CN100397661C - Metal-induced unidirectional lateral crystallization thin film transistor device and its preparation method - Google Patents
Metal-induced unidirectional lateral crystallization thin film transistor device and its preparation method Download PDFInfo
- Publication number
- CN100397661C CN100397661C CNB2005100144653A CN200510014465A CN100397661C CN 100397661 C CN100397661 C CN 100397661C CN B2005100144653 A CNB2005100144653 A CN B2005100144653A CN 200510014465 A CN200510014465 A CN 200510014465A CN 100397661 C CN100397661 C CN 100397661C
- Authority
- CN
- China
- Prior art keywords
- crystallization
- metal
- thin film
- film transistor
- polysilicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Recrystallisation Techniques (AREA)
- Thin Film Transistor (AREA)
Abstract
本发明涉及金属诱导单一方向横向晶化薄膜晶体管器件及其制备方法。采用催化金属镍在选择晶化区域的低温氧化硅覆盖层下覆盖的非晶硅薄膜上形成周边晶化的多晶硅岛,并选择多晶硅岛的适当位置形成金属诱导单一方向横向晶化薄膜晶体管的沟道。将各种金属诱导的多晶硅材料进行了优化使用,既可获得高性能的多晶硅TFT器件,明显的减少晶化的时间,有效的减低衬底收缩和衬底中金属离子扩散的影响,提高制备产率。该技术适合与制备低温多晶硅电路、低温多晶硅显示器有源选址基板,以及面阵图象传感器等多种微电子和光电子产品的制备,是具有重要产业应用价值技术。
The invention relates to a metal-induced single-direction lateral crystallization thin film transistor device and a preparation method thereof. Use catalytic metal nickel to form peripheral crystallized polysilicon islands on the amorphous silicon film covered under the low-temperature silicon oxide covering layer in the selective crystallization region, and select the appropriate position of the polysilicon islands to form metal-induced unidirectional lateral crystallization TFT trenches road. The optimized use of various metal-induced polysilicon materials can not only obtain high-performance polysilicon TFT devices, but also significantly reduce the crystallization time, effectively reduce the impact of substrate shrinkage and metal ion diffusion in the substrate, and improve the preparation yield. Rate. This technology is suitable for the preparation of low-temperature polysilicon circuits, active addressing substrates for low-temperature polysilicon displays, and the preparation of various microelectronic and optoelectronic products such as area array image sensors, and is a technology with important industrial application value.
Description
技术领域 technical field
本发明涉及薄膜微电子器件的制备技术,特别是一种金属诱导单一方向横向晶化薄膜晶体管器件及其制备方法。采用催化金属镍在选择晶化区域的低温氧化硅覆盖层下覆盖的非晶硅薄膜上形成周边晶化的多晶硅岛,并选择多晶硅岛的适当位置形成金属诱导单一方向横向晶化薄膜晶体管的沟道。从而通过较短的晶化时间获得高质量多晶硅薄膜晶体管技术。The invention relates to the preparation technology of thin-film microelectronic devices, in particular to a metal-induced single-direction lateral crystallization thin-film transistor device and a preparation method thereof. Use catalytic metal nickel to form peripheral crystallized polysilicon islands on the amorphous silicon film covered under the low-temperature silicon oxide covering layer in the selective crystallization region, and select the appropriate position of the polysilicon islands to form metal-induced unidirectional lateral crystallization TFT trenches road. Therefore, high-quality polysilicon thin film transistor technology can be obtained through a short crystallization time.
背景技术 Background technique
高性能的平板显示器件、包括液晶显示器(LCD)、有机发光二极管(OLED/PLED)都需要薄膜晶体管(TFT)有源选址和有源驱动技术(Development ofHigh Quality LCDTV,M.Shigeta,H.Fukuoka,SID 04 Digest,Page 754;A 4.3-in.VGA(188ppi)Display with a New Driving Method,Y.Tanada,M.Osame,R.Fukumoto,K.Saito,J.Sakata,S.Yamazaki(Semiconductor Energy Laboratory Co.,Ltd.)S.Murakami,K.Inose,N.Miyoshi(ELDisInc.)K.Sato,SID04 Digest,Page 1398)。有源选址和有源驱动技术的进一步的发展,可将驱动电路(扫描电路、数字电路、直流电平变换、时钟信号发生器等)与有源矩阵集成在同一个基板上,实现系统集成(SOP)从而使显示器具有显示密度高,外接管脚少,成本低的特点(如Y.Nakajima,Y.Kida等人所报道的Latest Development of″System-on-Glass″Display with Low Temperature Poly-Si TFT(SID 2004 Digest,p864-867))。制备全集成显示器的最佳器件的选择为低温多晶硅薄膜晶体管(LTPS)。现在较为成熟的LTPS技术包括准分子激光退火(ELA)晶化的方法(如:美国专利6,071,796,Voutsastolis,“Method ofControlling Oxygen Incorporation During Crystallization of Silicon Film by Excimer LaserAnnealing in Air Ambient)和金属诱导晶化(MIC)、金属诱导横向晶化技术(MILC)。ELA的方法存在的问题有如下缺点,准分子激光器的设备价钱昂贵,所使用的多为有毒气体,(如:中国专利,申请号:200410086941.8,笠原健司;河崎律子;大谷久;田中幸一郎,激光装置和激光退火方法)。并有光束与光束的搭接引起的器件性能分布不均匀的问题,(如:C-W Kim,K-C Moon,H-J Kim,Development of SLS-Based System on Glass Display,SID Digest 2004,p868-871)。High-performance flat-panel display devices, including liquid crystal displays (LCDs), organic light-emitting diodes (OLED/PLEDs), require active addressing and active drive technology for thin-film transistors (TFTs) (Development of High Quality LCDTV, M.Shigeta, H. Fukuoka, SID 04 Digest, Page 754; A 4.3-in.VGA (188ppi) Display with a New Driving Method, Y.Tanada, M.Osame, R.Fukumoto, K.Saito, J.Sakata, S.Yamazaki (Semiconductor Energy Laboratory Co., Ltd.) S. Murakami, K. Inose, N. Miyoshi (ELDis Inc.) K. Sato, SID04 Digest, Page 1398). The further development of active site selection and active driving technology can integrate the driving circuit (scanning circuit, digital circuit, DC level conversion, clock signal generator, etc.) and the active matrix on the same substrate