[go: up one dir, main page]

CN100395266C - A maize anti-reverse transcription regulatory factor and its coding gene and application - Google Patents

A maize anti-reverse transcription regulatory factor and its coding gene and application Download PDF

Info

Publication number
CN100395266C
CN100395266C CNB2005100536772A CN200510053677A CN100395266C CN 100395266 C CN100395266 C CN 100395266C CN B2005100536772 A CNB2005100536772 A CN B2005100536772A CN 200510053677 A CN200510053677 A CN 200510053677A CN 100395266 C CN100395266 C CN 100395266C
Authority
CN
China
Prior art keywords
gene
maize
lbf
ltre
plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2005100536772A
Other languages
Chinese (zh)
Other versions
CN1831010A (en
Inventor
王磊
范云六
赵军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Biotechnology Research Institute of CAAS
Original Assignee
Biotechnology Research Institute of CAAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biotechnology Research Institute of CAAS filed Critical Biotechnology Research Institute of CAAS
Priority to CNB2005100536772A priority Critical patent/CN100395266C/en
Publication of CN1831010A publication Critical patent/CN1831010A/en
Application granted granted Critical
Publication of CN100395266C publication Critical patent/CN100395266C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明公开了一个玉米抗逆转录调控因子及其编码基因与应用。该玉米抗逆转录调控因子,是具有下述氨基酸残基序列之一的蛋白质:1)序列表中的SEQ ID №:1;2)将序列表中SEQ ID №:1的氨基酸残基序列经过一至十个氨基酸残基的取代、缺失或添加且具有与LTRE顺式元件相互作用提高植物抗逆性能的蛋白质。该调控因子可作用于多个抗非生物逆境相关基因启动子区的LTRE顺式作用元件,调控多个抗非生物逆境相关基因的表达,提高植物对干旱、低温、盐渍等非生物逆境的抵抗能力。LBF对培育耐逆植物品种特别是耐逆玉米品种,提高农作物特别是玉米的产量具有重要意义。The invention discloses a maize anti-reverse transcription regulation factor, its coding gene and application. The corn anti-reverse transcription regulatory factor is a protein with one of the following amino acid residue sequences: 1) SEQ ID No.: 1 in the sequence listing; 2) the amino acid residue sequence of SEQ ID No.: 1 in the sequence listing through One to ten amino acid residues are substituted, deleted or added, and the protein interacts with the LTRE cis-element to improve plant stress resistance. This regulatory factor can act on the LTRE cis-acting elements in the promoter regions of multiple anti-abiotic stress-related genes, regulate the expression of multiple anti-abiotic stress-related genes, and improve the plant's resistance to abiotic stresses such as drought, low temperature, and salinity. Resistance. LBF is of great significance for cultivating stress-tolerant plant varieties, especially stress-tolerant maize varieties, and improving the yield of crops, especially maize.

Description

一个玉米抗逆转录调控因子及其编码基因与应用 A maize anti-reverse transcription regulatory factor and its coding gene and application

技术领域 technical field

本发明涉及植物中与胁迫相关的转录调控因子及其编码基因与应用,特别是涉及一个玉米中抗低温、干旱和盐渍等非生物胁迫的转录调控因子及其编码基因与其在培育抗逆性提高植物中的应用。The present invention relates to stress-related transcriptional regulatory factors in plants and their coding genes and their applications, in particular to a transcriptional regulatory factor and its coding genes for resistance to abiotic stresses such as low temperature, drought, and salinity in maize, and their use in cultivating stress resistance Improving applications in plants.

背景技术 Background technique

低温冷害是农业生产中常发生的自然灾害,极大限制了早春作物的种植和晚秋作物的收获。Chilling injury is a natural disaster that often occurs in agricultural production, which greatly limits the planting of early spring crops and the harvest of late autumn crops.

研究表明,在低温条件下,植物会积极地调动体内的防卫体系来抵御外来的逆境胁迫,这时在植物体内将发生很大变化,如心蛋白的合成,代谢的转变,抗逆境物质的积累等(Hans J,Adaptations to environmental stresses.,Plant Cell,1995,7:1009-1111)。植物对低温胁迫的抵抗并非仅依靠某一、两个功能基因完成,有很多蛋白参与了植物抵御低温胁迫的反应,目前,已发现与低温胁迫相关的基因100多个,它们协同作用调控植物的生理、生化及代谢变化,提高植物对低温胁迫的抗性,已有的研究结果也证明了这一观点。如Steponkus等人把COR15a基因转化到拟南芥中(Steponkus P.L.,Mode of action of the COR15a gene on the freezing toleranceof Arabidopsis.PNAS,1998,1998:14570-14575),Zhu B等人把HVA1基因转化到水稻中(Zhu B,Overexpression of a l-pyrroline-5-carboxylate synthetase geneand analysis of tolerance to water-and salt-stress in transgenic rice.,Plant Sci,1998,139:41-48),经上述方法获得的转化植株的抗寒性能虽有所提高,但实际效果并不理想。Studies have shown that under low temperature conditions, plants will actively mobilize their internal defense systems to resist external adversity stress. At this time, great changes will occur in plants, such as the synthesis of heart protein, the transformation of metabolism, and the accumulation of anti-adversity substances etc. (Hans J, Adaptations to environmental stresses., Plant Cell, 1995, 7: 1009-1111). The resistance of plants to low temperature stress does not rely solely on one or two functional genes. There are many proteins involved in the response of plants to resist low temperature stress. At present, more than 100 genes related to low temperature stress have been found, and they synergistically regulate plant growth and development. Physiological, biochemical and metabolic changes can improve the resistance of plants to low temperature stress, and the existing research results have also proved this point of view. For example, people such as Steponkus transformed the COR15a gene into Arabidopsis (Steponkus P.L., Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis. PNAS, 1998, 1998: 14570-14575), Zhu B et al transformed the HVA1 gene into In rice (Zhu B, Overexpression of a l-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water-and salt-stress in transgenic rice., Plant Sci, 1998, 139: 41-48), obtained by the above method Although the cold resistance of transformed plants has been improved, the actual effect is not ideal.

为提高植物的抗非生物逆境性能,人们进行了大量关于植物抗非生物逆境基因的研究,并开始转向与非生物逆境密切相关的转录调控基因的研究,因为转录因子可以调控与抗逆相关的一系列基因的表达,而不单单是一个基因在起作用,因此转录因子在提高植物抗逆境能力方面起到重要作用,并逐渐成为研究热点。近年来,取得了令人满意的研究成果,如DREB1A(DRE binding factor)因子,可结合DRE(Droughtresponse element)顺式元件,调控RD29A,RD17,ERD10,KIN1,COR15a等基因的表达(Qiang Liu,Two transcription factors,DREB1 and DREB2,with an EREBP/AP2DNA binding domain separate two cellular signal transduction pathways indrought-and low-temperature-responsive gene expression,respectively,inArabidopsis.Plant Cell,1998,10:1391-1406;Mie Kasuga,Improving plant drought,salt,and freezing tolerance by gene transfer of a single stess-inducibletransciption factor.,Nature Biotechnology,1999,17:287-291);ABF(ABREbinding factor)因子,可结合ABRE(ABA response element)顺式元件,调控RD28B,RAB18,ICK1等基因的表达(Joung-youn Kang,Arabidopsis Basic Leucine ZipperProteins That Mediate Stress-Responsive Abscisic Acid Signaling.,Plant Cell,2002,14:343-357)。转基因实验结果表明上述转录因子可显著提高植株对非生物逆境胁迫的抵抗能力。In order to improve the resistance of plants to abiotic stress, people have carried out a lot of research on the genes of plant resistance to abiotic stress, and began to turn to the research of transcriptional regulatory genes closely related to abiotic stress, because transcription factors can regulate the stress-related genes. The expression of a series of genes, not just one gene, so transcription factors play an important role in improving the ability of plants to resist stress, and have gradually become a research hotspot. In recent years, satisfactory research results have been obtained, such as DREB1A (DRE binding factor) factor, which can bind DRE (Droughtresponse element) cis-element to regulate the expression of RD29A, RD17, ERD10, KIN1, COR15a and other genes (Qiang Liu, Two transcription factors, DREB1 and DREB2, with an EREBP/AP2DNA binding domain separate two cellular signal transduction pathways indrought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell, 1998, 10: 13691- Improving plant drought, salt, and freezing tolerance by gene transfer of a single stess-inducible transciption factor., Nature Biotechnology, 1999, 17: 287-291); ABF (ABREbinding factor) factor can be combined with ABRE (ABA response element) cis Components that regulate the expression of RD28B, RAB18, ICK1 and other genes (Joung-youn Kang, Arabidopsis Basic Leucine Zipper Proteins That Mediate Stress-Responsive Abscisic Acid Signaling., Plant Cell, 2002, 14: 343-357). The results of transgenic experiments showed that the above-mentioned transcription factors can significantly improve the resistance of plants to abiotic stress.

与抗寒有关的转录调控基因的研究首先从模式植物拟南芥开始,Kisten R.等人分离到拟南芥CBF1(C-repeat binding factor)因子,CBF1可与C-repeat顺式元件相互作用,调控COR6.6,COR15a,COR47,COR78等基因的表达(Kirsten R,ArabidopsisCBF1 Overexpression Induces COR Genes and Enhances Freezing Tolerance.,Science,1998,280:104-106),转基因实验结果表明,转有CBF1基因的拟南芥的抗寒性能得到显著提高。此外,经研究发现与抗寒相关的多个功能基因的启动子区均含有低温响应元件(LTRE),如COR15a基因,COR78/LTI78/RD29A基因,KIN1,KIN2基因和RAB18基因(刘强,张桂友,陈受宜.植物转录因子的结构与调控作用.科学通报,2000,45(14):1465-1474)。最近,Ming-Jun Gao等人从油菜中分离到与LTRE顺式元件相互作用的BNCBFs(Brassica napus CBFs)因子,BNCBFs受低温诱导表达(Ming-Jun Gao,Regulation and characterization of four CBF transcriptionfactors from Brassica napus.Plant Molecular Biology,2002,49:459-471)。但目前与LTRE顺式元件相互作用的反式因子在单子叶植物,尤其是在重要农作物玉米中还未见研究报道。The study of transcriptional regulatory genes related to cold resistance first started from the model plant Arabidopsis. Kisten R. et al. isolated the Arabidopsis CBF1 (C-repeat binding factor) factor, and CBF1 can interact with the C-repeat cis-element , regulate the expression of COR6.6, COR15a, COR47, COR78 and other genes (Kirsten R, Arabidopsis CBF1 Overexpression Induces COR Genes and Enhances Freezing Tolerance., Science, 1998, 280: 104-106), the results of transgenic experiments show that the CBF1 gene The cold resistance performance of Arabidopsis thaliana was significantly improved. In addition, it has been found that the promoter regions of multiple functional genes related to cold resistance contain low temperature response elements (LTRE), such as COR15a gene, COR78/LTI78/RD29A gene, KIN1, KIN2 gene and RAB18 gene (Liu Qiang, Zhang Guiyou, Chen Shouyi. The structure and regulation of plant transcription factors. Science Bulletin, 2000, 45(14): 1465-1474). Recently, Ming-Jun Gao et al. isolated BNCBFs (Brassica napus CBFs) factors interacting with LTRE cis-elements from rape, and BNCBFs were induced by low temperature (Ming-Jun Gao, Regulation and characterization of four CBF transcription factors from Brassica napus . Plant Molecular Biology, 2002, 49: 459-471). However, the trans factors that interact with LTRE cis elements have not been reported in monocots, especially in the important crop maize.

