系发光二极管之外,外部量子效率就越高,氮化镓系发光二极管的发光效率通常也就越高。The luminous efficiency of gallium nitride-based light-emitting diodes is mainly related to the internal quantum efficiency (Internal Quantum Efficiency) and external quantum efficiency (External Quantum Efficiency) of gallium nitride-based light-emitting diodes. The former is related to the probability of the combination of electrons and holes in the active layer of GaN-based light-emitting diodes to release photons. The easier it is for electron holes to recombine, the easier it is for photons to be generated, the higher the internal quantum efficiency, and the higher the luminous efficiency of gallium nitride-based light-emitting diodes. The latter is related to the probability that photons are not absorbed and affected by the GaN-based light-emitting diode itself, and successfully escape from the GaN-based light-emitting diode. The more photons that can be released out of the GaN-based LED, the higher the external quantum efficiency, and the luminous efficiency of the GaN-based LED is generally higher.

氮化镓系发光二极管的外部量子效率主要取决于其顶端表层的结构与其折射率。现有的氮化镓系发光二极管与空气的折射率分别是2.5和1。因为现有的氮化镓系发光二极管的折射率较高,很容易形成内部全反射。所产生出来的光子,由于内部全反射的缘故,很不容易释放到氮化镓系发光二极管之外,因而氮化镓系发光二极管的外部量子效率通常受到相当大的限制。The external quantum efficiency of GaN-based light-emitting diodes mainly depends on the structure and refractive index of the top surface layer. The refractive indices of existing gallium nitride-based light-emitting diodes and air are 2.5 and 1, respectively. Because the existing gallium nitride-based light-emitting diodes have a relatively high refractive index, it is easy to form internal total reflection. The generated photons are not easily released outside the GaN-based light-emitting diode due to internal total reflection, so the external quantum efficiency of the GaN-based light-emitting diode is usually considerably limited.

发明内容 Contents of the invention

本发明的目的是提供一种氮化镓系发光二极管,其可以实际解决前述相关技术中的限制及缺陷。The purpose of the present invention is to provide a gallium nitride-based light-emitting diode, which can actually solve the limitations and defects in the aforementioned related art.

为了实现上述目的,本发明提供了一种氮化镓系发光二极管,其包括:In order to achieve the above object, the present invention provides a gallium nitride-based light-emitting diode, which includes:

基板,其是由氧化铝单晶、6H-SiC、4H-SiC、Si、ZnO、GaAs、尖晶石(MgAl2O4)和晶格常数接近于氮化物半导体的单晶氧化物所制成;Substrates made of alumina single crystal, 6H-SiC, 4H-SiC, Si, ZnO, GaAs, spinel (MgAl 2 O 4 ) and single crystal oxides with lattice constants close to those of nitride semiconductors ;

缓冲层,其位于该基板的一个侧面上,由具有特定组成的氮化铝镓铟(AlaGabIn1-a-bN,0≤a,b<1,a+b≤1)所构成;a buffer layer, located on one side of the substrate, made of aluminum gallium indium nitride (Al a Ga b In 1-ab N, 0≤a, b<1, a+b≤1) with a specific composition;

n型接触层,其位于该缓冲层上,由氮化镓系材质所构成;an n-type contact layer, located on the buffer layer, is made of gallium nitride-based materials;

主动层,其位于该n型接触层上,且覆盖部份该n型接触层的上表面,由氮化铟镓所构成;an active layer, which is located on the n-type contact layer and covers part of the upper surface of the n-type contact layer, and is made of indium gallium nitride;

负电极,其位于该n型接触层未被该主动层覆盖的上表面上;a negative electrode on the upper surface of the n-type contact layer not covered by the active layer;

p型被覆层,其位于该主动层上,由p型氮化镓系材质所构成;a p-type cladding layer, located on the active layer, made of p-type GaN-based material;

p型接触层,其位于该p型被覆层上,由p型氮化镓所构成;a p-type contact layer, located on the p-type cladding layer, made of p-type gallium nitride;

微粗化薄层,其位于该p型接触层上,由氮化硅(SiN)、氮化硅与未掺杂的氮化铟镓(InGaN)组成的短周期超晶格结构、以及氮化硅与未掺杂的氮化铝铟镓(AlGaInN)组成的短周期超晶格结构三种材料中的一种所构成;Micro-roughened thin layer, which is located on the p-type contact layer, a short-period superlattice structure composed of silicon nitride (SiN), silicon nitride and undoped indium gallium nitride (InGaN), and nitride A short-period superlattice structure composed of silicon and undoped aluminum indium gallium nitride (AlGaInN) is composed of one of three materials;