to realize system integration ( SOP) so that the display has the characteristics of high display density, few external pins, and low cost (as reported by Y.Nakajima, Y.Kida et al. Latest Development of "System-on-Glass" Display with Low Temperature Poly-Si TFT (SID 2004 Digest, p864-867)). The best device choice for making a fully integrated display is the Low Temperature Polysilicon Thin Film Transistor (LTPS). The more mature LTPS technology now includes excimer laser annealing (ELA) crystallization method (such as: US Patent 6,071,796, Voutsastolis, "Method of Controlling Oxygen Incorporation During Crystallization of Silicon Film by Excimer Laser Annealing in Air Ambient) and metal-induced crystallization ( MIC), metal-induced lateral crystallization technology (MILC). The problem of the method existence of ELA has following shortcoming, and the equipment price of excimer laser is expensive, and mostly used is toxic gas, (as: Chinese patent, application number: 200410086941.8, Kasahara Kenji; Kawasaki Ritsuko; Otani Hisahi; Tanaka Koichiro, laser device and laser annealing method). There is also the problem of uneven distribution of device performance caused by beam-to-beam overlap, (such as: C-W Kim, K-C Moon, H-J Kim, Development of SLS-Based System on Glass Display, SID Digest 2004, p868-871).
发明内容 Contents of the invention
本发明的目的是提供一种金属诱导单一方向横向晶化薄膜晶体管器件及其制备方法。使用较短的晶化时间,获得高性能的MIUC多晶硅TFT。运用非晶硅上LTO掩盖区获得MIPC多晶硅,并通过选取MIPC多晶硅岛中的MIUC区间,作为MIUC多晶硅TFT的沟道区,形成高质量的MIUC多晶硅TFT。与常规的MIUC多晶硅TFT相比,晶化的时间可缩短3-4倍,器件的性能与常规MIUC多晶硅TFT相同,与MIPC和MIC多晶硅TFT相比,晶化时间相近,但器件的性能明显优于MIPC和MIC多晶硅TFT。该种器件可用于制备低温多晶硅电路、平板显示有源选址基板、面阵图象传感器等。The object of the present invention is to provide a metal-induced unidirectional lateral crystallization thin film transistor device and a preparation method thereof. Using a shorter crystallization time, a high-performance MIUC polysilicon TFT is obtained. The MIPC polysilicon is obtained by using the LTO mask area on the amorphous silicon, and the MIUC area in the MIPC polysilicon island is selected as the channel region of the MIUC polysilicon TFT to form a high-quality MIUC polysilicon TFT. Compared with conventional MIUC polysilicon TFT, the crystallization time can be shortened by 3-4 times, and the performance of the device is the same as that of conventional MIUC polysilicon TFT. Compared with MIPC and MIC polysilicon TFT, the crystallization time is similar, but the performance of the device is obviously better For MIPC and MIC polysilicon TFT. The device can be used to prepare low-temperature polysilicon circuits, flat panel display active addressing substrates, area array image sensors and the like.
本发明提供的金属诱导单一方向横向晶化薄膜晶体管器件是:金属诱导单一方向横向晶化薄膜晶体管形成在大面积透明衬底上,所述的金属诱导单一方向横向晶化薄膜晶体管包括:The metal-induced unidirectional lateral crystallization thin film transistor device provided by the present invention is: a metal-induced unidirectional lateral crystallization thin film transistor is formed on a large-area transparent substrate, and the metal-induced unidirectional lateral crystallization thin film transistor includes:
大面积透明衬底上周边晶化的多晶硅岛;所述的多晶硅形成的前驱物为用LPCVD、PECVD或溅射方法形成的非晶硅薄膜;Polysilicon islands crystallized around the large-area transparent substrate; the precursor formed by the polysilicon is an amorphous silicon film formed by LPCVD, PECVD or sputtering;
沉积在所述的衬底上的过渡层,非晶硅薄膜沉积在LTO过渡层上;所述的过渡层是氮化硅或LTO过渡层;The transition layer deposited on the substrate, the amorphous silicon film is deposited on the LTO transition layer; the transition layer is silicon nitride or LTO transition layer;
沉积在所述的非晶硅薄膜上的掩盖层;所述的掩盖层为低温氧化硅LTO,LTO掩盖层被光刻腐蚀成矩形的掩盖区;A cover layer deposited on the amorphous silicon film; the cover layer is low temperature silicon oxide LTO, and the LTO cover layer is etched into a rectangular cover area by photolithography;
所述的诱导镍层在掩盖区外的非晶硅表面上;The induced nickel layer is on the surface of amorphous silicon outside the masking area;
经热退火后,在LTO掩盖区外的非晶硅变成的MIC多晶硅,用于制备电容电极和显示象素电极。在LTO掩盖区图形下面的非晶硅,同时从掩盖区图形的四周开始向中间形成四块MIUC多晶硅区间(亦统称MIPC区)。从相邻垂直边开始晶化的MILC相遇后就停止晶化,形成接近45度夹角结晶碰撞晶界。相对面的MILC相对碰撞,形成与结晶推进方向垂直的碰撞晶界;After thermal annealing, the amorphous silicon outside the LTO mask area becomes MIC polysilicon, which is used to prepare capacitor electrodes and display pixel electrodes. For the amorphous silicon under the LTO mask pattern, four MIUC polysilicon regions (also collectively referred to as MIPC regions) are formed from the periphery of the mask region pattern to the middle. The MILCs that start to crystallize from the adjacent vertical sides stop crystallization after they meet, forming crystals at an angle close to 45 degrees and colliding with the grain boundary. The MILCs on the opposite sides collide with each other to form a collision grain boundary perpendicular to the direction of crystallization advancement;
薄膜晶体管的有源沟道选择设计在四块金属诱导单一方向晶化(MIUC)区间的其中一块上。The active channel selection of the thin film transistor is designed on one of the four metal-induced unidirectional crystallization (MIUC) regions.