发明内容 Contents of the invention

本发明的目的是提供一个玉米抗逆转录调控因子及其编码基因。The purpose of the present invention is to provide a maize anti-reverse transcription regulator and its coding gene.

本发明所提供的玉米抗逆转录调控因子,名称为LBF(LTRE Binding Protein),来源于玉米属玉米(Zea mays L.),是具有下述氨基酸残基序列之一的蛋白质:The maize anti-reverse transcription regulatory factor provided by the present invention is named LBF (LTRE Binding Protein), derived from Zea mays L., and is a protein with one of the following amino acid residue sequences:

1)序列表中的SEQ ID №:1;1) SEQ ID №: 1 in the sequence listing;

2)将序列表中SEQ ID №:1的氨基酸残基序列经过一至十个氨基酸残基的取代、缺失或添加且具有与LTRE顺式元件相互作用提高植物抗逆性能的蛋白质。2) The amino acid residue sequence of SEQ ID №: 1 in the sequence table is substituted, deleted or added with one to ten amino acid residues, and has a protein that interacts with the LTRE cis-element to improve plant stress resistance.

序列表中的SEQ ID №:1由267个氨基酸残基组成,与LTRE结合的DNA核心序列是“CGAC”。SEQ ID №1 in the sequence listing consists of 267 amino acid residues, and the DNA core sequence combined with LTRE is "CGAC".

上述玉米抗逆转录调控因子的编码基因(LBF)是下述核苷酸序列之一:The coding gene (LBF) of the above-mentioned maize anti-reverse transcription regulatory factor is one of the following nucleotide sequences:

1)序列表中SEQ ID №:2的DNA序列;1) The DNA sequence of SEQ ID №: 2 in the sequence listing;

2)编码序列表中SEQ ID №:1蛋白质序列的多核苷酸;2) A polynucleotide encoding the protein sequence of SEQ ID №: 1 in the sequence listing;

3)在高严谨条件下可与序列表中SEQ ID №:2限定的DNA序列杂交的核苷酸序列。3) A nucleotide sequence that can hybridize to the DNA sequence defined by SEQ ID No. 2 in the sequence listing under high stringency conditions.

所述高严谨条件可为用0.1×SSPE(或0.1×SSC),0.1%SDS的溶液,在65℃下杂交并洗膜。The high stringency conditions can be 0.1×SSPE (or 0.1×SSC), 0.1% SDS solution, hybridization at 65°C and membrane washing.

序列表中的SEQ ID №:2由1042个碱基组成,其开放阅读框架为自5’端第117-第920位碱基,编码具有序列表中SEQ ID №:1的氨基酸残基序列的蛋白质。SEQ ID №: 2 in the sequence listing consists of 1042 bases, and its open reading frame is from the 117th to the 920th base at the 5' end, encoding the amino acid residue sequence of SEQ ID №: 1 in the sequence listing protein.

含有本发明基因的表达载体、转基因细胞系及宿主菌均属于本发明的保护范围。The expression vector, transgenic cell line and host bacteria containing the gene of the present invention all belong to the protection scope of the present invention.

扩增LBF中任一片段的引物对也在本发明的保护范围之内。Primer pairs for amplifying any fragment of LBF are also within the protection scope of the present invention.

利用植物表达载体,将本发明的LBF的编码基因导入植物细胞,可获得对逆境胁迫耐受力增强的转基因细胞系及转基因植株。Using the plant expression vector, the LBF coding gene of the present invention is introduced into the plant cell, and the transgenic cell line and the transgenic plant with enhanced tolerance to adversity stress can be obtained.

使用LBF构建植物表达载体时,在其转录起始核苷酸前可加上任何一种增强型启动子或诱导型启动子。为了便于对转基因植物细胞或植物进行鉴定及筛选,可对所用植物表达载体进行加工,如加入可在植物中表达的选择性标记基因(GUS基因、萤光素酶基因等)或具有抗性的抗生素标记物(庆大霉素标记物、卡那霉素标记物等)。从转基因植物的安全性考虑,可不加任何选择性标记基因,直接以逆境筛选转化植株。When using LBF to construct a plant expression vector, any enhanced promoter or inducible promoter can be added before the transcription initiation nucleotide. In order to facilitate the identification and screening of transgenic plant cells or plants, the plant expression vectors used can be processed, such as adding selectable marker genes (GUS gene, luciferase gene, etc.) that can be expressed in plants or resistant Antibiotic markers (gentamicin markers, kanamycin markers, etc.). Considering the safety of the transgenic plants, the transformed plants can be screened directly by adversity without adding any selectable marker gene.

携带有本发明LBF的植物表达载体可通过使用Ti质粒、Ri质粒、植物病毒载体、直接DNA转化、显微注射、电导、农杆菌介导等常规生物学方法转化植物细胞或组织,并将转化的植物组织培育成植株。被转化的植物宿主既可以是玉米、水稻、小麦等单子叶植物,也可以是大豆、油菜、棉花等双子叶植物。The plant expression vector carrying the LBF of the present invention can transform plant cells or tissues by conventional biological methods such as Ti plasmid, Ri plasmid, plant virus vector, direct DNA transformation, microinjection, conductance, Agrobacterium-mediated, and transform plant tissues grown into plants. The transformed plant host can be either a monocotyledonous plant such as corn, rice, or wheat, or a dicotyledonous plant such as soybean, rapeseed, or cotton.

本发明从重要农作物玉米中分离、克隆得到LTRE结合蛋白LBF,属于AP1类转录因子,是具有与LTRE结合特异性的转录调控因子,能够调控更多逆境相关基因的表达,LBF所结合的DNA核心元件序列为“CGAC”,这与已报导的CBF1,DREB1A,BNCBF,osDREB等转录因子明显不同,它们结合的DNA核心序列均为“CCGAC”,实验证明该调控因子可作用于多个抗非生物逆境相关基因启动子区的LTRE顺式作用元件,调控多个抗非生物逆境相关基因的表达,提高植物对干旱、低温、盐渍等非生物逆境的抵抗能力。LBF对培育耐逆植物品种特别是耐逆玉米品种,提高农作物特别是玉米的产量具有重要意义。The present invention isolates and clones the LTRE-binding protein LBF from the important crop corn, which belongs to the AP1 class of transcription factors, is a transcriptional regulatory factor with binding specificity to LTRE, and can regulate the expression of more stress-related genes. The DNA core to which LBF binds The element sequence is "CGAC", which is obviously different from the reported transcription factors such as CBF1, DREB1A, BNCBF, osDREB, etc. The DNA core sequence they bind to is "CCGAC". Experiments have proved that this regulatory factor can act on multiple anti-abiotic The LTRE cis-acting element in the promoter region of stress-related genes regulates the expression of multiple anti-abiotic stress-related genes and improves the resistance of plants to abiotic stresses such as drought, low temperature, and salinity. LBF is of great significance for cultivating stress-tolerant plant varieties, especially stress-tolerant maize varieties, and improving the yield of crops, especially maize.

下面结合附图及实施例对本发明做进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and embodiments.

附图说明 Description of drawings

图1为LBF在酵母细胞内与LTRE的结合特异性分析结果Figure 1 shows the results of the binding specificity analysis of LBF and LTRE in yeast cells

图2为LBF与LTRE体外结合的功能分析(EMSA实验)结果Figure 2 is the result of the functional analysis (EMSA experiment) of the combination of LBF and LTRE in vitro

图3为LBF与LTRE结合的DNA核心序列分析结果Figure 3 is the DNA core sequence analysis results of LBF combined with LTRE

图4为LBF在酵母体内的LTRE结合特异性及转录激活功能验证Figure 4 shows the verification of LTRE binding specificity and transcriptional activation function of LBF in yeast

图5为LBF基因在盐、干旱、过氧化氢、ABA、低温等逆境条件下的表达Figure 5 shows the expression of LBF gene under stress conditions such as salt, drought, hydrogen peroxide, ABA, and low temperature

图6为LBF在玉米幼胚发育过程中的特异表达情况Figure 6 shows the specific expression of LBF during the development of maize immature embryos

图7为LBF转基因拟南芥的抗寒试验结果Figure 7 shows the results of the cold resistance test of LBF transgenic Arabidopsis

图8为LBF转基因拟南芥的抗盐试验结果Figure 8 shows the results of the salt tolerance test of LBF transgenic Arabidopsis

图9为LBF转基因拟南芥的抗旱试验结果Figure 9 is the results of the drought resistance test of LBF transgenic Arabidopsis

具体实施方式 Detailed ways

下述实施例中所用方法如无特别说明均为常规方法,所用引物和DNA片段均由北京赛百盛生物工程公司合成,所述测序工作均由上海博亚生物技术有限公司完成。The methods used in the following examples are conventional methods unless otherwise specified. The primers and DNA fragments used were synthesized by Beijing Saibaisheng Bioengineering Company, and the sequencing work was completed by Shanghai Boya Biotechnology Co., Ltd.

实施例1、LBF基因的获得Embodiment 1, the acquisition of LBF gene

一、玉米幼胚cDNA文库的构建1. Construction of maize immature embryo cDNA library

1、玉米幼胚总RNA的提取和mRNA的分离1. Extraction of total RNA and isolation of mRNA from immature maize embryos

取玉米品种齐319授粉后第17天(17dpp)的幼胚1g,用RNAgents Total RNAIsolation System试剂盒(Promega公司)提取上述玉米幼胚的总RNA,然后用PolyATtract mRNA Isolation System(Promega公司)从上述玉米幼胚的总RNA中分离出mRNA。Get 1g of immature embryos on the 17th day (17dpp) after pollination of corn variety Qi 319, use RNAgents Total RNAIsolation System kit (Promega Company) to extract the total RNA of the above-mentioned immature embryos of maize, then use PolyATtract mRNA Isolation System (Promega Company) from the above-mentioned mRNA was isolated from total RNA from immature maize embryos.

2、玉米17dpp幼胚cDNA文库的构建2. Construction of maize 17dpp immature embryo cDNA library

以步骤1获得的玉米17dpp幼胚的mRNA为模板,用GibcoBRL公司的SuperScriptTMPlasmid System for cDNA Synthes is and Plasmid Cloning试剂盒并严格按试剂盒说明书进行操作构建玉米17dpp幼胚的cDNA文库,最后得到库容量为5.2×106cfu的玉米17dpp幼胚的cDNA文库。Using the mRNA of maize 17dpp immature embryos obtained in step 1 as a template, use GibcoBRL's SuperScript TM Plasmid System for cDNA Synthes is and Plasmid Cloning kit and operate strictly according to the kit instructions to construct a cDNA library of maize 17dpp immature embryos, and finally get The cDNA library of maize 17dpp immature embryos with a library capacity of 5.2×10 6 cfu.

