CN100394211C - Multi-frequency synchronous modified large range high precision fast laser ranging method and apparatus - Google Patents
Multi-frequency synchronous modified large range high precision fast laser ranging method and apparatus Download PDFInfo
- Publication number
- CN100394211C CN100394211C CNB2006100729905A CN200610072990A CN100394211C CN 100394211 C CN100394211 C CN 100394211C CN B2006100729905 A CNB2006100729905 A CN B2006100729905A CN 200610072990 A CN200610072990 A CN 200610072990A CN 100394211 C CN100394211 C CN 100394211C
- Authority
- CN
- China
- Prior art keywords
- frequency
- signal
- modulation
- laser
- ranging
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000005259 measurement Methods 0.000 claims abstract description 91
- 238000000034 method Methods 0.000 claims abstract description 63
- 230000001360 synchronised effect Effects 0.000 claims abstract description 36
- 238000012545 processing Methods 0.000 claims abstract description 11
- 230000003287 optical effect Effects 0.000 claims description 29
- 238000006243 chemical reaction Methods 0.000 claims description 21
- 230000015572 biosynthetic process Effects 0.000 claims description 14
- 238000003786 synthesis reaction Methods 0.000 claims description 14
- 238000004364 calculation method Methods 0.000 claims description 7
- 230000004927 fusion Effects 0.000 claims description 7
- 238000001914 filtration Methods 0.000 claims description 6
- 238000002310 reflectometry Methods 0.000 claims description 2
- 208000035126 Facies Diseases 0.000 claims 2
- 238000010586 diagram Methods 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 8
- 239000004065 semiconductor Substances 0.000 description 7
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 4
- 238000007499 fusion processing Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000003672 processing method Methods 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Landscapes
- Optical Radar Systems And Details Thereof (AREA)
- Measurement Of Optical Distance (AREA)
Abstract
本发明属于激光测距技术领域,特别是一种基于多频同步调制的大量程高精度快速激光测距方法与装置。本发明在激光发射单元将多频调制信号进行特性预补偿加权求和合成后对激光器功率进行调制实施测距,同时在接收时采用了与该调制方法相对应的同步带通滤波选频测相的方式进行信号处理,变现有的多频串行异步调制测距模式为并行同步调制测距模式。采用本发明的方法与装置可以在同一时刻得到多频调制测距中各测尺频率的测距结果,进而得到最终测距值,保证了测距速度和实时性。一方面实现了在保证测量精度和大量程的基础上对目标距离进行快速测量,另一方面避免了对运动目标测距时采用多频分时测量因目标位置变化引起的测距误差。
The invention belongs to the technical field of laser ranging, in particular to a large-range, high-precision and fast laser ranging method and device based on multi-frequency synchronous modulation. In the laser emission unit, the multi-frequency modulation signal is subjected to characteristic pre-compensation, weighted summation, and then the power of the laser is modulated to perform distance measurement. At the same time, a synchronous band-pass filter frequency selection phase measurement corresponding to the modulation method is adopted in the reception. Signal processing is carried out in a manner that changes the existing multi-frequency serial asynchronous modulation ranging mode into a parallel synchronous modulation ranging mode. By adopting the method and device of the present invention, the ranging results of each measuring ruler frequency in the multi-frequency modulation ranging can be obtained at the same time, and then the final ranging value can be obtained, thereby ensuring the ranging speed and real-time performance. On the one hand, it realizes the rapid measurement of the target distance on the basis of ensuring the measurement accuracy and large range. On the other hand, it avoids the ranging error caused by the change of the target position when using multi-frequency time-division measurement when measuring the distance of the moving target.
Description
技术领域 technical field
本发明属于激光测距技术领域,特别是一种基于多频同步调制的大量程高精度快速激光测距方法与装置。The invention belongs to the technical field of laser ranging, in particular to a large-range, high-precision and fast laser ranging method and device based on multi-frequency synchronous modulation.