光刻腐蚀出有源岛后在其上依次制备的栅绝缘层和栅电极。A gate insulating layer and a gate electrode are sequentially prepared on the active island after photolithography etching.
所述的金属诱导单一方向横向晶化薄膜晶体管器件,其特征在于所述的LTO掩盖层图形为长方形,掩盖层图形的大小与多晶硅TFT器件在基板上的位置紧密相关联。掩盖图形相对长的长边和MILC所产生的对撞晶界分置在沟道两端,并与沟道边相距3-5微米;两个相对长的长边中的一边的位置在TFT沟道外4微米处(相对于5微米TFT),另一边的位置为距离对边两倍的沟道加双边宽余的尺寸,使从双边晶化的对向MILC的碰撞晶界恰好分布在沟道外边4微米;长方形的两个窄边的距离要大于沟道的宽度与两窄边边长的和。The metal-induced unidirectional lateral crystallization thin film transistor device is characterized in that the pattern of the LTO masking layer is rectangular, and the size of the masking layer pattern is closely related to the position of the polysilicon TFT device on the substrate. The relatively long sides of the mask pattern and the colliding grain boundaries produced by MILC are separated at both ends of the channel, and the distance from the channel side is 3-5 microns; the position of one of the two relatively long sides is in the TFT trench 4 microns outside the track (relative to 5 micron TFT), the position of the other side is the channel twice as far from the opposite side plus the size of the bilateral margin, so that the collision grain boundaries of the opposing MILC crystallized from both sides are just distributed outside the channel 4 microns; the distance between the two narrow sides of the rectangle is greater than the sum of the width of the channel and the length of the two narrow sides.
所述的金属诱导单一方向横向晶化薄膜晶体管器件,其特征在于所述的透明衬底是可耐受650℃热过程的玻璃衬底玻璃或石英玻璃。The metal-induced unidirectional lateral crystallization thin film transistor device is characterized in that the transparent substrate is glass substrate glass or quartz glass that can withstand a thermal process of 650°C.
所述的金属诱导单一方向横向晶化薄膜晶体管器件,其特征在于所述的LTO掩盖层的厚度为100nm-500nm。The metal-induced unidirectional lateral crystallization thin film transistor device is characterized in that the thickness of the LTO cover layer is 100nm-500nm.
所述的金属诱导单一方向横向晶化薄膜晶体管器件,其特征在于所述的诱导金属为镍,采用真空蒸镀、离子注入或镍盐溶液无电电镀的方法获得的连续或非连续的含镍诱导层。The metal-induced unidirectional lateral crystallization thin film transistor device is characterized in that the induced metal is nickel, and the continuous or discontinuous nickel-containing induction layer.
所述的金属诱导单一方向横向晶化薄膜晶体管器件,其特征在于所述的金属诱导单一方向横向晶化薄膜晶体管的沟道和两侧延展区间为金属诱导单一方向晶化(MIUC)的多晶硅材料,一侧的源漏电极为金属诱导晶化(MIC)多晶硅材料,另一侧的源漏电极为金属诱导横向晶化(MILC)多晶硅材料,多晶硅材料的厚度为30nm-300nm。The metal-induced unidirectional lateral crystallization thin film transistor device is characterized in that the channel of the metal-induced unidirectional lateral crystallization thin film transistor and the extensions on both sides are polysilicon materials of metal-induced unidirectional crystallization (MIUC) The source and drain electrodes on one side are metal-induced crystallization (MIC) polysilicon material, and the source and drain electrodes on the other side are metal-induced lateral crystallization (MILC) polysilicon material, and the thickness of the polysilicon material is 30nm-300nm.
所述的金属诱导单一方向横向晶化薄膜晶体管器件,其特征在于所述的金属诱导单一方向横向晶化薄膜晶体管栅绝缘层材料为低温氧化硅材料,采用PECVD或LPCVD的方法获得,厚度为30nm-300nm。The metal-induced unidirectional lateral crystallization thin film transistor device is characterized in that the gate insulating layer material of the metal-induced unidirectional lateral crystallization thin film transistor is a low-temperature silicon oxide material obtained by PECVD or LPCVD with a thickness of 30nm -300nm.
所述的金属诱导单一方向横向晶化薄膜晶体管器件,其特征在于所述的金属诱导单一方向横向晶化薄膜晶体管的栅电极为多晶硅或高温金属栅,电极的厚度为100nm-300nm。The metal-induced unidirectional lateral crystallization thin film transistor device is characterized in that the gate electrode of the metal-induced unidirectional lateral crystallization thin film transistor is polysilicon or a high-temperature metal gate, and the thickness of the electrode is 100nm-300nm.