透明导电层,其是位于该微粗化薄层上、且覆盖其部份表面的金属导电层或者透明氧化层,该金属导电层是由Ni/Au合金、Ni/Pt合金、Ni/Pd合金、Pd/Au合金、Pt/Au合金、Cr/Au合金、Ni/Au/Be合金、Ni/Cr/Au合金、Ni/Pt/Au合金、Ni/Pd/Au合金中的一种所构成,该透明氧化层是由ITO、CTO、ZnO:Al、ZnGa2O4、SnO2:Sb、Ga2O3:Sn、AgInO2:Sn、In2O3:Zn、CuAlO2、LaCuOS、NiO、CuGaO2、SrCu2O2中的一种所构成;以及The transparent conductive layer is a metal conductive layer or a transparent oxide layer that is located on the micro-roughened thin layer and covers part of its surface. The metal conductive layer is made of Ni/Au alloy, Ni/Pt alloy, Ni/Pd alloy , Pd/Au alloy, Pt/Au alloy, Cr/Au alloy, Ni/Au/Be alloy, Ni/Cr/Au alloy, Ni/Pt/Au alloy, Ni/Pd/Au alloy, The transparent oxide layer is made of ITO, CTO, ZnO:Al, ZnGa 2 O 4 , SnO 2 :Sb, Ga 2 O 3 :Sn, AgInO 2 :Sn, In 2 O 3 :Zn, CuAlO 2 , LaCuOS, NiO, Composed of one of CuGaO 2 and SrCu 2 O 2 ; and

正电极,其位于该微粗化薄层上的未被该透明导电层覆盖的表面上,由Ni/Au合金、Ni/Pt合金、Ni/Pd合金、Ni/Co合金、Pd/Au合金、Pt/Au合金、Ti/Au合金、Cr/Au合金、Sn/Au合金、Ta/Au合金、TiN、TiWNx(x≥0)、WSiy(y≥0)中的一种所构成。The positive electrode, which is located on the surface of the micro-roughened thin layer not covered by the transparent conductive layer, is made of Ni/Au alloy, Ni/Pt alloy, Ni/Pd alloy, Ni/Co alloy, Pd/Au alloy, One of Pt/Au alloy, Ti/Au alloy, Cr/Au alloy, Sn/Au alloy, Ta/Au alloy, TiN, TiWN x (x≥0), WSi y (y≥0).

本发明所提出的氮化镓系发光二极管,其结构与现有的氮化镓系发光二极管最主要的差异是,利用氮化硅(SiN)、氮化硅与未掺杂的氮化铟镓(InGaN)形成的短周期(Short Period)超晶格(Superlattice)结构、和氮化硅与未掺杂的氮化铝铟镓(AlGaInN)形成的短周期超晶格结构中的一种,形成位于p型接触层上的薄层。在该薄层上,由于其氮化硅材质的成长,使得氮化镓系发光二极管的表面被微粗化。这样,可以避免氮化镓系发光二极管比空气具有高的折射率导致内部全反射,进而提升氮化镓系发光二极管的外部量子效率以及发光效率。The main difference between the GaN-based light-emitting diode proposed by the present invention and the existing GaN-based light-emitting diode is that it uses silicon nitride (SiN), silicon nitride and undoped InGaN One of the short period (Short Period) superlattice (Superlattice) structure formed by (InGaN) and the short period superlattice structure formed by silicon nitride and undoped aluminum indium gallium nitride (AlGaInN), forming A thin layer on the p-type contact layer. On the thin layer, due to the growth of the silicon nitride material, the surface of the gallium nitride-based light-emitting diode is slightly roughened. In this way, the internal total reflection caused by the higher refractive index of the GaN-based light-emitting diodes than air can be avoided, thereby improving the external quantum efficiency and luminous efficiency of the GaN-based light-emitting diodes.

图1是现有的以及依据本发明制作的氮化镓系发光二极管在不同的注入电流下的亮度数据图。如图1所示,氮化镓系发光二极管具有前述由氮化硅与未掺杂的氮化铟镓(In0.2Ga0.8N)所形成的短周期超晶格薄层,其显著地要比现有的氮化镓系发光二极管具有更好的发光效率。Fig. 1 is a diagram of brightness data of GaN-based light-emitting diodes produced under different injection currents in the prior art and according to the present invention. As shown in Figure 1, GaN-based light-emitting diodes have the aforementioned short-period superlattice thin layer formed by silicon nitride and undoped indium gallium nitride (In 0.2 Ga 0.8 N), which is significantly larger than Existing gallium nitride-based light-emitting diodes have better luminous efficiency.

除了上述的优点,由于形成该薄层的材料的低能隙特性,还可以使得氮化镓系发光二极管的金属电极以及透明导电层和薄层之间的电阻,要比现有氮化镓系发光二极管的前二者和p型接触层之间的电阻更低,因此也更容易形成欧姆接触。In addition to the above-mentioned advantages, due to the low energy gap characteristics of the material forming the thin layer, the metal electrode of the gallium nitride-based light-emitting diode and the resistance between the transparent conductive layer and the thin layer can also be made better than the existing gallium nitride-based light-emitting diodes. The resistance between the first two of the diode and the p-type contact layer is lower, so it is also easier to form an ohmic contact.