二、用酵母单杂交法从玉米17dpp幼胚cDNA文库中筛选LBF编码基因2. Screening LBF-encoding gene from maize 17dpp immature embryo cDNA library by yeast one-hybrid method

1、4mer LTRE诱饵载体及4mer mutant LTRE(mLTRE)挽救载体的构建1. Construction of 4mer LTRE bait vector and 4mer mutant LTRE (mLTRE) rescue vector

1)合成LTRE顺势作用元件(两段互补DNA片段),序列如下:1) Synthesize LTRE homeopathic elements (two complementary DNA fragments), the sequence is as follows:

LTRE(+):5’-ATTTCATGGCCGACCTGCTTTTT-3’LTRE(+): 5'-ATTTCATGGCCGACCTGCTTTTT-3'

LTRE(-):5’-AAAAAGCAGGTCGGCCATGAAAT-3’各取20μL浓度均为1μg/μL的LTRE(+)和LTRE(-),混匀,加入4μL浓度为3M的NaOAc和100μL无水乙醇,在-20℃下放置30分钟后离心沉淀DNA,将沉淀用70%乙醇洗一次,然后经干燥使乙醇挥发后,加入6.5μL无菌水和1μL 10×T4多核苷酸激酶(Promega公司)缓冲液进行退火,退火条件为:88℃ 2min,65℃ 10min,37℃ 10min,25℃ 5min;再加入1.5μL 20mM的ATP和1μL T4多核苷酸激酶,37℃反应2小时后,用酚氯仿(混合比例为1∶1)和氯仿各抽提一次,用无水乙醇沉淀DNA。加入2μL 10×连接酶缓冲液,1μL连接酶(5units/μL),17μL无菌水,16℃连接12-24小时,进行2%琼脂糖凝胶电泳进行检测,得到了大小约80bp的DNA片段,用DNA片段快速纯化/回收试剂盒(鼎国公司)回收该片段,并将其克隆到经SpeI酶切和补平的载体pBSK+(Clontech公司)中,经测序得到含转录因子与LTRE顺势作用元件结合的DNA核心元件序列的双链DNA片段的重组载体,命名为pL4。LTRE(-): 5'-AAAAAGCAGGTCGGCCATGAAAT-3' Take 20 μL each of LTRE(+) and LTRE(-) at a concentration of 1 μg/μL, mix well, add 4 μL of 3M NaOAc and 100 μL of absolute ethanol, and After standing at 20°C for 30 minutes, centrifuge to precipitate DNA, wash the precipitate once with 70% ethanol, and then dry the ethanol to evaporate, then add 6.5 μL sterile water and 1 μL 10×T4 polynucleotide kinase (Promega company) buffer Perform annealing, the annealing conditions are: 88°C for 2min, 65°C for 10min, 37°C for 10min, 25°C for 5min; then add 1.5μL of 20mM ATP and 1μL of T4 polynucleotide kinase, react at 37°C for 2 hours, then wash with phenol chloroform ( The mixing ratio is 1:1) and chloroform were extracted once respectively, and the DNA was precipitated with absolute ethanol. Add 2 μL 10× ligase buffer, 1 μL ligase (5units/μL), 17 μL sterile water, connect at 16°C for 12-24 hours, perform 2% agarose gel electrophoresis for detection, and obtain a DNA fragment with a size of about 80 bp , using the DNA Fragment Rapid Purification/Recovery Kit (Dingguo Company) to recover the fragment, and clone it into the vector pBSK+ (Clontech Company) that has been digested by SpeI and filled in, and obtained by sequencing. The recombinant vector of the double-stranded DNA fragment of the element-bound DNA core element sequence is named pL4.

2)合成含突变的LTRE顺势作用元件,合成序列如下:mLTRE(+):5’-ATTTCATGattagttTGCTTTTT-3’和mLTRE(-):5’-AAAAAGCAaactaatCATGAAAT-3’,用同样方法,得到含突变的转录因子与LTRE顺势作用元件结合的DNA核心元件序列的双链DNA片段的重组载体,命名为pmL4。2) Synthesize LTRE homeopathic elements containing mutations, the synthetic sequences are as follows: mLTRE(+): 5'-ATTTCATGattagttTGCTTTTT-3' and mLTRE(-): 5'-AAAAAGCAaactaatCATGAAAT-3', use the same method to obtain the transcripts containing mutations The recombinant vector of the double-stranded DNA fragment of the DNA core element sequence combined with the factor and the LTRE homeopathic element is named pmL4.

3)将质粒载体pL4和pmL4均用BamH I和Xba I双酶切后纯化,再分别与经同样处理的载体pRS315His(Leu+)(Wilson TE et al,Identification of the DNA bindingsite for NGFI-B by genetic selection in yeast.Science 252:1296-300(1991);用T4 DNA连接酶连接,得到含有LTRE DNA片段的诱饵载体pRSL4(Leu+)和含有mLTREDNA片段的挽救载体pRSmL4(Leu+)。3) Plasmid vectors pL4 and pmL4 were both digested with BamH I and Xba I and purified, and then respectively combined with the similarly treated vector pRS315His(Leu + ) (Wilson TE et al, Identification of the DNA binding site for NGFI-B by Genetic selection in yeast. Science 252: 1296-300 (1991); ligated with T 4 DNA ligase to obtain bait vector pRSL4(Leu + ) containing LTRE DNA fragment and rescue vector pRSL4(Leu + ) containing mLTRE DNA fragment.

2、玉米17dpp幼胚cDNA文库的筛选2. Screening of maize 17dpp immature embryo cDNA library

制备酵母yWAM2(Leu-,His-,Trp-)(Cheng X,Boyer JL,Juliano RL.Selectionof peptides that functionally replace a zinc finger in the Spl transcriptionfactor by using a yeast combinatorial library.Proc.Natl.Acad.Sci.USA 1997,94:14120-14125)感受态细胞,把诱饵载体pRSL4(Leu+)转化到酵母菌株yWAM2(Leu-,His-,Trp-)中,转化方法参照Two Hybrid System TRAFO protocol进行,获得整合有pRSL4的酵母菌株yL4(His-,Trp-);然后用酵母菌株yL4(His-,Trp-)对步骤一构建的玉米17dpp幼胚cDNA文库进行筛选,转化方法同上,将转化细胞涂到His-选择培养基(Sigma公司)上,在28℃下培养3-5天,待酵母长出后,提取酵母质粒,提取方法可参照文献(Christine Guthrie,Method I:Quick Plasmid DNAPreparations from Yeast,Methods in Enzymology,1991,194:322)进行;然后将酵母质粒转化E.coli DH5α,提取阳性克隆的质粒并用Nott I和Sal I进行酶切分析,表明能够切出约1.2Kb的DNA片断,将所获得的阳性克隆进行序列分析,结果表明获得了与诱饵载体中LTRE顺势作用元件相结合的文库蛋白的编码基因,该基因具有序列表中SEQ ID №:2的多核苷酸序列,由1042个碱基组成,其开放阅读框架为自5’端第117-第920位碱基,编码具有序列表中SEQ ID №:1的氨基酸残基序列的蛋白质。在GeneBank中搜索该基因的全序列,未发现相同的序列。对其所编码的蛋白进行氨基酸残基序列分析,发现其具有与AP1类转录因子相同的保守结构域,自N端第60-第123位氨基酸残基为AP1类转录因子的保守结构域,证明利用酵母单杂交的方法获得了玉米中与LTRE顺式元件相互作用的反式因子的编码基因,将其命名为LBF,将该基因所编码的蛋白命名为LBF。Preparation of yeast yWAM2 (Leu - , His - , Trp - ) (Cheng X, Boyer JL, Juliano RL. Selection of peptides that functionally replace a zinc finger in the Spl transcription factor by using a yeast combinatorial library. Proc. Natl. Acad. Sci. USA 1997, 94: 14120-14125) competent cells, the bait vector pRSL4 (Leu + ) was transformed into the yeast strain yWAM2 (Leu - , His - , Trp - ), the transformation method was carried out according to the Two Hybrid System TRAFO protocol, and the integrated Yeast strain yL4 (His - , Trp - ) with pRSL4; then use yeast strain yL4 (His - , Trp - ) to screen the cDNA library of maize 17dpp immature embryos constructed in step 1, and the transformation method is the same as above, and the transformed cells are coated with His -Cultivate at 28°C for 3-5 days on the selection medium (Sigma Company). After the yeast grows, extract the yeast plasmid. The extraction method can refer to the literature (Christine Guthrie, Method I: Quick Plasmid DNA Preparations from Yeast, Methods in Enzymology, 1991, 194: 322); then the yeast plasmid was transformed into E.coli DH5α, the plasmid of the positive clone was extracted and analyzed with Nott I and Sal I, which showed that a DNA fragment of about 1.2Kb could be excised, and the obtained Sequence analysis of the positive clones showed that the gene encoding the library protein combined with the LTRE homeopathic element in the bait vector was obtained. This gene has the polynucleotide sequence of SEQ ID №2 in the sequence table, consisting of 1042 bases Composition, its open reading frame is from the 117th to the 920th base at the 5' end, encoding a protein with the amino acid residue sequence of SEQ ID №: 1 in the sequence listing. Searching for the full sequence of the gene in GeneBank did not find the same sequence. The amino acid residue sequence analysis of the protein encoded by it found that it has the same conserved domain as that of AP1 transcription factors. The gene encoding the trans factor interacting with the LTRE cis-element in maize was obtained by yeast one-hybrid method, which was named LBF, and the protein encoded by the gene was named LBF.

实施例2、LBF与LTRE的结合特异性分析Embodiment 2, the binding specificity analysis of LBF and LTRE

一、LBF在酵母细胞内与LTRE的结合特异性分析1. Binding specificity analysis of LBF and LTRE in yeast cells

将重组载体pL4和pmL4转化酵母yWAM2(Leu-,His-,Trp-),得到整合有pL4的酵母菌株yWAM2/pL4和整合有pmL4的酵母菌株yWAM2/pmL4,再把实施例1中经筛库得到的含有LBF基因的质粒转化分别转化重组酵母yWAM2/pL4和yWAM2/pmL4,然后在28℃下,在His-选择培养基上培养3-5天,结果如图1所示(图中A为重组酵母yWAM2/pL4,图中B为重组酵母yWAM2/pmL4),只有重组酵母yWAM2/pL4能够生长,而重组酵母yWAM2/pmL4不能够生长,表明LBF在酵母体内能够特异结合LTRE元件,从而激活报告基因HIS3基因的表达,故能够在His-选择培养基上生长,相反由于LBF不能与mLTRE结合,不能激活报告基因HIS3基因的表达,因而在His-选择培养基上也不能生长,证明LBF在酵母体内具有LTRE的结合特异性。The recombinant vectors pL4 and pmL4 were transformed into yeast yWAM2 (Leu - , His - , Trp - ) to obtain the yeast strain yWAM2/pL4 integrated with pL4 and the yeast strain yWAM2/pmL4 integrated with pmL4, and then the screening library in Example 1 The resulting plasmid transformation containing the LBF gene was transformed into recombinant yeast yWAM2/pL4 and yWAM2/pmL4 respectively, and then at 28°C, cultured for 3-5 days on the His - selection medium, the results as shown in Figure 1 (A in the figure is Recombinant yeast yWAM2/pL4, B in the figure is recombinant yeast yWAM2/pmL4), only recombinant yeast yWAM2/pL4 can grow, but recombinant yeast yWAM2/pmL4 cannot grow, indicating that LBF can specifically bind to the LTRE element in yeast, thereby activating the reporter The expression of the gene HIS3 gene, so it can grow on the His - selection medium. On the contrary, because LBF cannot combine with mLTRE, it cannot activate the expression of the reporter gene HIS3 gene, so it cannot grow on the His - selection medium. In vivo has binding specificity for LTRE.