本发明金属诱导单一方向横向晶化薄膜晶体管器件的制备方法,其特征在于它包括下述步骤:The method for preparing a metal-induced unidirectional lateral crystallization thin film transistor device of the present invention is characterized in that it comprises the following steps:
1)在大面积透明衬底上沉积氮化硅或LTO过度层,用来阻止衬底中的金属杂质向有源层扩散;采用PECVD、LPCVD等方法,形成大面积的非晶硅薄膜;1) Deposit a silicon nitride or LTO transition layer on a large-area transparent substrate to prevent the diffusion of metal impurities in the substrate to the active layer; use PECVD, LPCVD and other methods to form a large-area amorphous silicon film;
2)在非晶硅薄膜上沉积LTO薄膜,并在适当的位置上形成长方形的LTO掩盖层图形;2) Depositing an LTO film on the amorphous silicon film, and forming a rectangular LTO mask pattern at an appropriate position;
3)采用镍溶液、真空蒸镀、离子注入等方法,形成金属镍的超薄诱导薄膜;3) Using nickel solution, vacuum evaporation, ion implantation and other methods to form an ultra-thin induced film of metallic nickel;
4)在氮气下,450-600℃退火,完成的MIC和掩盖层下的周边发生向图形内部推进的横向晶化MILC过程;4) Under nitrogen, anneal at 450-600°C, and the completed MIC and the periphery under the cover layer undergo a lateral crystallization MILC process that advances to the interior of the pattern;
5)去除镍的残余物质和掩盖层的LTO;5) Removal of nickel residues and LTO of the cover layer;
6)光刻出多晶硅TFT有源岛图形,TFT的沟道区形成在周边晶化MILC区间的MIUC区间,并使沟道载流子输运方向与MIUC的晶体长形晶粒平行。源漏区间由MIC和MILC组成,源漏的扩展区间可作为储存电容电极和显示器象素电极;6) Photoetching the polysilicon TFT active island pattern, the channel region of the TFT is formed in the MIUC region of the surrounding crystallized MILC region, and the channel carrier transport direction is parallel to the long crystal grains of the MIUC. The source-drain area is composed of MIC and MILC, and the extended area of source-drain can be used as storage capacitor electrode and display pixel electrode;
7)沉积多晶硅TFT的栅绝缘层;7) Depositing the gate insulating layer of the polysilicon TFT;
8)沉积多晶硅TFT的栅电极层,并光刻出栅电极图形;8) Depositing the gate electrode layer of the polysilicon TFT, and photoetching out the gate electrode pattern;
9)采用自对准离子注入的方法,并在550℃温度下活化掺杂剂,形成多晶硅TFT的源漏电极和扩展区间。9) The method of self-aligned ion implantation is adopted, and the dopant is activated at a temperature of 550° C. to form the source-drain electrodes and the extended region of the polysilicon TFT.
10)沉积LTO电极间绝缘层,并光刻出接触孔。10) Depositing an insulating layer between LTO electrodes, and photoetching a contact hole.
11)溅射金属电极,光刻电极图形,并完成合金化过程。11) Sputter metal electrodes, photolithographically pattern electrodes, and complete the alloying process.
本发明使用在周边晶化的多晶硅岛上制备金属诱导单一方向横向晶化薄膜晶体管技术,可有效的避免常规MIUC多晶硅TFT制备过程中,晶化时间过长的问题,可有效的降低晶化时间,使晶化的时间减低3-5倍。该种多晶硅TFT器件的沟道为MIUC材料,器件的性能与常规的MIUC多晶硅TFT相同。The present invention uses the technology of preparing metal-induced single-direction lateral crystallization thin film transistors on surrounding crystallized polysilicon islands, which can effectively avoid the problem of too long crystallization time in the conventional MIUC polysilicon TFT preparation process, and can effectively reduce the crystallization time , to reduce the crystallization time by 3-5 times. The channel of the polysilicon TFT device is MIUC material, and the performance of the device is the same as that of the conventional MIUC polysilicon TFT.