附图说明 Description of drawings

下面结合附图和具体实施方式,对本发明进行更详细的说明。The present invention will be described in more detail below in conjunction with the accompanying drawings and specific embodiments.

图1是现有的以及依据本发明制作的氮化镓系发光二极管在不同的注入电流下的亮度数据图;Fig. 1 is the luminance data graph of the existing gallium nitride-based light-emitting diodes manufactured according to the present invention under different injection currents;

图2是本发明的氮化镓系发光二极管的实施例1的示意图;2 is a schematic diagram of Embodiment 1 of the gallium nitride-based light-emitting diode of the present invention;

图3是本发明的氮化镓系发光二极管的实施例2的示意图;3 is a schematic diagram of Embodiment 2 of the gallium nitride-based light-emitting diode of the present invention;

图4是本发明的氮化镓系发光二极管的实施例3的示意图。FIG. 4 is a schematic view of Embodiment 3 of the gallium nitride-based light-emitting diode of the present invention.

具体实施方式 Detailed ways

实施例1Example 1

图2是本发明的氮化镓系发光二极管的实施例1的示意图。如图2所示,该实施例1是以C-Plane或R-Plane或A-Plane的氧化铝单晶(Sapphire)或碳化硅(6H-SiC或4H-SiC)作为基板10,其它可用于基板10的材质还包括Si、ZnO、GaAs或尖晶石(MgAl2O4),或是晶格常数接近于氮化物半导体的单晶氧化物。然后,在该基板10的一个侧面形成由具有特定组成的氮化铝镓铟(AlaGabIn1-a-bN,0≤a,b<1,a+b≤1)所构成的缓冲层20、以及在该缓冲层20上的n型接触层30,该n型接触层30是由氮化镓(GaN)系材质构成。接着,在该n型接触层30上形成主动层40,该主动层40是由氮化铟镓所构成、而且覆盖部份n型接触层30的上表面。在n型接触层30上表面未被主动层40覆盖的部份,另外形成有负电极42。FIG. 2 is a schematic view of Embodiment 1 of the gallium nitride-based light-emitting diode of the present invention. As shown in Figure 2, this embodiment 1 uses C-Plane or R-Plane or A-Plane alumina single crystal (Sapphire) or silicon carbide (6H-SiC or 4H-SiC) as the substrate 10, other can be used for The material of the substrate 10 also includes Si, ZnO, GaAs or spinel (MgAl 2 O 4 ), or a single crystal oxide whose lattice constant is close to that of nitride semiconductor. Then, a buffer layer composed of aluminum gallium indium nitride (Al a Ga b In 1-ab N, 0≤a, b<1, a+b≤1) having a specific composition is formed on one side surface of the substrate 10 20, and the n-type contact layer 30 on the buffer layer 20, the n-type contact layer 30 is made of gallium nitride (GaN)-based material. Next, an active layer 40 is formed on the n-type contact layer 30 , the active layer 40 is made of InGaN and covers part of the upper surface of the n-type contact layer 30 . A negative electrode 42 is additionally formed on the part of the upper surface of the n-type contact layer 30 not covered by the active layer 40 .

该实施例1接着在主动层40上形成p型被覆层50。该p型被覆层50是由氮化镓系材质所构成。在该p型被覆层50上,接着是材质为p型氮化镓的p型接触层60。在该p型接触层60上,即为本发明重点的微粗化薄层70。在该实施例1中,微粗化薄层70是由氮化硅(SidNe,0<d,e<1)所构成,其厚度介于2~50

Figure C20041008014300072
之间、成长温度介于600℃~1100℃之间。In Example 1, a p-type cladding layer 50 is formed next on the active layer 40 . The p-type cladding layer 50 is made of GaN-based material. On the p-type cladding layer 50 is a p-type contact layer 60 made of p-type gallium nitride. On the p-type contact layer 60 is the micro-roughened thin layer 70 which is the focus of the present invention. In this embodiment 1, the micro-roughened thin layer 70 is made of silicon nitride (Si d Ne , 0<d, e<1), and its thickness is between 2 ~50
Figure C20041008014300072
The growth temperature is between 600°C and 1100°C.