背景技术 Background technique
激光测距是集光学、激光、光电子及集成电子等多种技术为一体的综合性技术。半导体激光测距装置因其具有非接触、精度高、体积小、成本低、使用寿命长等优点被广泛应用于军事、航天、机器人视觉、工业自动生产线等领域。针对绝对距离测量,目前常用的激光测距方法有脉冲法和相位法。脉冲法测距具有测量范围广,速度快,适用于非合作目标等优点,但其测量精度低。采用脉冲型半导体激光器的测距装置测程可达几公里,精度一般为0.1~1m。相位法通常测量速度慢,但可以获得毫米甚至更高的测距精度,因此更多的应用于对精度要求较高的测距场合。Laser ranging is a comprehensive technology that integrates various technologies such as optics, laser, optoelectronics and integrated electronics. Semiconductor laser ranging devices are widely used in military, aerospace, robot vision, industrial automatic production lines and other fields due to their advantages of non-contact, high precision, small size, low cost, and long service life. For absolute distance measurement, the commonly used laser ranging methods are pulse method and phase method. The pulse method has the advantages of wide measurement range, fast speed, suitable for non-cooperative targets, etc., but its measurement accuracy is low. The distance measuring device using a pulsed semiconductor laser can measure up to several kilometers, and the accuracy is generally 0.1 to 1m. The phase method usually has a slow measurement speed, but it can obtain ranging accuracy of millimeters or even higher, so it is more used in ranging occasions that require higher accuracy.
相位法激光测距是将强度按一定频率调制的激光束照射向目标,通过测量发射激光束和目标反射激光束间由于目标距离引起的相位差来测量距离。被测距离可由式(1)给出The phase method laser ranging is to irradiate the laser beam whose intensity is modulated according to a certain frequency to the target, and measure the distance by measuring the phase difference between the emitted laser beam and the target reflected laser beam due to the target distance. The measured distance can be given by formula (1)
其中:D为被测距离,c为光速,f为调制频率,为发射光信号与接收光信号相位差。由于实际测量过程中相差测量只能介于0~2π之间,所以该测距方法的理论最大测程Dmax由调制频率决定,Dmax=c/2πf,要增大测程就必须降低调制频率。而对该式微分得:Among them: D is the measured distance, c is the speed of light, f is the modulation frequency, is the phase difference between the transmitted optical signal and the received optical signal. Since the phase difference measurement can only be between 0 and 2π in the actual measurement process, the theoretical maximum range D max of this distance measurement method is determined by the modulation frequency, D max = c/2πf, and the modulation must be reduced to increase the range frequency. And the differential of this formula is:
由式(2)可知在测相精度相同的条件下调制频率f越低测距精度越低,测量精度和量程产生矛盾。但在很多应用场合,不但要求测距装置测程远,还要求测量精度高且测量速度快。针对相位法激光测距及其量程和精度矛盾问题,国内外已经有很多专利和研究方法。From formula (2), it can be known that the phase measurement accuracy Under the same conditions, the lower the modulation frequency f is, the lower the ranging accuracy is, and there is a contradiction between the measurement accuracy and the range. However, in many applications, not only the distance measuring device is required to measure a long distance, but also high measurement accuracy and fast measurement speed are required. There have been many patents and research methods at home and abroad for the phase-based laser ranging and its range and accuracy contradictions.
瑞士莱卡公司在其专利(US5815251,EP0738899,EP0932835)的基础上推出的DISTO系列手持式激光测距仪,采用多频相位法测距,最大测程为200m,最高精度为±3.0mm,单次测量时间最短为0.16s(瑞士来卡公司Leica DISTO系列激光测距仪产品说明书,2004)。Based on its patents (US5815251, EP0738899, EP0932835), the Swiss Leica Company launched the DISTO series of handheld laser rangefinders, which use the multi-frequency phase method for distance measurement, with a maximum range of 200m and a maximum accuracy of ±3.0mm. The shortest measurement time is 0.16s (Leica DISTO series laser range finder product manual, 2004).
文献“一种双频调制激光测距仪”(Stephane Poujouly and Bernard Journet,Atwofold modulation frequency laser range finder,J.Opt A:Pur Appt.Opt.4(2002)s356-S363)中阐述了一种采用双频调制的相位法激光测距装置,其调制频率分别选取10MHz和240MHz,测程为15m,精度为0.35mm。The document "A dual-frequency modulation laser rangefinder" (Stephane Poujouly and Bernard Journet, Atwofold modulation frequency laser range finder, J.Opt A: Pur Appt.Opt.4(2002) s356-S363) describes a method using Dual-frequency modulation phase method laser distance measuring device, the modulation frequency is respectively selected as 10MHz and 240MHz, the measurement range is 15m, and the accuracy is 0.35mm.
清华大学与北京测绘仪器厂研制的DCH2-E型半导体红外测距仪,采用了双频调制相位法激光测距,测尺频率采用间接频率选择法,精测尺频率为14.985520MHz,粗测尺频率为149.856KHz,最大测程为2000m,精度±10mm,单次测量时间为5.0s。The DCH2-E semiconductor infrared rangefinder developed by Tsinghua University and Beijing Surveying and Mapping Instrument Factory adopts the dual-frequency modulation phase laser ranging method, and the frequency of the measuring ruler adopts the indirect frequency selection method. The frequency is 149.856KHz, the maximum measurement range is 2000m, the accuracy is ±10mm, and the single measurement time is 5.0s.