本发明采用金属诱导技术制备薄膜晶体管,所需设备较ELA的设备便宜,常规的加热炉就可以完成材料的晶化过程,其他制备工艺过程均为常规工艺技术。在各种金属诱导薄膜晶体管制备技术中,金属诱导单一方向横向晶化薄膜晶体管的特性最佳,因为该种薄膜晶体管的沟道中,没有纵向晶化与横向晶化之间的晶界,也没有不同方向横向晶化区域的对撞晶界,而且,在沟道中的残余镍的含量相比较最低。但是,通常的MIUC-TFT技术中,诱导孔要开在源漏电极的外边缘,所以,整个晶化的长度,要包括源漏电极和沟道区间,所以晶化的时间过长。例如,一个5微米的MIUC多晶硅TFT的晶化区的长度为37微米,在550℃下的晶化速率为4-5微米/小时,晶化的时间在10小时左右。我们现在的技术,设计矩形的LTO图形,覆盖在非晶硅膜上,适量的诱导镍沉积在非晶硅的表面,在随后的退火过程中,MILC多晶硅将从覆盖图形的四周开始形成,并向图形的中心推进,最终形成MIPC的多晶硅岛。选择该多晶硅岛的无大晶界区域作为薄膜晶体管的沟道区,可形成MIUC多晶硅TFT。而采用了该项工艺,可有效的减低晶化的时间。例如5微米的多晶硅TFT,沟道的宽度为5微米,考虑到每边4微米的宽容度,器件制备所需要的MIUC区间的长度为9微米,对于550℃下,4-5微米/小时的晶化速率,2-3小时的晶化时间即可满足要求。晶化时间的减少,可有效的减低衬底收缩和衬底中金属离子扩散的影响,提高制备产率。该技术适合与制备低温多晶硅电路、低温多晶硅显示器有源选址基板,以及面阵图象传感器等多种微电子和光电子产品的制备,是具有重要产业应用价值。The present invention adopts the metal induction technology to prepare thin film transistors, and the required equipment is cheaper than that of ELA. A conventional heating furnace can complete the crystallization process of the material, and other preparation processes are conventional processes. Among various metal-induced thin film transistor fabrication technologies, metal-induced unidirectional lateral crystallization thin film transistors have the best characteristics, because there is no grain boundary between vertical crystallization and lateral crystallization in the channel of this kind of thin film transistors, and there is no The colliding grain boundaries of the laterally crystallized regions in different directions, moreover, the content of residual nickel in the channel is comparatively lowest. However, in the usual MIUC-TFT technology, the induction hole should be opened on the outer edge of the source and drain electrodes, so the entire crystallization length should include the source and drain electrodes and the channel interval, so the crystallization time is too long. For example, the length of the crystallization region of a 5 micron MIUC polysilicon TFT is 37 microns, the crystallization rate at 550°C is 4-5 microns/hour, and the crystallization time is about 10 hours. In our current technology, a rectangular LTO pattern is designed to cover the amorphous silicon film, and an appropriate amount of induced nickel is deposited on the surface of the amorphous silicon. During the subsequent annealing process, MILC polysilicon will start to form around the covering pattern, and Pushing toward the center of the pattern, the polysilicon islands of the MIPC are finally formed. The region without a large grain boundary of the polysilicon island is selected as the channel region of the thin film transistor, and an MIUC polysilicon TFT can be formed. The adoption of this process can effectively reduce the crystallization time. For example, for a 5-micron polysilicon TFT, the width of the channel is 5 microns. Considering the tolerance of 4 microns on each side, the length of the MIUC interval required for device fabrication is 9 microns. For 550 ° C, 4-5 microns/hour Crystallization rate, crystallization time of 2-3 hours can meet the requirements. The reduction of crystallization time can effectively reduce the impact of substrate shrinkage and metal ion diffusion in the substrate, and improve the production yield. This technology is suitable for the preparation of low-temperature polysilicon circuits, active addressing substrates for low-temperature polysilicon displays, and the preparation of various microelectronic and optoelectronic products such as area array image sensors, and has important industrial application value.
本发明适应于玻璃衬底上制备显示器用的有源基板、多晶硅TFT电路和面阵扫描器的要求。The invention is suitable for the requirements of preparing active substrates for displays, polysilicon TFT circuits and area array scanners on glass substrates.
上述详细说明是有关本发明的具体说明,凡未脱离本发明精神所为的等效实施或变更,均属于本发明的内容范围。The above detailed description is a specific description of the present invention, and any equivalent implementation or modification that does not deviate from the spirit of the present invention falls within the scope of the present invention.
附图说明 Description of drawings
图1:在玻璃衬底上形成阻挡层、非晶硅层和LTO掩盖层的叠层结构的截面示意图。Figure 1: A schematic cross-sectional view of a stacked structure forming a barrier layer, an amorphous silicon layer, and an LTO mask layer on a glass substrate.
图2:常规MIUC多晶硅TFT制备过程中,开诱导口并沉积金属镍示意图。Figure 2: Schematic diagram of opening the induction port and depositing metal nickel during the preparation process of the conventional MIUC polysilicon TFT.
图3:常规MIUC多晶硅TFT有源层多晶硅形成过程示意图。Figure 3: Schematic diagram of the polysilicon formation process for the active layer of a conventional MIUC polysilicon TFT.
图4:本发明新流程中,选择晶化区间的LTO掩盖层示意图。Fig. 4: In the new process of the present invention, the schematic diagram of the LTO cover layer in the selected crystallization interval.
图5:本发明的MIUC多晶硅TFT流程中,晶体管有源层形成过程示意图。Fig. 5: Schematic diagram of the formation process of the active layer of the transistor in the MIUC polysilicon TFT process of the present invention.
图6:本发明流程中所形成的各个晶化区间和多晶硅TFT的沟道位置关联图。FIG. 6 : A correlation diagram between each crystallization region and the channel position of a polysilicon TFT formed in the process of the present invention.
图7:本发明中TFT的多晶硅有源层示意图。Fig. 7: Schematic diagram of the polysilicon active layer of the TFT in the present invention.
图8:栅电极形成后,离子注入形成源漏电极制备过程示意图。Figure 8: Schematic diagram of the preparation process of ion implantation to form source and drain electrodes after the gate electrode is formed.
图9:采用本发明制备的新型MIUC多晶硅TFT。Fig. 9: A novel MIUC polysilicon TFT prepared by the present invention.
具体实施方式 Detailed ways
实施例Example
本发明参照附图详述如下:The present invention is described in detail as follows with reference to accompanying drawing:
如图所示,本发明是在透明玻璃衬底上,采用在周边晶化的多晶硅岛上制备金属诱导单一方向横向晶化薄膜晶体管的方法,该方法在保证器件具有与常规MIUC多晶硅TFT相同的优良性能的基础上,明显的减低了晶化的时间。As shown in the figure, the present invention adopts a method of preparing a metal-induced single-direction lateral crystallization thin film transistor on a transparent glass substrate on a peripheral crystallized polysilicon island, which ensures that the device has the same performance as the conventional MIUC polysilicon TFT On the basis of excellent performance, the crystallization time is obviously reduced.