在微粗化薄层70上方,该实施例1进一步分别形成互不重叠的正电极80与透明导电层82。该正电极80可以是由Ni/Au合金、Ni/Pt合金、Ni/Pd合金、Ni/Co合金、Pd/Au合金、Pt/Au合金、Ti/Au合金、Cr/Au合金、Sn/Au合金、Ta/Au合金、TiN、TiWNx(x≥0)、WSiy(y≥0)等中的一种、或其它类似金属材料所构成。该透明导电层82可以是金属导电层或是透明氧化层。该金属导电层是由Ni/Au合金、Ni/Pt合金、Ni/Pd合金、Pd/Au合金、Pt/Au合金、Cr/Au合金、Ni/Au/Be合金、Ni/Cr/Au合金、Ni/Pt/Au合金、Ni/Pd/Au合金及其它类似材料之一所构成。该透明氧化层是由ITO、CTO、ZnO:Al、ZnGa2O4、SnO2:Sb、Ga2O3:Sn、AgInO2:Sn、In2O3:Zn、CuAlO2、LaCuOS、NiO、CuGaO2、SrCu2O2中的一种所构成。On the micro-roughened thin layer 70 , the embodiment 1 further forms a positive electrode 80 and a transparent conductive layer 82 which do not overlap with each other. The positive electrode 80 can be made of Ni/Au alloy, Ni/Pt alloy, Ni/Pd alloy, Ni/Co alloy, Pd/Au alloy, Pt/Au alloy, Ti/Au alloy, Cr/Au alloy, Sn/Au alloy alloy, Ta/Au alloy, TiN, TiWN x (x≥0), WSi y (y≥0), etc., or other similar metal materials. The transparent conductive layer 82 can be a metal conductive layer or a transparent oxide layer. The metal conductive layer is made of Ni/Au alloy, Ni/Pt alloy, Ni/Pd alloy, Pd/Au alloy, Pt/Au alloy, Cr/Au alloy, Ni/Au/Be alloy, Ni/Cr/Au alloy, One of Ni/Pt/Au alloy, Ni/Pd/Au alloy and other similar materials. The transparent oxide layer is made of ITO, CTO, ZnO:Al, ZnGa 2 O 4 , SnO 2 :Sb, Ga 2 O 3 :Sn, AgInO 2 :Sn, In 2 O 3 :Zn, CuAlO 2 , LaCuOS, NiO, Composed of one of CuGaO 2 and SrCu 2 O 2 .

实施例2Example 2

图3是本发明的氮化镓系发光二极管的实施例2的示意图。如图3所示,该实施例2和实施例1具有相同的结构与成长方式。唯一的差别是在微粗化薄层所用的材质与结构。在该实施例2中,微粗化薄层72是由氮化硅薄层721与氮化铟镓薄层722交互重复层叠所形成的短周期超晶格结构。每一个氮化硅薄层721,均是由具有其特定组成的氮化硅(SifNgN,0<f,g<1)所构成,其厚度均介于2~20之间、成长温度亦均介于600℃~1100℃之间。不同的氮化硅薄层721的氮化硅组成(即前述分子式的参数f,g)不一定相同。每一个氮化铟镓薄层722,均是由未掺杂、具有其特定组成的氮化铟镓(InhGa1-hN,0<h≤1)所构成,其厚度均介于2

Figure C20041008014300075
~20
Figure C20041008014300076
之间、成长温度亦均介于600℃~1100℃之间。不同的氮化铟镓薄层722的氮化铟镓组成(即前述分子式的参数h)不一定相同。FIG. 3 is a schematic diagram of Embodiment 2 of the GaN-based light-emitting diode of the present invention. As shown in FIG. 3 , the embodiment 2 and the embodiment 1 have the same structure and growth method. The only difference is the material and structure used in the micro-roughening thin layer. In the second embodiment, the micro-roughened thin layer 72 is a short-period superlattice structure formed by alternately stacking the silicon nitride thin layer 721 and the indium gallium nitride thin layer 722 alternately. Each silicon nitride thin layer 721 is made of silicon nitride ( Sif N g N, 0<f, g<1) with its specific composition, and its thickness is between 2 ~20 The growth temperature is also between 600°C and 1100°C. The silicon nitride composition of different silicon nitride thin layers 721 (ie, the parameters f and g of the aforementioned molecular formula) are not necessarily the same. Each indium gallium nitride thin layer 722 is made of undoped indium gallium nitride (In h Ga 1-h N, 0<h≤1) with its specific composition, and its thickness is between 2
Figure C20041008014300075
~20
Figure C20041008014300076
The growth temperature is also between 600°C and 1100°C. The InGaN composition (ie, the parameter h of the aforementioned molecular formula) of different InGaN thin layers 722 is not necessarily the same.

在该微粗化薄层72中,最底层(即直接位于p型接触层上)可以是氮化硅薄层721,其上再依次层叠氮化铟镓薄层722、氮化硅薄层721,依此类推。或者最底层也可以是氮化铟镓薄层722,其上再依次层叠氮化硅薄层721、氮化铟镓薄层722,依此类推。氮化硅薄层721与氮化铟镓薄层722依此方式交互重复层叠,其重复次数大于或等于二(即氮化硅薄层721的层数与氮化铟镓薄层722的层数均大于或等于二)。微粗化薄层72的总厚度不超过200