二、LBF与LTRE体外结合的功能性分析(EMSA实验)2. Functional analysis of the combination of LBF and LTRE in vitro (EMSA experiment)

1、获得纯化的LBF蛋白1. Obtain purified LBF protein

把LBF的全长基因克隆到原核表达载体pGEX4T-1(Amersham Pharmacia Biotech公司)中,然后将重组表达载体转化E.coli BL21,在37℃下,用0.3mM IPTG诱导表达2-3小时,将表达产物进行SDS-PAGE电泳检测,表达有分子量约为56KD的蛋白,与预期的LBF(29.4KD)及融合的26KD GST蛋白的大小相符。按照Amersham PharmaciaBiotech公司的MicroSpinTM GST Purification ModuLe protocol对表达的LBF蛋白进行纯化,用于EMSA实验。The full-length gene of LBF was cloned into the prokaryotic expression vector pGEX4T-1 (Amersham Pharmacia Biotech Company), then the recombinant expression vector was transformed into E.coli BL21, and at 37°C, the expression was induced with 0.3mM IPTG for 2-3 hours. The expression product was detected by SDS-PAGE electrophoresis, and a protein with a molecular weight of about 56KD was expressed, which was consistent with the size of the expected LBF (29.4KD) and fused 26KD GST protein. The expressed LBF protein was purified according to MicroSpin TM GST Purification ModuLe protocol of Amersham Pharmacia Biotech Company, and used for EMSA experiments.

2、同位素标记LTRE和mLTRE探针2. Isotope-labeled LTRE and mLTRE probes

LTRE探针序列为:5’-ATTTCATGGCCGACCTGCTTTTT-3’The LTRE probe sequence is: 5'-ATTTCATGGCCGACCTGCTTTTT-3'

mLTRE探针序列为:5’-ATTTCATGattagttTGCTTTTT-3’The mLTRE probe sequence is: 5'-ATTTCATGattagttTGCTTTTT-3'

采用Promega公司的DNA 5’End-Labeling System对LTRE和mLTRE探针进行同位素标记,反应体系为:LTRE(或mLTRE)探针1μL,T4 PNK 10×buffer 5μL,γ-33P-ATP3μL,T4PNK(10U/μL)2μL,H2O 39μL;反应条件为:37℃ 20分钟;加2μL 0.5MEDTA,68℃ 10分钟灭活;37℃ 10分钟;4℃保存备用。Promega’s DNA 5’End-Labeling System was used for isotope labeling of LTRE and mLTRE probes. The reaction system was: LTRE (or mLTRE) probe 1 μL, T 4 PNK 10×buffer 5 μL, γ- 33 P-ATP 3 μL, T 4 PNK (10U/μL) 2 μL, H 2 O 39 μL; reaction conditions: 37°C for 20 minutes; add 2 μL of 0.5MEDTA, 68°C for 10 minutes to inactivate; 37°C for 10 minutes; store at 4°C for later use.

3、LBF蛋白与DNA结合反应及非变性SDS-PAGE检测3. Binding reaction between LBF protein and DNA and non-denaturing SDS-PAGE detection

LBF蛋白与DNA结合的反应体系为:5×结合缓冲液(含125mM HEPES-KOH pH 7.6;50%甘油;250mM KCl)4μL,LBF(步骤1制备的经纯化的LBF蛋白)约4μg(9μL),1M DTT 1μL,步骤2标记的LTRE(或mLTRE)探针1μL,H2O 4μL。将其混合后冰浴30分钟进行反应,然后加3μL上样缓冲液(含0.025%溴酚蓝的无菌水),进行非变性聚丙烯酰胺凝胶电泳检测,5.4%聚丙烯酰胺胶的配方为:30%丙烯酰胺9mL,10×电泳缓冲液5mL(含甘氨酸142.7g/L,EDTA 3.92g/L,Tris 30.28g/L),50%甘油2.5mL,去离子水33mL,10%APS 400μL,TEMED 25μL。待胶凝后,用1×电泳缓冲液电泳,先预电泳10分钟(300V),然后上样,继续电泳1小时(300V);电泳结束后用滤纸粘下胶,将较用保鲜膜封好后,压X光片1小时;洗片,显影2分钟,定影5分钟。结果如图2所示(泳道1为LBF蛋白,泳道2为LBF蛋白),泳道1出现了一条明显的电泳条带,是LTRE被LBF蛋白阻滞的结果,相反,mLTRE则不受LBF蛋白阻滞,表明LBF基因的表达产物在体外同样具有LTRE的结合特异性。The reaction system for binding LBF protein to DNA is: 5× binding buffer (containing 125mM HEPES-KOH pH 7.6; 50% glycerol; 250mM KCl) 4 μL, LBF (purified LBF protein prepared in step 1) about 4 μg (9 μL) , 1 μL of 1M DTT, 1 μL of LTRE (or mLTRE) probe labeled in step 2, 4 μL of H 2 O. After mixing them, react in ice bath for 30 minutes, then add 3 μL of loading buffer (sterile water containing 0.025% bromophenol blue), and carry out non-denaturing polyacrylamide gel electrophoresis detection, formula of 5.4% polyacrylamide gel For: 30% acrylamide 9mL, 10X electrophoresis buffer 5mL (containing glycine 142.7g/L, EDTA 3.92g/L, Tris 30.28g/L), 50% glycerol 2.5mL, deionized water 33mL, 10% APS 400μL , TEMED 25 μL. After gelation, use 1× electrophoresis buffer for electrophoresis, pre-electrophoresis for 10 minutes (300V), then load the sample, and continue electrophoresis for 1 hour (300V); after electrophoresis, stick the gel with filter paper, and seal the comparison with plastic wrap. Afterwards, press the X-ray film for 1 hour; wash the film, develop it for 2 minutes, and fix it for 5 minutes. The results are shown in Figure 2 (swimming lane 1 is LBF protein, and swimming lane 2 is LBF protein). There is an obvious electrophoresis band in swimming lane 1, which is the result of LTRE being blocked by LBF protein. On the contrary, mLTRE is not blocked by LBF protein. stagnation, indicating that the expression product of the LBF gene also has the binding specificity of LTRE in vitro.

实施例3、LBF与LTRE结合的DNA核心序列分析Example 3, DNA core sequence analysis of LBF combined with LTRE

对LTRE可能的核心序列“GCCGACC”分别进行定点突变,m1-m7的突变序列如下(带下划线的碱基为突变位点):Site-directed mutations were performed on the possible core sequence "GCCGACC" of LTRE, and the mutation sequences of m1-m7 were as follows (underlined bases are mutation sites):

LTRE:5’-ATTTCATGGCCGACCTGCTTTTT-3’(CK)LTRE: 5'-ATTTCATG GCCGACC TGCTTTTT-3'(CK)

m1:5’-ATTTCATGaCCGACCTGCTTTTT-3’m1: 5'-ATTTCATG a CCGACCTGCTTTTT-3'

m2:5’-ATTTCATGGtCGACCTGCTTTTT-3’m2: 5'- ATTTCATGGtCGACCTGCTTTTT -3'

m3:5’-ATTTCATGGCtGACCTGCTTTTT-3’m3: 5'- ATTTCATGGCtGACCTGCTTTTT -3'

m4:5’-ATTTCATGGCCaACCTGCTTTTT-3’m4: 5'-ATTTCATGGCC a ACCTGCTTTTT-3'

m5:5’-ATTTCATGGCCGgCCTGCTTTTT-3’m5: 5'-ATTTCATGGCCG gCCTGCTTTTT -3'

m6:5’-ATTTCATGGCCGAtCTGCTTTTT-3’m6: 5'- ATTTCATGGCCGAtCTGCTTTTT -3'

m7:5’-ATTTCATGGCCGACtTGCTTTTT-3’用与实施例2相同的方法进行EMSA实验,结果如图3所示,泳道1-7分别为LBF与m1、m2、m3、m45、m5、m6、m7探针序列的结合产物,泳道CK为对照,表示LBF与LTRE探针序列的结合产物,表明LBF与LTRE结合的DNA核心序列是“CGAC”。m7: 5'-ATTTCATGGCCGAC t TGCTTTTT-3' The same method as in Example 2 was used for EMSA experiments, and the results are shown in Figure 3. Lanes 1-7 are LBF and m1, m2, m3, m45, m5, m6, The combination product of the m7 probe sequence, and the lane CK is the control, which represents the combination product of the LBF and LTRE probe sequence, indicating that the DNA core sequence for the combination of LBF and LTRE is "CGAC".

为了进一步确证LBF与LTRE顺式元件结合的特异性,将分别进行单碱基突变的m1-m7的顺式元件构建到pRS315His(Leu+)上,转化酵母(方法同实施例1、2)。在His-选择培养基上培养,28℃培养3天,分别计数,结果在转化效率完全一致的情况下,m1和m7与野生型LTRE(CK)生长菌落数基本一致,m2上生长的菌落数约为野生型的30%,m3、m4、m5、m6则没有菌落生长。表明m2中的碱基突变对LBF与LTRE的结合虽有影响,但LBF仍能够与LTRE结合,这与EMSA的体外实验结果一致,证明LBF所结合的DNA核心序列是“CGAC”。In order to further confirm the specificity of LBF binding to the LTRE cis-element, the m1-m7 cis-element with single base mutation was constructed on pRS315His(Leu + ), and the yeast was transformed (the method was the same as in Examples 1 and 2). Cultured on His - selection medium, cultured at 28°C for 3 days, and counted separately. As a result, when the transformation efficiency was completely consistent, the number of colonies grown on m1 and m7 was basically the same as that of wild-type LTRE (CK), and the number of colonies grown on m2 About 30% of the wild type, m3, m4, m5, m6 have no colony growth. It shows that although the base mutation in m2 has an effect on the combination of LBF and LTRE, LBF can still combine with LTRE, which is consistent with the results of EMSA in vitro experiments, proving that the DNA core sequence bound by LBF is "CGAC".