如图1所示,制备多晶硅器件的衬底材料为透明衬底玻璃101,为阻挡玻璃衬底中的杂质在制备的热过程中向有源层中扩散,在玻璃衬底上沉积氮化硅和LTO混合层102。制备多晶硅材料的前驱物——去氢的非晶硅材料层103沉积在氮化硅和LTO混合阻挡层102上。在非晶硅层上沉积LTO覆盖层104,用于形成晶化选择区图形。As shown in Figure 1, the substrate material for preparing polysilicon devices is
图2所示为常规的MIUC多晶硅TFT的晶化过程中,开诱导口并沉积金属镍示意图。在常规的MIUC多晶硅TFT有源岛晶化过程中,首先在LTO覆盖层104通过光刻和腐蚀过程形成诱导口105,然后将非常薄的一层金属镍106沉积在其上,此层薄金属镍在诱导口处直接沉积于所选择的非晶硅膜上。FIG. 2 is a schematic diagram of opening an induction port and depositing metal nickel during the crystallization process of a conventional MIUC polysilicon TFT. In the conventional MIUC polysilicon TFT active island crystallization process, the
图3所示为常规MIUC多晶硅TFT有源层多晶硅形成过程示意图。在氮气气氛下的退火过程中,处于诱导口下粘附了少量镍的非晶硅区域首先形成不连续的MIC结晶区域105,然后在MIC结晶区域105两侧的LTO覆盖区间下,形成连续的MILC区间。MILC的尺寸由所要制备的MIUC多晶硅TFT的有源岛长度决定。以沟道长度为5微米的TFT为例,整个有源岛包括源漏电极、沟道和沟道两边的宽余尺寸设计共37微米的距离,在图上标示为“L1”。FIG. 3 is a schematic diagram of the formation process of polysilicon in the active layer of a conventional MIUC polysilicon TFT. During the annealing process under the nitrogen atmosphere, a discontinuous
图4所示为本发明所设计的新型晶化过程,根据多晶硅TFT的沟道长度和宽度的要求,在LTO覆盖层的选择区域,形成一定尺寸的长方形掩盖层图形108,之后采用溶液的方法将少量的镍粘附在掩盖图形外的非晶硅薄膜表面。Figure 4 shows the novel crystallization process designed by the present invention. According to the channel length and width requirements of the polysilicon TFT, a
图5所示为本发明的MIUC多晶硅TFT流程中,晶体管有源层形成过程示意图。在退火过程中,不在LTO图形108掩盖下有镍粘附的非晶硅区间形成MIC多晶硅110。在LTO图形108掩盖下的非晶硅区域,同时从掩盖区108的四周开始向中间形成四块如图6所示的MIUC区间。从相邻垂直边开始晶化的MILC相遇后就停止晶化,因此形成接近45度夹角结晶碰撞晶界。相对面的MILC相对碰撞,形成与结晶推进方向垂直的碰撞晶界。我们称LTO掩盖区108的四块MIUC多晶硅区为MIPC区间111。对向晶化的距离为两个“L2”。FIG. 5 is a schematic diagram of the formation process of the transistor active layer in the MIUC polysilicon TFT process of the present invention. During the annealing process,
图6所示的是MIPC的设计尺寸与TFT沟道尺寸的关系与相对位置示意图。多晶硅TFT的栅电极117和有源岛的交叠区为沟道区间113,沟道区间113设置在上述四块MIUC区间中宽度较大的一块中,并将MIPC区间111的边缘和MILC的对撞晶界,设置在沟道区113之外;在与之邻近的位置,沟道的左右两端形成多晶硅源漏电极,如右端所示的多晶硅源漏区间的扩展区间,也可用作形成储存电容电极或显示象素电极115。由于MIUC只要跨过沟道和两个对撞晶界与沟道边缘的小区间,就满足了制备器件的晶化要求,因此,与通常的MIUC多晶硅TFT相比,明显的缩短了晶化的时间。以5微米沟道长度的TFT为例,TFT沟道左边加4微米宽余尺寸与MIPC的一条长边对齐,沟道右边之外的4微米宽余尺寸与双向MILC的对撞晶界相齐。因此L2包括沟道的长度5微米和左右两边的宽余尺寸8微米,总共13微米。所用掩盖图形的宽度为26微米,MILC晶化过程从四周发生时,对应图4所示截面上为从左右两个方向同时发生,每边MILC晶化区间为L2=13微米,与常规MIUC多晶硅TFT沟道L1=33微米相比,所需晶化的长度(时间)比为13/37=35%。FIG. 6 is a schematic diagram of the relationship and relative position between the design size of the MIPC and the channel size of the TFT. The overlapping region of the
图7所示为本发明的TFT器件有源岛图形,包括左边MIC源漏区域112,中间的MIUC沟道区域113,右边的MILC源漏区域114和MIC电容电极和显示象素电极115。器件的各个部分采用了最佳组合方式。7 shows the TFT device active island pattern of the present invention, including the left MIC source and drain region 112, the middle
图8所示的是TFT器件的形成过程示意图,PECVD或LPCVD的低温栅绝缘层116沉积在多晶硅有源岛上,之后,在其上面形成栅电极117。采用自对准离子注入118方法,形成多晶硅TFT源漏和源漏扩展区域。FIG. 8 is a schematic diagram of the formation process of the TFT device. A PECVD or LPCVD low-temperature
图9所示的是采用本发明技术所制备的多晶硅TFT器件,在完成图8所述过程后,沉积LTO电极隔离层119,之后完成注入离子的活化过程,开接触孔,形成金属电极120,合金化后,既完成整个多晶硅TFT的制备过程。What Fig. 9 shows is the polysilicon TFT device prepared by adopting the technology of the present invention, after completing the process described in Fig. 8, deposit the LTO electrode isolation layer 119, finish the activation process of implanted ions afterwards, open the contact hole, form the metal electrode 120, After alloying, the entire polysilicon TFT preparation process is completed.