Figure C20041008014300081
In the micro-roughened thin layer 72, the bottom layer (that is, directly on the p-type contact layer) can be a thin silicon nitride layer 721, on which a thin layer of indium gallium nitride 722 and a thin layer of silicon nitride 721 are sequentially stacked. ,So on and so forth. Alternatively, the bottom layer may also be a thin layer of InGaN 722 , on which a thin layer of Silicon Nitride 721 and a thin layer of InGaN 722 are sequentially stacked, and so on. The silicon nitride thin layer 721 and the indium gallium nitride thin layer 722 are stacked alternately and repeatedly in this way, and the number of repetitions is greater than or equal to two (that is, the number of layers of the silicon nitride thin layer 721 and the number of layers of the indium gallium nitride thin layer 722 are greater than or equal to two). The total thickness of the micro-roughened thin layer 72 is not more than 200
Figure C20041008014300081

实施例3Example 3

图4是本发明的氮化镓系发光二极管的实施例3的示意图。如图4所示,该实施例3和上述实施例1、2具有相同的结构与成长方式。唯一的差别是在微粗化薄层所用的材质与结构。在该实施例3中,微粗化薄层74是由氮化硅薄层741与氮化铝铟镓薄层742交互重复层叠所形成的短周期超晶格结构。每一个氮化硅薄层741,均是由具有其特定组成的氮化硅(SiiNjN,0<i,j<1)所构成,其厚度均介于2

Figure C20041008014300082
~20
Figure C20041008014300083
之间、成长温度亦均介于600℃~1100℃之间。不同的氮化硅薄层741的氮化硅组成(即前述分子式的参数i,j)不一定相同。每一个氮化铝铟镓薄层742,均是由未掺杂、具有其特定组成的氮化铝铟镓(AlmInnGa1-m-nN,0<m,n<1,m+n<1)所构成,其厚度均介于2
Figure C20041008014300084
~20
Figure C20041008014300085
之间、成长温度亦均介于600℃~1100℃之间。不同的氮化铝铟镓薄层742的氮化铝铟镓组成(即前述分子式的参数m,n)不一定相同。FIG. 4 is a schematic view of Embodiment 3 of the gallium nitride-based light-emitting diode of the present invention. As shown in FIG. 4 , this embodiment 3 has the same structure and growth method as the above-mentioned embodiments 1 and 2. The only difference is the material and structure used in the micro-roughening thin layer. In the third embodiment, the micro-roughened thin layer 74 is a short-period superlattice structure formed by alternately stacking thin silicon nitride layers 741 and AlInGaN thin layers 742 . Each silicon nitride thin layer 741 is made of silicon nitride (Si i N j N, 0<i, j<1) with its specific composition, and its thickness is between 2
Figure C20041008014300082
~20
Figure C20041008014300083
The growth temperature is also between 600°C and 1100°C. The silicon nitride compositions of different silicon nitride thin layers 741 (ie, the parameters i, j of the aforementioned molecular formula) are not necessarily the same. Each AlInGaN thin layer 742 is made of undoped AlInGaN (Al m In n Ga 1-mn N, 0<m, n<1, m+n <1) constituted, its thickness is between 2
Figure C20041008014300084
~20
Figure C20041008014300085
The growth temperature is also between 600°C and 1100°C. The AlInGaN composition of different AlInGaN thin layers 742 (ie, the parameters m and n of the aforementioned molecular formula) are not necessarily the same.

在该微粗化薄层74中,最底层(即直接位于p型接触层上)可以是氮化硅薄层741,其上再依次层叠氮化铝铟镓薄层742、氮化硅薄层741,依此类推。或者最底层也可以是氮化铝铟镓薄层742,其上再依次层叠氮化硅薄层741、氮化铝铟镓薄层742,依此类推。氮化硅薄层741与氮化铝铟镓薄层742依此方式交互重复层叠,其重复次数大于或等于二(即氮化硅薄层741的层数与氮化铝铟镓薄层742的层数均大于或等于二)。微粗化薄层74的总厚度不超过200

Figure C20041008014300086
In the micro-roughened thin layer 74, the bottom layer (that is, directly on the p-type contact layer) can be a thin silicon nitride layer 741, on which a thin layer of aluminum indium gallium nitride 742, a thin layer of silicon nitride 741, and so on. Alternatively, the bottom layer may also be a thin AlInGaN layer 742 , on which a thin SiN layer 741 , a thin AlInGaN layer 742 are stacked in sequence, and so on. The silicon nitride thin layer 741 and the aluminum indium gallium nitride thin layer 742 are stacked alternately and repeatedly in this manner, and the number of repetitions is greater than or equal to two (that is, the number of layers of the silicon nitride thin layer 741 and the number of layers of the aluminum indium gallium nitride thin layer 742 layers are greater than or equal to two). The total thickness of the micro-roughened thin layer 74 is not more than 200
Figure C20041008014300086

在前述的三个实施例中,由于微粗化薄层中氮化硅材质的成长,使得氮化镓系发光二极管的表面被微粗化。这样可以避免氮化镓系发光二极管比空气具有高的折射率而导致内部全反射,进而提升氮化镓系发光二极管的外部量子效率以及发光效率。In the foregoing three embodiments, the surface of the gallium nitride-based light-emitting diode is micro-roughened due to the growth of the silicon nitride material in the micro-roughened thin layer. In this way, the internal total reflection caused by the higher refractive index of the GaN-based light-emitting diodes than air can be avoided, thereby improving the external quantum efficiency and luminous efficiency of the GaN-based light-emitting diodes.