实施例4、LBF在酵母细胞中的转录激活试验Example 4, LBF transcriptional activation test in yeast cells

把LBF全长的cDNA克隆到酵母表达载体YepGAP(Trp+)(Qiang Liu,Twotranscription factors,DREB1 and DREB2,with an EREBP/AP2 DNA binding domainseparate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression,respectively,in Arabidopsis.PlantCell,1998,10:1391-1406)中,得到含有LBF全长基因的重组酵母表达载体,命名为YepGAPLBF,然后将YepGAPLBF分别转化实施例2中的含有LTRE元件的重组酵母yWAM2/pL4和含有mLTRE元件的重组酵母yWAM2/pmL4中,并在His-选择培养基上,28℃培养3-5天,结果如图4所示(A为YepGAPLBF转化含有mLTRE元件的重组酵母yWAM2/pmL4,B为YepGAPLBF转化含有LTRE元件的重组酵母yWAM2/pL4),表明用YepGAPLBF转化的含有LTRE元件的酵母能够生长,而含有mLTRE元件的酵母不能生长,表明LBF在酵母体内能够特异结合LTRE元件,从而激活报告基因HIS3的表达,故能够在His-选择培养基上生长,相反由于LBF不能与mLTRE结合,不能激活报告基因HIS3基因的表达,因而在His-选择培养基上也不能生长,因此,LBF在酵母体内不但具有与LTRE的结合特异性,而且具有转录激活功能。The full-length cDNA of LBF was cloned into the yeast expression vector YepGAP(Trp + ) (Qiang Liu, Twotranscription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domainseparate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis.PlantCell, 1998, 10: 1391-1406), obtain the recombinant yeast expression vector containing LBF full-length gene, named as YepGAPLBF, and then transform YepGAPLBF into the recombinant LTRE element containing LTRE element in Example 2 respectively Yeast yWAM2/pL4 and recombinant yeast yWAM2/pmL4 containing mLTRE elements were cultured on His - selection medium at 28°C for 3-5 days. The results are shown in Figure 4 (A is YepGAPLBF transformed recombinant yeast containing mLTRE elements yWAM2/pmL4, B is the recombinant yeast yWAM2/pL4 transformed with YepGAPLBF containing LTRE elements), indicating that the yeast containing LTRE elements transformed with YepGAPLBF can grow, while the yeast containing mLTRE elements cannot grow, indicating that LBF can specifically bind LTRE in yeast element, thereby activating the expression of the reporter gene HIS3, so it can grow on the His - selection medium. On the contrary, because LBF cannot combine with mLTRE, it cannot activate the expression of the reporter gene HIS3 gene, so it cannot grow on the His - selection medium. Therefore, LBF not only has binding specificity to LTRE in yeast, but also has transcriptional activation function.

实施例5、LBF在非生物逆境条件下及幼胚发育过程中的表达特异性分析Example 5. Analysis of expression specificity of LBF under abiotic stress conditions and during the development of immature embryos

一、LBF在非生物逆境条件下的表达特异性分析1. Analysis of expression specificity of LBF under abiotic stress conditions

1、玉米材料的处理1. Processing of corn materials

取玉米种子,吸胀24hr,种植于花盆中,在28℃、光照时间12hr/天条件下,培养约20天,待玉米苗长出三叶一芯,进行下述不同条件的处理:Take corn seeds, imbibition for 24 hours, plant them in flower pots, and cultivate them for about 20 days at 28°C and light time of 12 hours/day. After the corn seedlings grow three leaves and one core, perform the following treatments under different conditions:

1)冷害处理:将玉米苗置于2℃培养箱中,在12hr/天光照条件下,培养48hr,取出并洗去根上的土,用液氮速冻,-80℃保存备用。1) Chilling damage treatment: Place corn seedlings in an incubator at 2°C, and cultivate them for 48 hours under 12hr/day light conditions, take out and wash off the soil on the roots, freeze them with liquid nitrogen, and store them at -80°C for later use.

2)盐渍处理:分别将玉米苗置于0.6%,0.8%,1%的NaCl溶液中,在12hr/天光照条件下,培养3天,取出并洗去根上的土,用液氮速冻,-80℃保存备用。2) Salt treatment: place corn seedlings in 0.6%, 0.8%, and 1% NaCl solution respectively, and cultivate them for 3 days under 12hr/day light conditions, take out and wash off the soil on the roots, and quickly freeze them with liquid nitrogen. Store at -80°C for later use.

3)干旱处理:分别将玉米苗置于含水量为8%(混和920g干土和80mL水),10%,13%的土壤中,在12hr/天光照条件下,培养3天,取出并洗去根上的土,用液氮速冻,-80℃保存备用。3) Drought treatment: the corn seedlings were placed in soils with a water content of 8% (mixing 920g dry soil and 80mL water), 10%, and 13% respectively, under 12hr/day light conditions, cultivated for 3 days, took out and washed The soil on the roots was removed, quick-frozen with liquid nitrogen, and stored at -80°C for later use.

4)ABA处理:分别将玉米苗置于10-4M、10-5M、10-6M的ABA溶液中(取5mgABA用0.1N KOH溶解后,定容至95mL水中即为10-4M),在12hr/天光照条件下,培养24hr,取出并洗去根上的土,用液氮速冻,-80℃保存备用。4) ABA treatment: put corn seedlings in 10 -4 M, 10 -5 M, 10 -6 M ABA solutions respectively (take 5mg of ABA and dissolve it in 0.1N KOH, and dilute it to 95mL water to get 10 -4 M ), under 12hr/day light conditions, cultivated for 24hr, took out and washed off the soil on the roots, quick-frozen with liquid nitrogen, and stored at -80°C for future use.

5)H2O2处理:分别将玉米苗置于10mM H2O2(1.13mL 30%H2O2/L),60mM H2O2(6.78mL30%H2O2/L),150mM H2O2(14.95mL 30%H2O2/L)的水溶液中,在12hr/天光照条件下,培养24hr,取出并洗去根上的土,用液氮速冻,-80℃保存备用。5) H 2 O 2 treatment: Put corn seedlings in 10mM H 2 O 2 (1.13mL 30%H 2 O 2 /L), 60mM H 2 O 2 (6.78mL 30%H 2 O 2 /L), 150mM In an aqueous solution of H 2 O 2 (14.95 mL 30% H 2 O 2 /L), under the condition of 12 hr/day light, cultivate for 24 hrs, take out and wash off the soil on the roots, freeze them with liquid nitrogen, and store them at -80°C for later use.

6)水处理(HCK):将玉米苗直接置于水中,在12hr/天光照条件下,培养24hr,-80℃保存备用。6) Water treatment (HCK): put the corn seedlings directly in water, cultivate them for 24 hours under the light condition of 12 hours/day, and store them at -80°C for later use.

7)对照的处理(CK):直接取未经任何处理的玉米苗于-80℃冻存作为对照。7) Control treatment (CK): The corn seedlings without any treatment were directly frozen at -80°C as a control.

2、玉米材料中RNA的提取及DNA的去除2. Extraction of RNA and removal of DNA in corn materials

1)取经上述不同方法处理的玉米材料各约200mg,液氮研磨,用RNAgents TotalRNA Isolation System试剂盒(Promega公司)并参照试剂盒说明书的操作流程提取RNA。1) Take about 200 mg of corn materials treated by the above different methods, grind with liquid nitrogen, and use RNAgents TotalRNA Isolation System Kit (Promega Company) to extract RNA according to the operation procedure of the kit manual.

2)将RNA溶于85μL水中,加入5μL RQ1 RNA Free DNase(1U/μL)(Promega公司)和10×缓冲液10μL,37℃保温5min,去除DNA的污染。2) Dissolve RNA in 85 μL of water, add 5 μL of RQ1 RNA Free DNase (1U/μL) (Promega) and 10 μL of 10× buffer, and incubate at 37°C for 5 min to remove DNA contamination.

3)加入100μL的酚氯仿抽提一次,取上清,用等体积的异丙醇沉淀RNA,在将RNA沉淀用70%乙醇洗一次,将RNA溶于50μL无菌水中,3) Add 100 μL of phenol-chloroform for extraction once, take the supernatant, precipitate RNA with an equal volume of isopropanol, wash the RNA precipitate once with 70% ethanol, dissolve the RNA in 50 μL sterile water,

4)定量RNA的浓度为1μg/μL。4) The concentration of quantitative RNA is 1 μg/μL.

3、RT-PCR法统一模板DNA浓度3. Unified template DNA concentration by RT-PCR method

1)以步骤2提取的经不同处理的玉米材料的RNA为模板,反转录合成其cDNA,反应体系及反应条件为:取Oligo dT18 1μL(0.5μg/μL)、RNA 5μL(1μg/μL)、dNTP1μL(10mM)和水27μL,混匀后65℃ 5min,0℃2 min;加入5×First-Strand缓冲液10μL、DTT(100mM)5μL和RNase Inhibitor 10U(40U/μL),混匀后42℃ 2-5min;加入SuperScipt II 1μL(200u/μL)(Gibcol BRL公司),混匀后42℃ 50min,70℃15min灭活,备用。1) Use the RNA extracted in step 2 from differently treated corn materials as a template, and synthesize its cDNA by reverse transcription. ), dNTP1μL (10mM) and water 27μL, after mixing, 65℃ for 5 minutes, 0℃ for 2 minutes; add 5×First-Strand buffer 10μL, DTT (100mM) 5μL and RNase Inhibitor 10U (40U/μL), after mixing 2-5min at 42°C; add 1 μL (200u/μL) of SuperScript II (Gibcol BRL), mix well, inactivate at 42°C for 50min, and inactivate at 70°C for 15min, and set aside.

2)根据GenBank上登录的玉米肌动蛋白基因(Maize Actinl,Accession NO.J01238)设计如下引物:2) Design the following primers according to the maize actin gene (Maize Actin1, Accession NO.J01238) registered on GenBank:

mAct1F:5’-CAC CTT CTA CAA CGA GCT CCG-3’mAct1F: 5'-CAC CTT CTA CAA CGA GCT CCG-3'

mAct1R:5’-TAA TCA AGG GCA ACG TAG GCA-3’mAct1R: 5'-TAA TCA AGG GCA ACG TAG GCA-3'

以步骤1)获得的经不同处理的玉米材料的cDNA为模板,在引物mAct1F和mAct1R引导下,进行PCR扩增,PCR反应体系为:模板1μL,2×PCR缓冲液10μL,10mM dNTP1μL,10μM mAct1 F 1μL,10μM mAct1 R 1μL,Taq 1U,灭菌水6μL。PCR反应条件为:先94℃ 2min;再94℃ 30sec,55℃ 30sec,72℃ 30sec,共30个循环;最后,72℃ 5min。反应结束后,进行琼脂糖凝胶电泳检测,表明扩增出了大小为405bp的条带,如果是以植物材料的基因组DNA为模板,则可扩增出512bp的条带(含有长度为107bp的内含子序列)。然后根据PCR产物的电泳结果对模板DNA进行稀释,调整模板DNA的用量,直至用mAct1 F和mAct1 R引物扩增出的DNA条带的量基本一致,使每微升溶液中模板cDNA的含量基本一致。Using the cDNA of differently treated corn materials obtained in step 1) as a template, PCR amplification was carried out under the guidance of primers mAct1F and mAct1R. The PCR reaction system was: 1 μL of template, 10 μL of 2×PCR buffer, 1 μL of 10 mM dNTP, 10 μM mAct1 F 1μL, 10μM mAct1 R 1μL, Taq 1U, sterile water 6μL. The PCR reaction conditions are as follows: first 94°C for 2min; then 94°C for 30sec, 55°C for 30sec, 72°C for 30sec, a total of 30 cycles; finally, 72°C for 5min. After the reaction, agarose gel electrophoresis detection was carried out, showing that the amplified band had a size of 405bp. If the genomic DNA of the plant material was used as a template, a 512bp band (containing a length of 107bp) could be amplified. intron sequence). Then dilute the template DNA according to the electrophoresis results of the PCR product, adjust the amount of the template DNA until the amount of the DNA band amplified by the mAct1 F and mAct1 R primers is basically the same, so that the content of the template cDNA in each microliter solution is basically the same. unanimous.