具体制备方法是:The specific preparation method is:
1)在透明玻璃衬底101上,采用等离子化学汽相沉积(PECVD)的方法,350℃下沉积300nm低温氮化硅和100nm低温氧化硅的混合层作为玻璃衬底杂质阻挡层和衬底材料与硅膜材料的过度层102。1) On the
2)在上述沉积了过度层的衬底上,采用PECVD或LPCVD法,分别在350-400℃或550℃下,沉积30nm-200nm的非晶硅层103。2) On the above-mentioned substrate on which the transition layer has been deposited, an
3)之后,在非晶硅上沉积100nm-300nm的LTO层。3) Afterwards, a 100nm-300nm LTO layer is deposited on the amorphous silicon.
4)形成选择晶化用的LTO掩盖层光刻图形,该图形为长方形,两个相对的长边一边的位置在TFT沟道外4微米处(相对于5微米TFT),另一边的位置为距离对边两倍的沟道加双边宽余的尺寸,使从双边晶化的对向MILC的碰撞晶界恰好分布在沟道外边4微米左右。长方形的两个窄边的距离要大于沟道的宽度与窄边边长的和。采用BOE腐蚀出LTO图形108。采用镍盐溶液无电电镀的方法,在掩盖区外的非晶硅表面上,形成超薄的镍层109。4) Form the photolithographic pattern of the LTO cover layer for selective crystallization, which is a rectangle, and the position of one side of the two opposite long sides is at 4 microns outside the TFT channel (relative to the 5 micron TFT), and the position of the other side is the distance Twice the size of the channel on the opposite side plus the size of the margin on both sides makes the collision grain boundaries of the facing MILC crystallized from both sides exactly distributed about 4 microns outside the channel. The distance between the two narrow sides of the rectangle is greater than the sum of the width of the channel and the length of the narrow sides. The
5)经过500-590℃氮气气氛下数小时退火,LTO覆盖的区间形成MILC多晶硅材料111,没有LTO覆盖的地方,将形成MIC多晶硅材料110。5) After several hours of annealing in a nitrogen atmosphere at 500-590° C.,
6)光刻TFT有源岛图形,在MILC多晶硅区间形成MILUC-TFT沟道113和一侧的源漏电极区114,在MIC多晶硅区间形成另一侧的源漏电极区112和电容与显示象素电极区间115。6) Photoetching TFT active island patterns, forming a MILUC-
7)沉积50nm-100nm的LTO多晶硅TFT的栅绝缘层116,形成厚度为200nm-300nm的多晶硅或金属栅电极图形117,自动准注入4E15/cm2的TFT源漏电极搀杂剂118,对于N型TFT以相应的能量注入磷、砷,P型TFT以相应的能量注入硼。之后经过550℃30分钟的搀杂活化过程,形成多晶硅TFT的源漏电极112和114。7) Deposit the
6)采用LPCVD方法,沉积500nm的LTO电极绝缘层119。光刻并加工接触孔图形,溅射500nm的硅铝合金层,并加工成金属电极120。形成气体退火(FGA)完成金属的合金化过程。6) Deposit a 500 nm LTO electrode insulating layer 119 by using LPCVD method. Photoetching and processing the contact hole pattern, sputtering a 500nm silicon aluminum alloy layer, and processing it into a metal electrode 120 . Forming gas annealing (FGA) completes the alloying process of the metal.
用该发明制备出的薄膜晶体管的开启电压低于10伏特,开关电流比高于106,载流子迁移率高于50cm2/V.s,其器件性能与用细长型诱导孔制备MIUC薄膜晶体管的性能相当。The turn-on voltage of the thin-film transistor prepared by this invention is lower than 10 volts, the on-off current ratio is higher than 10 6 , and the carrier mobility is higher than 50 cm 2 /Vs. performance is comparable.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005100144653A CN100397661C (en) | 2005-07-12 | 2005-07-12 | Metal-induced unidirectional lateral crystallization thin film transistor device and its preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005100144653A CN100397661C (en) | 2005-07-12 | 2005-07-12 | Metal-induced unidirectional lateral crystallization thin film transistor device and its preparation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1738061A CN1738061A (en) | 2006-02-22 |
CN100397661C true CN100397661C (en) | 2008-06-25 |
Family
ID=36080780
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005100144653A Expired - Fee Related CN100397661C (en) | 2005-07-12 | 2005-07-12 | Metal-induced unidirectional lateral crystallization thin film transistor device and its preparation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100397661C (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101976649A (en) * | 2010-09-08 | 2011-02-16 | 四川虹视显示技术有限公司 | A kind of OLED panel polysilicon manufacturing method |
CN101740359B (en) * | 2009-12-08 | 2011-11-23 | 四川虹视显示技术有限公司 | Nickel stripping method in method for manufacturing low-temperature polysilicon |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7790580B2 (en) * | 2006-03-13 | 2010-09-07 | Hong Kong University Of Science And Technology | Metal-induced crystallization of amorphous silicon in thin film transistors |
CN100999388B (en) * | 2006-12-30 | 2011-02-09 | 南开大学 | Preparation method of crystallized polysilicon thin film induced by surface modification solution |
KR101125565B1 (en) * | 2009-11-13 | 2012-03-23 | 삼성모바일디스플레이주식회사 | Thin Film Transistor, The Organic light Emitting Display Device Comprising The TFT and the Fabricating Methods of the Same |
CN102013400A (en) * | 2010-10-27 | 2011-04-13 | 四川虹视显示技术有限公司 | Method for producing low-temperature polysilicon thin film transistor with crystallized bottom metals |
CN102751175A (en) * | 2012-06-27 | 2012-10-24 | 北京航空航天大学 | Method of inducing crystallization of amorphous silicon film by metal lattice |
CN103236400B (en) * | 2013-03-29 | 2015-07-08 | 京东方科技集团股份有限公司 | Production method of low-temperature polysilicon thin film and production method of thin-film transistor |
CN105097940A (en) | 2014-04-25 | 2015-11-25 | 上海和辉光电有限公司 | Thin film transistor array substrate structure and manufacturing method thereof |