以上所述的仅为用以解释本发明的较佳实施例,并非以任何方式对本发明进行限制,因此,凡在相同的发明精神下所作的有关本发明的任何修饰或变更,均仍应包括在本发明的保护范畴内。The above descriptions are only preferred embodiments for explaining the present invention, and are not intended to limit the present invention in any way. Therefore, any modification or change related to the present invention made under the same spirit of the invention should still include Within the scope of protection of the present invention.

Claims (3)

1. 一种氮化镓系发光二极管,其特征在于,包括:1. A gallium nitride-based light-emitting diode, characterized in that it comprises: 基板,其是由氧化铝单晶、6H-SiC、4H-SiC、Si、ZnO、GaAs、尖晶石MgAl2O4和晶格常数接近于氮化物半导体的单晶氧化物所制成;The substrate is made of alumina single crystal, 6H-SiC, 4H-SiC, Si, ZnO, GaAs, spinel MgAl 2 O 4 and single crystal oxide whose lattice constant is close to that of nitride semiconductor; 缓冲层,其位于该基板的一个侧面上,由具有特定组成的氮化铝镓铟AlaGabIn1-a-bN所构成,其中,0≤a,b<1,a+b≤1;The buffer layer, which is located on one side of the substrate, is composed of aluminum gallium indium nitride Al a Ga b In 1-ab N with a specific composition, where 0≤a, b<1, a+b≤1; n型接触层,其位于该缓冲层上,由氮化镓系材质所构成;an n-type contact layer, located on the buffer layer, is made of gallium nitride-based materials; 主动层,其位于该n型接触层上,且覆盖部份该n型接触层的上表面,由氮化铟镓所构成;an active layer, which is located on the n-type contact layer and covers part of the upper surface of the n-type contact layer, and is made of indium gallium nitride; 负电极,其位于该n型接触层未被该主动层覆盖的上表面上;a negative electrode on the upper surface of the n-type contact layer not covered by the active layer; p型被覆层,其位于该主动层上,由p型氮化镓系材质所构成;a p-type cladding layer, located on the active layer, made of p-type GaN-based material; p型接触层,其位于该p型被覆层上,由p型氮化镓所构成;a p-type contact layer, located on the p-type cladding layer, made of p-type gallium nitride; 微粗化薄层,其位于该p型接触层上,a thin micro-roughened layer on the p-type contact layer, 由具有特定组成的氮化硅SidNe所构成,厚度介于
Figure C2004100801430002C1
之间,其中0<d,e<1,
Composed of silicon nitride Si d Ne e with a specific composition, the thickness is between
Figure C2004100801430002C1
Between, where 0<d, e<1,
或者由各自具有特定组成的氮化硅SifNgN与未掺杂的具有特定组成的氮化铟镓InhGa1-hN层叠形成的短周期超晶格结构所构成,其中0<f,g<1,0<h≤1,Or it is composed of a short-period superlattice structure formed by stacking silicon nitride Si f N g N with a specific composition and undoped indium gallium nitride In h Ga 1-h N with a specific composition, where 0< f, g<1, 0<h≤1, 或者由具有特定组成的氮化硅SiiNjN与未掺杂的具有特定组成的氮化铝铟镓AlmInnGa1-m-nN层叠形成的短周期超晶格结构所构成,其中0<i,j<1,0<m,n<1,m+n<1,Or it is composed of a short-period superlattice structure formed by stacking silicon nitride Si i N j N with a specific composition and undoped aluminum indium gallium nitride Al m In n Ga 1-mn N with a specific composition, wherein 0<i, j<1, 0<m, n<1, m+n<1, 并且,所述微粗化薄层的总厚度不超过
Figure C2004100801430002C2
And, the total thickness of the micro-roughened thin layer is not more than
Figure C2004100801430002C2