4、LBF基因的PCR扩增4. PCR amplification of LBF gene

1)根据实施例1获得的LBF基因序列设计引物,引物序列如下:1) according to the LBF gene sequence design primer that embodiment 1 obtains, primer sequence is as follows:

引物1:5’-CTT GAG CAC GTG CCT GTG AA-3’Primer 1: 5'-CTT GAG CAC GTG CCT GTG AA-3'

引物2:5’-TTA ACT TTG CTA GTA GTA GCT CC-3’Primer 2: 5’-TTA ACT TTG CTA GTA GTA GCT CC-3’

以步骤3统一浓度的经不同处理的玉米材料的cDNA为模板,在引物1和引物2的引导下,进行PCR扩增,PCR反应体系为:模板1μL,2×PCR缓冲液10μL,10mMdNTP 1μL,10uM mAct1 F 1μL,10uM mAct1 R 1μL,Taq 1U,灭菌水6μL。PCR反应条件为:先94℃ 2min;然后94℃ 30sec,55℃ 30sec,72℃ 30sec,共30个循环;最后72℃ 5min。反应结束后进行1%琼脂糖凝胶电泳检测,结果如图5所示(泳道A-P分别表示:A:CK1(未经任何处理),B:2℃低温处理,C:8%H2O干旱处理,D:10%H2O干旱处理,E:13%H2O干旱处理,F:HCK(水处理),G:10-6M ABA,H:10-5M ABA,I:10-4M ABA,J:10mM H2O2,K:60mM H2O2,L:150mM H2O2,M:0.6%NaCl,N:0.8%NaCl,O:1%NaCl,P:CK为对照),电泳结果表明LBF基因的表达受低温、ABA和过氧化氢等逆境条件诱导。Using the cDNA of differently treated maize materials at a uniform concentration in step 3 as a template, PCR amplification was carried out under the guidance of primers 1 and 2. The PCR reaction system was: 1 μL of template, 10 μL of 2×PCR buffer, 1 μL of 10mMdNTP, 10uM mAct1 F 1μL, 10uM mAct1 R 1μL, Taq 1U, sterilized water 6μL. The PCR reaction conditions were as follows: first at 94°C for 2 min; then at 94°C for 30 sec, at 55°C for 30 sec, and at 72°C for 30 sec, a total of 30 cycles; and finally at 72°C for 5 min. After the reaction, 1% agarose gel electrophoresis was performed, and the results are shown in Figure 5 (lanes AP represent: A: CK1 (without any treatment), B: 2°C low temperature treatment, C: 8% H 2 O drought Treatment, D: 10% H 2 O drought treatment, E: 13% H 2 O drought treatment, F: HCK (water treatment), G: 10 -6 M ABA, H: 10 -5 M ABA, I: 10 - 4 M ABA, J: 10 mM H 2 O 2 , K: 60 mM H 2 O 2 , L: 150 mM H 2 O 2 , M: 0.6% NaCl, N: 0.8% NaCl, O: 1% NaCl, P: CK Control), electrophoresis results showed that the expression of LBF gene was induced by stress conditions such as low temperature, ABA and hydrogen peroxide.

二、LBF在玉米幼胚发育过程中的表达特异性分析2. Analysis of expression specificity of LBF in maize immature embryo development

用与步骤一相同的方法,分别提取玉米授粉后第15、17、21、23和25天幼胚的RNA,用RT-PCR法分析LBF基因在幼胚发育期间的表达情况,结果如图6所示,泳道1-5分别表示第15、17、21、23和25天LBF基因的表达情况,表明LBF的表达量随着幼胚的发育明显增加,这与种子发育过程中细胞逐渐脱水,渗透胁迫增强,逆境增强呈现直接对应关系。Using the same method as step 1, extract RNA from maize immature embryos on days 15, 17, 21, 23, and 25 after pollination, and use RT-PCR to analyze the expression of LBF gene during the development of immature embryos. The results are shown in Figure 6 As shown, lanes 1-5 represent the expression of LBF gene on days 15, 17, 21, 23 and 25, respectively, indicating that the expression of LBF increases significantly with the development of immature embryos, which is consistent with the gradual dehydration of cells during seed development, The increase of osmotic stress and the increase of adversity showed a direct correspondence.

实施例6、LBF基因的拟南芥转化及转基因植株的生理分析实验Example 6, Physiological Analysis Experiment of Arabidopsis Transformation of LBF Gene and Transgenic Plants

一、LBF基因的拟南芥转化及转基因植株的检测1. Arabidopsis transformation of LBF gene and detection of transgenic plants

1、植物表达载体的构建及农杆菌的转化1. Construction of plant expression vector and transformation of Agrobacterium

把LBF基因克隆到载体pBI121中,得到植物表达载体,命名为pBI121-LBF;将pBI121-LBF用CaCl2法转化大肠杆菌JM109,提质粒进行酶切鉴定,挑出阳性克隆测序,表明获得了整合有植物表达载体pBI121-LBF的重组子,将其转化到农杆菌LBA4404中。The LBF gene was cloned into the vector pBI121 to obtain a plant expression vector named pBI121-LBF; the pBI121-LBF was transformed into Escherichia coli JM109 by the CaCl 2 method, the plasmid was extracted for enzyme digestion identification, and positive clones were selected for sequencing, indicating that the integration was obtained There is a recombinant of plant expression vector pBI121-LBF, which is transformed into Agrobacterium LBA4404.

2、拟南芥转化2. Arabidopsis transformation

1)拟南芥的培养1) Culture of Arabidopsis

将拟南芥种子先在4℃下进行2-3天的春化处理,然后每盆播种7-10粒种子(营养土和蛭石按2∶1混合);置于温室中培养(22℃,光照16h/天),待拟南芥抽出初生苔后,剪去初生苔,待其抽出更多的次生苔,且少数开始结荚时,可用于下述转化。Arabidopsis thaliana seeds were first subjected to vernalization treatment for 2-3 days at 4°C, and then 7-10 seeds were sown in each pot (nutritional soil and vermiculite were mixed at 2:1); placed in a greenhouse for cultivation (22°C , light 16h/day), after Arabidopsis thaliana pulls out the primary moss, cut off the primary moss, and when it pulls out more secondary moss, and a few start pods, it can be used for the following transformation.

2)农杆菌的培养2) Cultivation of Agrobacterium

挑取转化有pBI121-LBF的重组农杆菌单菌落接种于3mL YEB(Kan 50mg/L,利福平50mg/L)液体培养基中,28℃ 250rpm培养30小时;按1∶400转接入200mL新鲜的YEB(Kan 50mg/L,利福平50mg/L)液体培养基中,28℃ 250rpm培养约14小时,测OD600≈1.5;在4℃ 7500rpm下离心10min收集菌体;重悬菌体于二倍体积(400mL)的渗透液(1/2MS盐+5%蔗糖,pH5.7,121℃灭菌15min;用之前加入终浓度为0.044uM6-BA,VB6 1mg/L,VB1 10mg/L,SILWET 0.02%)。Pick a single colony of recombinant Agrobacterium transformed with pBI121-LBF and inoculate it in 3mL YEB (Kan 50mg/L, rifampicin 50mg/L) liquid medium, culture at 28°C 250rpm for 30 hours; transfer to 200mL at 1:400 In fresh YEB (Kan 50mg/L, rifampicin 50mg/L) liquid medium, culture at 28°C 250rpm for about 14 hours, the measured OD 600 ≈ 1.5; centrifuge at 4°C 7500rpm for 10min to collect the cells; resuspend the cells In the double volume (400mL) of permeate (1/2MS salt + 5% sucrose, pH5.7, sterilized at 121°C for 15min; before use, add the final concentration of 0.044uM 6-BA, VB6 1mg/L, VB1 10mg/L , SILWET 0.02%).

3)转化拟南芥3) Transformation of Arabidopsis

把拟南芥的花蕾浸入步骤2)中含有重组农杆菌的渗透液中,抽真空(25 IN Hg,保持5分钟);转化完毕后,将植株套上塑料袋,水平放置,使其在低光强度下生长24-48小时后,即可正常培养。Immerse the flower buds of Arabidopsis thaliana in step 2) containing the infiltrate of recombinant Agrobacterium, vacuumize (25 IN Hg, keep 5 minutes); After growing for 24-48 hours under the light intensity, it can be cultured normally.

4)收集种子进行筛选4) Collect seeds for screening

收集转化植株的种子,称25-30mg种子放入1.5mL离心管中,加入1mL 75%乙醇(含0.05%Tween 20),于摇床上摇10分钟(300rpm),离心去上清;加入1mL 95%乙醇洗一次,离心去上清;重复一次;在超净台中加入0.3mL无水乙醇,移到无菌滤纸上,吹干;把吹干的种子撒到1/2MS平板(Kan 50mg/L)上;4℃,放2天后,在22℃、光照条件为16h/天下培养;将阳性植株(T0代)移栽到盆中培养,并收集种子进行T1代筛选。Collect the seeds of the transformed plants, weigh 25-30mg seeds and put them into a 1.5mL centrifuge tube, add 1mL 75% ethanol (containing 0.05% Tween 20), shake on a shaker for 10 minutes (300rpm), centrifuge to remove the supernatant; add 1mL 95 Wash once with % ethanol, centrifuge to remove the supernatant; repeat once; add 0.3mL absolute ethanol to the ultra-clean bench, move to sterile filter paper, and dry; sprinkle the dried seeds on 1/2MS plate (Kan 50mg/L ) at 4°C for 2 days, then cultured at 22°C under light conditions of 16h/day; transplant positive plants (T 0 generation) into pots for cultivation, and collect seeds for T 1 generation screening.

3、PCR检测转基因拟南芥3. PCR detection of transgenic Arabidopsis

转基因拟南芥基因组DNA的提取,包括以下步骤:The extraction of transgenic Arabidopsis genomic DNA comprises the following steps:

1)取0.1-0.2g转基因拟南芥植物叶,在液氮中研磨,转移至1.5mL离心管中。1) Take 0.1-0.2 g of leaves of transgenic Arabidopsis plants, grind them in liquid nitrogen, and transfer them to a 1.5 mL centrifuge tube.

2)加入0.7mL CTAB(含Tris 100mM,NaCl 1.4M,20mM EDTA,CTAB 2%,巯基乙醇0.1%),60℃水浴30分钟,每隔10分钟,颠倒一次。2) Add 0.7mL CTAB (containing Tris 100mM, NaCl 1.4M, 20mM EDTA, CTAB 2%, mercaptoethanol 0.1%), bathe in water at 60°C for 30 minutes, and invert once every 10 minutes.