US10705002B2 (en) * | 2014-12-23 | 2020-07-07 | Heraeus Nexensos Gmbh | Sensor for detecting electrically conductive and/or polarizable particles and method for adjusting such a sensor |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1351371A (en) * | 2000-10-31 | 2002-05-29 | 朱承基 | Film transistor having polycrystal active layer and manufacture thereof |
CN1366351A (en) * | 2001-01-18 | 2002-08-28 | 国际商业机器公司 | Thin film transistor and its manufacturing method and semiconductor device of said transistor |
US6537890B2 (en) * | 2000-09-15 | 2003-03-25 | Seung Ki Joo | Poly-silicon thin film transistor having back bias effects and fabrication method thereof |
US20030096459A1 (en) * | 2001-11-06 | 2003-05-22 | Joo Seung Ki | Crystalline silicon thin film transistor panel for LCD and method of fabricating the same |
-
2005
- 2005-07-12 CN CNB2005100144653A patent/CN100397661C/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6537890B2 (en) * | 2000-09-15 | 2003-03-25 | Seung Ki Joo | Poly-silicon thin film transistor having back bias effects and fabrication method thereof |
CN1351371A (en) * | 2000-10-31 | 2002-05-29 | 朱承基 | Film transistor having polycrystal active layer and manufacture thereof |
CN1366351A (en) * | 2001-01-18 | 2002-08-28 | 国际商业机器公司 | Thin film transistor and its manufacturing method and semiconductor device of said transistor |
US20030096459A1 (en) * | 2001-11-06 | 2003-05-22 | Joo Seung Ki | Crystalline silicon thin film transistor panel for LCD and method of fabricating the same |
Non-Patent Citations (2)
Title |
---|
高性能金属诱导单向横向晶化多晶硅薄膜晶体管技术和应用. 王文,孟志国,郭海成.液晶与显示,第17卷第5期. 2002 |
高性能金属诱导单向横向晶化多晶硅薄膜晶体管技术和应用. 王文,孟志国,郭海成.液晶与显示,第17卷第5期. 2002 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101740359B (en) * | 2009-12-08 | 2011-11-23 | 四川虹视显示技术有限公司 | Nickel stripping method in method for manufacturing low-temperature polysilicon |
CN101976649A (en) * | 2010-09-08 | 2011-02-16 | 四川虹视显示技术有限公司 | A kind of OLED panel polysilicon manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
CN1738061A (en) | 2006-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6821827B2 (en) | Method of manufacturing a semiconductor device | |
US6808965B1 (en) | Methodology for fabricating a thin film transistor, including an LDD region, from amorphous semiconductor film deposited at 530° C. or less using low pressure chemical vapor deposition | |
EP1041641B1 (en) | A method for manufacturing an electrooptical device | |
US6680487B1 (en) | Semiconductor comprising a TFT provided on a substrate having an insulating surface and method of fabricating the same | |
CN101086962B (en) | Induced crystallization method of amorphous silicon metal | |
JP2015109465A (en) | Semiconductor device and electronic apparatus | |
CN102751200B (en) | Thin film transistor, array substrateand manufacturing method thereof | |
CN100397661C (en) | Metal-induced unidirectional lateral crystallization thin film transistor device and its preparation method | |
WO2019075949A1 (en) | Array substrate and manufacturing method therefor | |
CN102709184B (en) | Thin film transistor (TFT), its manufacture method and array base palte containing polysilicon active layer | |
CN101404142A (en) | Current mirror type TFT-OLED display image element unit circuit and its production method | |
CN106098629B (en) | TFT substrate and manufacturing method thereof | |
KR101274697B1 (en) | Silicon crystallization method and method for manufacturing thin film transistor using the same | |
CN104779300B (en) | A kind of polycrystalline SiTFT and preparation method thereof and display unit | |
KR20080000299A (en) | Polysilicon Thin Film Transistor Liquid Crystal Display and Manufacturing Method Thereof | |
Wang et al. | A Hybrid a-Si and poly-Si TFTs technology for AMOLED pixel circuits | |
US10672797B2 (en) | Array substrate, method for fabricating array substrate and display | |
CN110838467A (en) | Manufacturing method of low-temperature polycrystalline silicon substrate and low-temperature polycrystalline silicon substrate | |
Lee | 15.1: Invited Paper: Super Grain Silicon Technology for AMOLED TV Applications | |
CN100561321C (en) | Low temperature polysilicon thin film transistor fully integrated active addressing substrate and preparation method | |
JP2808132B2 (en) | Complementary thin film transistor formation method | |
US10515800B2 (en) | Solid phase crystallization method and manufacturing method of low-temperature poly-silicon TFT substrate | |
KR101234213B1 (en) | Method of crystallization and method of fabricating thin film transistor using thereof | |
Zhao | Improvements of Low Temperature Polycrystalline Silicon Thin Film Transistors and the Applications on Active Matrix Displays | |
JP3208011B2 (en) | Insulated gate field effect semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20080625 |