透明导电层,其是位于该微粗化薄层上、且覆盖该微粗化薄层部份表面的金属导电层或者透明氧化层,该金属导电层是由Ni/Au合金、Ni/Pt合金、Ni/Pd合金、Pd/Au合金、Pt/Au合金、Cr/Au合金、Ni/Au/Be合金、Ni/Cr/Au合金、Ni/Pt/Au合金、Ni/Pd/Au合金中的一种所构成,该透明氧化层是由ITO、CTO、ZnO:Al、ZnGa2O4、SnO2:Sb、Ga2O3:Sn、AgInO2:Sn、In2O3:Zn、CuAlO2、LaCuOS、NiO、CuGaO2、SrCu2O2中的一种所构成;以及The transparent conductive layer is a metal conductive layer or a transparent oxide layer that is located on the micro-roughened thin layer and covers part of the surface of the micro-roughened thin layer. The metal conductive layer is made of Ni/Au alloy, Ni/Pt alloy , Ni/Pd alloy, Pd/Au alloy, Pt/Au alloy, Cr/Au alloy, Ni/Au/Be alloy, Ni/Cr/Au alloy, Ni/Pt/Au alloy, Ni/Pd/Au alloy One is composed of ITO, CTO, ZnO:Al, ZnGa 2 O 4 , SnO 2 :Sb, Ga 2 O 3 :Sn, AgInO 2 :Sn, In 2 O 3 :Zn, CuAlO 2 , LaCuOS, NiO, CuGaO 2 , SrCu 2 O 2 constituted by one; and 正电极,其位于该微粗化薄层上的未被该透明导电层覆盖的表面上,由Ni/Au合金、Ni/Pt合金、Ni/Pd合金、Ni/Co合金、Pd/Au合金、Pt/Au合金、Ti/Au合金、Cr/Au合金、Sn/Au合金、Ta/Au合金、TiN、TiWNx、WSiy中的一种所构成,其中x≥0,y≥0。The positive electrode, which is located on the surface of the micro-roughened thin layer not covered by the transparent conductive layer, is made of Ni/Au alloy, Ni/Pt alloy, Ni/Pd alloy, Ni/Co alloy, Pd/Au alloy, Composed of one of Pt/Au alloy, Ti/Au alloy, Cr/Au alloy, Sn/Au alloy, Ta/Au alloy, TiN, TiWN x , WSi y , where x≥0, y≥0.
2. 根据权利要求1所述的氮化镓系发光二极管,其中,该微粗化薄层是由具有特定组成的氮化硅SifNgN薄层与具有特定组成的氮化铟镓InhGa1-hN薄层交互重复层叠所形成的短周期超晶格结构,其重复次数至少为二次,且总厚度不超过
Figure C2004100801430003C1
每一个氮化硅SifNgN薄层的厚度均介于
Figure C2004100801430003C2
之间,每一个氮化铟镓InhGa1-hN薄层的厚度均介于之间,其中0<f,g<1,0<h≤1。
2. The gallium nitride-based light-emitting diode according to claim 1, wherein the micro-roughened thin layer is composed of a silicon nitride Si f N g N thin layer with a specific composition and an indium gallium nitride Indium with a specific composition. A short-period superlattice structure formed by alternating and repeated lamination of h Ga 1-h N thin layers, the number of repetitions is at least twice, and the total thickness does not exceed
Figure C2004100801430003C1
The thickness of each silicon nitride Si f N g N thin layer is between
Figure C2004100801430003C2
Between, the thickness of each indium gallium nitride In h Ga 1-h N thin layer is between Between, where 0<f, g<1, 0<h≤1.
3. 根据权利要求1所述的氮化镓系发光二极管,其中,该微粗化薄层是由具有特定组成的氮化硅SiiNjN薄层与具有特定组成的氮化铝铟镓AlmInnGa1-m-nN薄层交互重复层叠所形成的短周期超晶格结构,其重复次数至少为二次,且总厚度不超过
Figure C2004100801430003C4
每一个氮化硅SiiNjN薄层的厚度均介于
Figure C2004100801430003C5
之间,每一个氮化铝铟镓AlmInnGa1-m-nN薄层的厚度均介于
Figure C2004100801430003C6
之间,其中0<i,j<1,0<m,n<1,m+n<1。
3. The gallium nitride-based light-emitting diode according to claim 1, wherein the micro-roughened thin layer is composed of a silicon nitride Si i N j N thin layer with a specific composition and an aluminum indium gallium nitride with a specific composition A short-period superlattice structure formed by alternately stacking Al m In n Ga 1-mn N thin layers, the number of repetitions is at least twice, and the total thickness does not exceed
Figure C2004100801430003C4
The thickness of each silicon nitride Si i N j N thin layer is between
Figure C2004100801430003C5
Between, the thickness of each aluminum indium gallium nitride Al m In n Ga 1-mn N thin layer is between
Figure C2004100801430003C6
Between, where 0<i, j<1, 0<m, n<1, m+n<1.
CNB2004100801434A 2004-09-23 2004-09-23 Gallium nitride series light-emitting diode Expired - Lifetime CN100420045C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2004100801434A CN100420045C (en) 2004-09-23 2004-09-23 Gallium nitride series light-emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004100801434A CN100420045C (en) 2004-09-23 2004-09-23 Gallium nitride series light-emitting diode

Publications (2)

Publication Number Publication Date
CN1753199A CN1753199A (en) 2006-03-29
CN100420045C true CN100420045C (en) 2008-09-17