3)加0.7mL酚氯仿(1∶1),颠倒几次,10000rpm离心5分钟,转移上清至一新的离心管,加等体积的氯仿异戊醇(24∶1),混匀,10000rpm离心5分钟。转移上清至一新的离心管。3) Add 0.7mL phenol chloroform (1:1), invert several times, centrifuge at 10000rpm for 5 minutes, transfer the supernatant to a new centrifuge tube, add an equal volume of chloroform isoamyl alcohol (24:1), mix well, 10000rpm Centrifuge for 5 minutes. Transfer the supernatant to a new centrifuge tube.

4)加等体积的异丙醇,颠倒混匀,10000rpm离心10分钟,除去上清,用70%乙醇洗一次,抽干,将DNA沉淀溶于50μL无菌水中,用于PCR检测。4) Add an equal volume of isopropanol, mix evenly by inversion, centrifuge at 10,000 rpm for 10 minutes, remove the supernatant, wash once with 70% ethanol, drain, and dissolve the DNA precipitate in 50 μL sterile water for PCR detection.

根据pBI121中35S启动子序列和LBF的基因序列设计引物,引物序列如下:Primers were designed according to the 35S promoter sequence and LBF gene sequence in pBI121, and the primer sequences were as follows:

引物3:(正向引物)5’-TCTGCCGACAGTGGTCCCAA-5’Primer 3: (forward primer) 5'-TCTGCCGACAGTGGTCCCAA-5'

引物4:(反向引物)5’-TTAACTTTGCTAGTAGTAGCTCC-5’Primer 4: (reverse primer) 5'-TTAACTTTGCTAGTAGTAGCTCC-5'

以转基因拟南芥的基因组DNA为模板,在引物3和引物4的引导下,进行PCR反应,PCR反应体系为(20μL):转基因植株DNA 1μL(20ng-50ng),10×PCR缓冲液2μL,MgCl2(2.5mM)2μL,Taq酶0.2μL,dNTP(2.5mM)2μL,引物3和引物4各10μM,加无菌水至20μL。PCR反应条件为:先94℃ 5分钟;再94℃45秒,60℃ 45秒,72℃ 60秒,共35个循环;最后72℃延伸5分钟。反应结束进行1%琼脂糖凝胶电泳检测,得到转化有LBF基因的阳性植株(扩增出约1000bp大小的目的条带)。Using the genomic DNA of transgenic Arabidopsis as a template, under the guidance of primers 3 and 4, perform PCR reaction. The PCR reaction system is (20 μL): 1 μL (20ng-50ng) of transgenic plant DNA, 2 μL of 10×PCR buffer, MgCl 2 (2.5mM) 2μL, Taq enzyme 0.2μL, dNTP (2.5mM) 2μL, primer 3 and primer 4 each 10μM, add sterile water to 20μL. The PCR reaction conditions were as follows: first 94°C for 5 minutes; then 94°C for 45 seconds, 60°C for 45 seconds, and 72°C for 60 seconds, a total of 35 cycles; finally, 72°C for 5 minutes. After the reaction, 1% agarose gel electrophoresis was performed to obtain positive plants transformed with the LBF gene (the target band with a size of about 1000 bp was amplified).

二、LBF转基因拟南芥植株的生理分析实验2. Physiological analysis experiment of LBF transgenic Arabidopsis plants

1、抗寒实验1. Cold resistance experiment

把LBF转基因植株与未转基因植株置于-6℃,保持6小时;然后转移到正常的生长条件下继续培养,结果表明:转基因植株的存活率为95%,未转基因的植株存活率为5%,LBF能够明显提高植株的抗寒性能,如图7所示(A为转基因植株,B为未转基因植株)。The LBF transgenic plants and non-transgenic plants were kept at -6°C for 6 hours; then transferred to normal growth conditions to continue culturing. The results showed that the survival rate of transgenic plants was 95%, and that of non-transgenic plants was 5%. , LBF can significantly improve the cold resistance of plants, as shown in Figure 7 (A is the transgenic plant, B is the non-transgenic plant).

2、抗盐实验2. Salt resistance experiment

将LBF转基因植株与未转基因植株置于600mM的NaCl中浸泡3小时;22℃、光照培养24小时;转移到拟南芥正常的生长条件下继续培养,结果表明:转基因植株的存活率为80%,未转基因的植株存活率为15%,LBF能够明显提高植株的抗盐性能,如图8所示(A为转基因植株,B为未转基因植株)。Soak LBF transgenic plants and non-transgenic plants in 600mM NaCl for 3 hours; culture at 22°C under light for 24 hours; transfer to Arabidopsis normal growth conditions and continue to cultivate. The results show that the survival rate of transgenic plants is 80%. , the survival rate of non-transgenic plants was 15%, and LBF could significantly improve the salt resistance of plants, as shown in Figure 8 (A is a transgenic plant, B is a non-transgenic plant).

3、抗旱实验3. Drought resistance experiment

把LBF转基因植株与未转基因植株置于拟南芥正常的生长条件下不给水连续培养15-20天,结果表明:转基因植株的存活率为80%,未转基因的植株存活率为10%,LBF能够明显提高植株的抗旱性能,如图9所示(A为转基因植株,B为未转基因植株)。The LBF transgenic plants and non-transgenic plants were placed under the normal growth conditions of Arabidopsis thaliana without water and continuously cultured for 15-20 days. The results showed that the survival rate of the transgenic plants was 80%, the survival rate of the non-transgenic plants was 10%, and the LBF It can significantly improve the drought resistance performance of the plants, as shown in Figure 9 (A is a transgenic plant, B is a non-transgenic plant).

序列表sequence listing

<160>2<160>2

<210>1<210>1

<211>267<211>267

<212>PRT<212>PRT

<213>玉米属玉米(Zea mays L.)<213> Zea mays L.

<400>1<400>1

Met Asp Thr Ala Gly Leu Val Gln His Ala Thr Ser Ser Ser Ser ThrMet Asp Thr Ala Gly Leu Val Gln His Ala Thr Ser Ser Ser Ser Ser Thr

1               5                   10                  151 5 10 15

Ser Thr Ser Ala Ser Ser Ser Ser Ser Glu Gln Gln Ser Arg Lys AlaSer Thr Ser Ala Ser Ser Ser Ser Ser Glu Gln Gln Ser Arg Lys Ala

            20                  25                  3020 25 30

Ala Trp Pro Pro Ser Thr Ala Ser Ser Pro Gln Gln Pro Pro Lys LysAla Trp Pro Pro Ser Thr Ala Ser Ser Ser Pro Gln Gln Pro Pro Lys Lys

        35                  40                  4535 40 45

Arg Pro Ala Gly Arg Thr Lys Phe Arg Glu Thr Arg His Pro Val PheArg Pro Ala Gly Arg Thr Lys Phe Arg Glu Thr Arg His Pro Val Phe

    50                  55                  6050 55 60

Arg Gly Val Arg Arg Arg Gly Ala Ala Gly Arg Trp Val Cys Glu ValArg Gly Val Arg Arg Arg Gly Ala Ala Gly Arg Trp Val Cys Glu Val

65                  70                  75                  8065 70 75 80

Arg Val Pro Gly Arg Arg Gly Ala Arg Leu Trp Leu Gly Thr Tyr LeuArg Val Pro Gly Arg Arg Gly Ala Arg Leu Trp Leu Gly Thr Tyr Leu

                85                  90                  9585 90 95

Ala Ala Glu Ala Ala Ala Arg Ala His Asp Ala Ala Ile Leu Ala LeuAla Ala Glu Ala Ala Ala Arg Ala His Asp Ala Ala Ile Leu Ala Leu

            100                 105                 110100 105 110

Gln Gly Arg Gly Ala Gly Arg Leu Asn Phe Pro Asp Ser Ala Arg LeuGln Gly Arg Gly Ala Gly Arg Leu Asn Phe Pro Asp Ser Ala Arg Leu

        115                 120                 125115 120 125

Leu Ala Val Pro Pro Pro Ser Ala Leu Pro Gly Leu Asp Asp Ala ArgLeu Ala Val Pro Pro Pro Ser Ala Leu Pro Gly Leu Asp Asp Ala Arg

    130                 135                 140130 135 140

Arg Ala Ala Leu Glu Ala Val Ala Glu Phe Gln Arg Arg Ser Gly SerArg Ala Ala Leu Glu Ala Val Ala Glu Phe Gln Arg Arg Ser Gly Ser

145                 150                 155                 160145 150 155 160

Gly Ser Gly Ala Ala Asp Glu Ala Thr Ser Gly Ala Ser Pro Pro SerGly Ser Gly Ala Ala Asp Glu Ala Thr Ser Gly Ala Ser Pro Pro Ser

                165                 170                 175165 170 175

Ser Ser Pro Ser Leu Pro Asp Val Ser Ala Ala Gly Ser Pro Ala AlaSer Ser Pro Ser Leu Pro Asp Val Ser Ala Ala Gly Ser Pro Ala Ala

            180                 185                 190180 185 190

Ala Leu Glu His Val Pro Val Lys Ala Asp Glu Ala Val Ala Leu AspAla Leu Glu His Val Pro Val Lys Ala Asp Glu Ala Val Ala Leu Asp

        195                 200                 205195 200 205

Leu Asp Gly Asp Val Phe Gly Pro Asp Trp Phe Gly Asp Met Gly LeuLeu Asp Gly Asp Val Phe Gly Pro Asp Trp Phe Gly Asp Met Gly Leu

    210                 215                 220210 215 220

Glu Leu Asp Ala Tyr Tyr Ala Ser Leu Ala Glu Gly Leu Leu Val GluGlu Leu Asp Ala Tyr Tyr Ala Ser Leu Ala Glu Gly Leu Leu Val Glu

225                 230                 235                 240225 230 235 240

Pro Pro Pro Pro Pro Ala Ala Trp Asp His Gly Asp Cys Cys Asp SerPro Pro Pro Pro Pro Ala Ala Trp Asp His Gly Asp Cys Cys Asp Ser

                245                 250                 255245 250 255

Gly Ala Ala Asp Val Ala Leu Trp Ser Tyr TyrGly Ala Ala Asp Val Ala Leu Trp Ser Tyr Tyr

            260                 265260 265

<210>2<210>2

<211>1042<211>1042

<212>DNA<212>DNA

<213>玉米属玉米(Zea mays L.)<213> Zea mays L.