Family

ID=36679956

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100801434A Expired - Lifetime CN100420045C (en) 2004-09-23 2004-09-23 Gallium nitride series light-emitting diode

Country Status (1)

Country Link
CN (1) CN100420045C (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008071038A1 (en) * 2006-12-15 2008-06-19 Podium Photonics (Guangzhou) Ltd. Gan led chip and the method of the same
KR100974923B1 (en) * 2007-03-19 2010-08-10 서울옵토디바이스주식회사 Light emitting diode
CN101420003B (en) * 2007-10-24 2011-11-30 泰谷光电科技股份有限公司 Manufacturing method of light emitting diode
CN102169929A (en) * 2011-02-25 2011-08-31 聚灿光电科技(苏州)有限公司 Manufacturing method of light-emitting diode (LED) with high light-extraction rate
CN103178184A (en) * 2011-12-23 2013-06-26 亿光电子工业股份有限公司 LED structure
CN105350074A (en) * 2015-11-03 2016-02-24 湘能华磊光电股份有限公司 Epitaxial growth method for improving LED epitaxial crystal quality
CN115064622B (en) * 2022-08-18 2022-11-18 江西兆驰半导体有限公司 Composite N-type GaN layer, light-emitting diode epitaxial wafer and preparation method thereof
CN118538843B (en) * 2024-07-26 2024-09-27 江西兆驰半导体有限公司 Epitaxial wafer of light-emitting diode and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6172382B1 (en) * 1997-01-09 2001-01-09 Nichia Chemical Industries, Ltd. Nitride semiconductor light-emitting and light-receiving devices
US20020096687A1 (en) * 2001-01-19 2002-07-25 Daniel Kuo Light emitting diode
US20040159851A1 (en) * 2003-02-13 2004-08-19 Edmond John Adam Group III nitride contact structures for light emitting devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6172382B1 (en) * 1997-01-09 2001-01-09 Nichia Chemical Industries, Ltd. Nitride semiconductor light-emitting and light-receiving devices
US20020096687A1 (en) * 2001-01-19 2002-07-25 Daniel Kuo Light emitting diode
US20040159851A1 (en) * 2003-02-13 2004-08-19 Edmond John Adam Group III nitride contact structures for light emitting devices

Also Published As

Publication number Publication date
CN1753199A (en) 2006-03-29

Similar Documents

Publication Publication Date Title
JP2008172040A (en) Semiconductor light emitting element, method of manufacturing semiconductor light emitting element, backlight, display and electronic equipment
US20070267636A1 (en) Gallium-Nitride Based Light-Emitting Diode Structure With High Reverse Withstanding Voltage And Anti-ESD Capability
US7049638B2 (en) High-brightness gallium-nitride based light emitting diode structure
US20070187697A1 (en) Nitride based MQW light emitting diode having carrier supply layer
CN108140700A (en) Luminescent device
CN109742203A (en) A kind of iii-nitride light emitting devices
US7180096B2 (en) Gallium-nitride based light-emitting diode structure with high reverse withstanding voltage and anti-ESD capability
CN115692566A (en) Nitride Light Emitting Diodes
CN100420045C (en) Gallium nitride series light-emitting diode
EP1677365A2 (en) Semiconductor light emitting diode having textured structure and method of manufacturing the same
CN100372135C (en) High-brightness gallium nitride light-emitting diode structure
US7180097B2 (en) High-brightness gallium-nitride based light emitting diode structure
CN102544290B (en) Nitride semiconductor light emitting diode element
US7442962B2 (en) High-brightness gallium-nitride based light emitting diode structure
CN100524850C (en) Gallium Nitride Light Emitting Diode Structure
CN102005515A (en) Light emitting diode with low-temperature interlayer of gallium nitride series
US7345321B2 (en) High-brightness gallium-nitride based light emitting diode structure
CN100418237C (en) N-type contact layer structure of gallium nitride multiple quantum well light-emitting diode
CN100479210C (en) Multiple quantum well nitride light emitting diode with carrier providing layer
KR100836132B1 (en) Nitride-based Semiconductor Light-Emitting Diodes
JP4036857B2 (en) High brightness gallium nitride light emitting diode
TWI239665B (en) Structure of gallium-nitride based (GaN-based) light-emitting diode with high luminance
JP4084787B2 (en) Gallium nitride light emitting diode
CN201766092U (en) Gallium nitride based light-emitting diode with low-temperature intermediate layer
TWI455355B (en) Light emitting diode structure

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20091211

Address after: Taoyuan County of Taiwan Province

Co-patentee after: LUMENS Limited by Share Ltd.

Patentee after: FORMOSA EPITAXY INCORPORATION

Address before: Taoyuan County of Taiwan Province

Patentee before: Formosa Epitaxy Incorporation

CX01 Expiry of patent term

Granted publication date: 20080917

CX01 Expiry of patent term