<400>2<400>2

caagctcgag acaagaaacc agaaccagct cactcctcac tccacttcca ctcccaacag     60caagctcgag acaagaaacc agaaccagct cactcctcac tccacttcca ctcccaacag 60

caagctcaag cagtcagtca ccggcagggg tcagggtcac agtcacagca gcagccatgg    120caagctcaag cagtcagtca ccggcagggg tcagggtcac agtcacagca gcagccatgg 120

acacggccgg cctcgtccag cacgcgacct cctcgtcttc cacctccacc tcggcgtcgt    180acacggccgg cctcgtccag cacgcgacct cctcgtcttc cacctccacc tcggcgtcgt 180

cgtcctcgtc cgagcagcag agccgcaagg cggcgtggcc gccgtcgacc gcttcctcac    240cgtcctcgtc cgagcagcag agccgcaagg cggcgtggcc gccgtcgacc gcttcctcac 240

cacagcagcc gcccaagaag cgccccgcgg ggcgcacaaa gttccgggag acgcggcacc    300cacagcagcc gcccaagaag cgccccgcgg ggcgcacaaa gttccggggag acgcggcacc 300

cggtgttccg cggcgtgcgg cggcggggcg ccgcgggccg gtgggtgtgc gaggtgcgcg    360cggtgttccg cggcgtgcgg cggcggggcg ccgcgggccg gtgggtgtgc gaggtgcgcg 360

tcccggggag gcgcggcgcg cggctgtggc tcggcaccta cctcgccgcc gaggcggcgg    420tcccggggag gcgcggcgcg cggctgtggc tcggcaccta cctcgccgcc gaggcggcgg 420

cgcgcgcgca cgacgccgcg atactcgccc tgcagggccg cggcgcgggg cgcctcaact    480cgcgcgcgca cgacgccgcg atactcgccc tgcagggccg cggcgcgggg cgcctcaact 480

tcccggactc cgcgcggctg ctcgccgtgc cgcccccgtc cgcgctcccg ggcctggacg    540tcccggactc cgcgcggctg ctcgccgtgc cgcccccgtc cgcgctcccg ggcctggacg 540

acgcccgccg cgcggcgctc gaggccgtcg cggagttcca gcgccgctct gggtccgggt    600acgcccgccg cgcggcgctc gaggccgtcg cggagttcca gcgccgctct gggtccgggt 600

ccggggccgc cgacgaagcg acctcgggcg cgtctcctcc ctcctcgtcg ccgtcgctgc    660ccggggccgc cgacgaagcg acctcgggcg cgtctcctcc ctcctcgtcg ccgtcgctgc 660

cggacgtttc tgcggctggc tcgccggcgg cggcgcttga gcacgtgcct gtgaaggccg    720cggacgtttc tgcggctggc tcgccggcgg cggcgcttga gcacgtgcct gtgaaggccg 720

acgaagcagt ggcgttggac ttggacggcg acgtgttcgg gcccgactgg ttcggggaca    780acgaagcagt ggcgttggac ttggacggcg acgtgttcgg gcccgactgg ttcggggaca 780

tgggcctgga gttggatgcg tactacgcca gcctcgcgga agggttgctc gtggagccgc     840tgggcctgga gttggatgcg tactacgcca gcctcgcgga agggttgctc gtggagccgc 840

cgccgccgcc ggcggcctgg gatcatggag actgctgtga ctccggagct gcggacgtcg     900cgccgccgcc ggcggcctgg gatcatggag actgctgtga ctccggagct gcggacgtcg 900

cgctctggag ctactactag caaagttaac aataataagc ttgacagcca accccaaaag     960cgctctggag ctactactag caaagttaac aataataagc ttgacagcca accccaaaag 960

ccccccaact gattgtattc acctctgtaa caaaattcaa attgatttcc cagcaaatga    1020ccccccaact gattgtattc acctctgtaa caaaattcaa attgatttcc cagcaaatga 1020

acttcaaaaa aaaaaaaaaa aa                                             1042acttcaaaaa aaaaaaaaaa aa 1042

Claims (9)

1.一个玉米抗逆转录调控因子,是如下1)或2)的蛋白质:1. A maize antiretroviral regulator, which is the protein of the following 1) or 2): 1)氨基酸残基序列如SEQ ID NO:1所示的蛋白质;1) A protein whose amino acid residue sequence is shown in SEQ ID NO: 1; 2)将序列表中SEQ ID NO:1的氨基酸残基序列经过一至十个氨基酸残基的取代、缺失或添加且具有与LTRE顺式元件相互作用提高植物抗逆性能的蛋白质。2) The amino acid residue sequence of SEQ ID NO: 1 in the sequence listing undergoes one to ten amino acid residue substitutions, deletions or additions, and has a protein that interacts with the LTRE cis-element to improve plant stress resistance. 2.根据权利要求1所述的抗逆转录调控因子,其特征在于:所述抗逆转录调控因子与LTRE结合的DNA核心序列是CGAC。2. The anti-reverse transcription regulatory factor according to claim 1, characterized in that: the DNA core sequence in which the anti-reverse transcription regulatory factor combines with LTRE is CGAC. 3.编码权利要求1所述玉米抗逆转录调控因子的基因。3. the gene encoding the anti-reverse transcription regulatory factor of maize described in claim 1. 4.根据权利要求3所述的基因,其特征在于:所述基因是编码氨基酸残基序列如SEQ ID NO:1所示的蛋白质的基因。4. The gene according to claim 3, characterized in that: the gene is the gene encoding the amino acid residue sequence of the protein shown in SEQ ID NO:1. 5.根据权利要求4所述的基因,其特征在于:该基因的碱基序列如SEQ ID NO:2所示。5. The gene according to claim 4, characterized in that: the base sequence of the gene is as shown in SEQ ID NO:2. 6.含有权利要求3或4或5所述玉米抗逆转录调控因子基因的植物表达载体。6. The plant expression vector containing the maize anti-reverse transcription regulator gene of claim 3 or 4 or 5. 7.含有权利要求3或4或5所述玉米抗逆转录调控因子基因的转基因细胞。7. The transgenic cell containing the maize anti-reverse transcription regulatory factor gene of claim 3 or 4 or 5. 8.一种培育抗逆性提高植物的方法,是构建含有权利要求3或4或5所述基因的植物表达载体,再将构建的植物表达载体转化目的植物。8. A method for cultivating stress resistance-improved plants, comprising constructing a plant expression vector containing the gene of claim 3 or 4 or 5, and then transforming the constructed plant expression vector into a target plant. 9.根据权利要求8所述的方法,其特征在于:所述目的植物为玉米、水稻、小麦、大豆、油菜或棉花。9. The method according to claim 8, characterized in that: the target plant is corn, rice, wheat, soybean, rapeseed or cotton.
CNB2005100536772A 2005-03-10 2005-03-10 A maize anti-reverse transcription regulatory factor and its coding gene and application Expired - Fee Related CN100395266C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2005100536772A CN100395266C (en) 2005-03-10 2005-03-10 A maize anti-reverse transcription regulatory factor and its coding gene and application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2005100536772A CN100395266C (en) 2005-03-10 2005-03-10 A maize anti-reverse transcription regulatory factor and its coding gene and application

Publications (2)

Publication Number Publication Date
CN1831010A CN1831010A (en) 2006-09-13
CN100395266C true CN100395266C (en) 2008-06-18

Family

ID=36993527

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005100536772A Expired - Fee Related CN100395266C (en) 2005-03-10 2005-03-10 A maize anti-reverse transcription regulatory factor and its coding gene and application

Country Status (1)

Country Link
CN (1) CN100395266C (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101864416B (en) * 2009-04-17 2012-01-04 长江大学 Promoter of efficient expression Zmzf gene for water flooding of corn root
CN102584971B (en) * 2012-02-17 2013-10-16 中国农业科学院生物技术研究所 Plant growth and development related protein ABP7 and coding gene and application thereof
CN102796747A (en) * 2012-08-16 2012-11-28 北京金冠丰生物技术有限公司 Application of Zea mays L. drought-induced protein (ZmDIP1) gene and its encoding protein
CN109536516B (en) * 2019-01-11 2021-12-17 西南大学 Cloning and application of corn drought-resistant gene ZmDSR
CN113666993B (en) * 2021-08-26 2023-09-22 中国农业大学 Alfalfa MsSPL12 protein and related biological materials and their application in improving plant stress resistance
CN113604480B (en) * 2021-09-17 2023-07-04 四川农业大学 Corn transcription factor ZmHsf28 and application thereof
CN114940998B (en) * 2022-06-20 2023-06-06 四川农业大学 A kind of maize transcription factor ZmEREB92 and its application
CN116179592B (en) * 2023-03-02 2025-04-08 中国农业科学院油料作物研究所 BnVDof1 and application of coding gene thereof in rape leaf vascular morphogenesis

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1472223A (en) * 2002-07-30 2004-02-04 中国农业科学院生物技术研究所 A maize bZIP-like transcription factor and its coding gene and application

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1472223A (en) * 2002-07-30 2004-02-04 中国农业科学院生物技术研究所 A maize bZIP-like transcription factor and its coding gene and application

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
玉米Cat1基因顺式元件ABRE2结合蛋白ABP9的基因克隆及功能分析. 王磊等.科学通报,第47卷第15期. 2002 *

Also Published As

Publication number Publication date
CN1831010A (en) 2006-09-13

Similar Documents

Publication Publication Date Title
Liu et al. bZIP transcription factor OsbZIP52/RISBZ5: a potential negative regulator of cold and drought stress response in rice
Tang et al. Over-expression of JcDREB, a putative AP2/EREBP domain-containing transcription factor gene in woody biodiesel plant Jatropha curcas, enhances salt and freezing tolerance in transgenic Arabidopsis thaliana
CN110791523B (en) Cotton drought-resistant related gene GhRCHY1 and application thereof
CN102234320B (en) Plant stress-tolerant associated protein TaDREB4B and encoding gene and application thereof
US9809827B2 (en) Transgenic maize
Tang et al. Overexpression of a peanut NAC gene, AhNAC4, confers enhanced drought tolerance in tobacco
CN102234323A (en) Plant stress-tolerance-associated protein TaDREB3A and coding gene and application thereof
WO2013111755A1 (en) Plant body showing improved resistance against environmental stress and method for producing same
CN104892741B (en) Plant stress tolerance correlative protein GmNF YA17 and its encoding gene and application
CN100395266C (en) A maize anti-reverse transcription regulatory factor and its coding gene and application
WO2011049243A1 (en) Transgenic plant having increased biomass and improved environmental stress resistance, and process for production thereof
Liu et al. Isolated and characterization of a cDNA encoding ethylene-responsive element binding protein (EREBP)/AP2-type protein, RCBF2, in Oryza sativa L.
CN111454972A (en) The cold resistance gene PtrBADH of Citrus aurantium and its application in genetic improvement of plant cold resistance
CN102234322B (en) Plant stress tolerance related protein GmNF-YA1 and its coding gene and application
CN1671738A (en) The bZIP type transcription factor of corn and its coding gene and the usage thereof
CN101139385B (en) A kind of plant stress resistance-related protein and its coding gene and application
CN108841835B (en) Application of soybean ZF-HD protein coding gene GmZVHD 11
CN1919866B (en) A kind of soybean Trihelix transcription factor and its coding gene and application
JP4706050B2 (en) Control of environmental stress tolerance of plants using modified DREB2A gene
CN103320448B (en) Lilium regle bZIP transcription factor LrbZIP1 and application
CN102234321B (en) Plant Stress Tolerance Related Protein GmNF-YB1 and Its Encoding Gene and Application
CN102174092B (en) ABA and salt-related protein STS1 and its coding gene and application
CN111434678A (en) Application of plant dehydration response element-encoded protein and its encoding gene in low nitrogen stress tolerance
CN105175522B (en) Crowtoe AP2/ERF transcription factors and its encoding gene and application
CN1919867B (en) Soybean Trihelix transcription factor and its coding gene and application

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080618

Termination date: 20190310

CF01 Termination of patent right due to non-payment of annual fee