上述已有的测距装置及研究在解决相位法激光测距量程和精度的矛盾上均采用了相同的方法,即多频调制法,该方法也是现有研究所普遍采用的方法。多频调制相位法激光测距原理如图1所示,其主要由9部分组成,分别是多频信号发生单元4、多路电子开关3和8、激光功率调制驱动单元2、激光器1、激光接收镜头5、测量光光电探测器6、测量光光电转换电路7、相差测量及距离合成单元9。该方法采用多种调制频率对目标进行测距,其中低频调制信号(粗测尺频率)用以增大测量范围,高频调制信号(精测尺频率)用以保证测量精度。测量时控制单元控制电子开关分时选通各个调制信号对目标进行测距,然后再对各个测尺所得到的测距值进行数据融合处理,进而得出最终测距结果。此方法的不足之处主要表现为以下两点:一是测量速度慢,测量时需对目标进行多频分次测量,然后通过数据融合得到最终测量结果,总测距时间随测尺频率数目的增加而增加;二是在对运动目标进行测距时,多频分次测量过程中目标位置可能发生变化,造成测量误差。The above-mentioned existing ranging devices and researches all adopt the same method in solving the contradiction between the range and precision of the phase method laser ranging, that is, the multi-frequency modulation method, which is also a method commonly used in existing research. The principle of multi-frequency modulation phase laser ranging is shown in Figure 1. It is mainly composed of 9 parts, namely multi-frequency
发明内容 Contents of the invention
本发明的目的在于克服现有技术的不足之处,提供一种基于多频同步调制的大量程高精度快速激光测距方法与装置。本发明在现有多频调制技术的基础上主要进行了如下改进:(1)在发射单元替换原有的多路电子开关单元为多频信号特性预补偿加权求和处理单元;(2)在接收单元替换原有的多路电子开关单元为多路同步带通滤波选频测相单元。从而变现有的多频串行异步调制测距模式为并行同步调制测距模式,使得多频调制测距得以同步进行,即在同一时刻得到各测尺频率的测距值,总测距时间不随测尺频率数目的增加而增加,一方面实现了在保证测量精度和大量程的基础上对目标距离进行快速测量,另一方面避免了对运动目标测距时采用多频分次测量因目标位置变化引起的测距误差。The purpose of the present invention is to overcome the disadvantages of the prior art, and provide a large-range high-precision fast laser ranging method and device based on multi-frequency synchronous modulation. The present invention has mainly carried out following improvement on the basis of existing multi-frequency modulation technology: (1) replace original multi-channel electronic switch unit at transmitting unit and be multi-frequency signal characteristic pre-compensation weighted sum processing unit; (2) at transmitting unit The receiving unit replaces the original multi-channel electronic switch unit with a multi-channel synchronous band-pass filter frequency selection and phase measurement unit. Therefore, the existing multi-frequency serial asynchronous modulation ranging mode is changed to a parallel synchronous modulation ranging mode, so that the multi-frequency modulation ranging can be carried out synchronously, that is, the ranging values of each measuring ruler frequency are obtained at the same time, and the total ranging time does not change with time. The increase in the frequency of the measuring ruler increases. On the one hand, it realizes the rapid measurement of the target distance on the basis of ensuring the measurement accuracy and large range. The ranging error caused by the change.
本发明还在上述测量方法的基础上提供了一种基于多频同步调制的大量程高精度快速激光测距装置。The present invention also provides a large-scale high-precision fast laser distance measuring device based on multi-frequency synchronous modulation on the basis of the above measuring method.
本发明的技术解决方案是:一种多频同步调制激光测距方法,该方法包括以下步骤:The technical solution of the present invention is: a multi-frequency synchronously modulated laser ranging method, the method comprising the following steps:
(1)采用多种测尺频率f0,f1,f2...fn对目标进行测距,测尺频率采用直接测尺频率选择的方法,取f0=mf1=mf2=...=mfn,则测距精度ΔD0=mΔD1=mΔD2=...=mΔDn,测程D0=1/mD1=1/mD2=...=1/mDn,m值为100至1000;(1) Using multiple measuring ruler frequencies f 0 , f 1 , f 2 ...f n to measure the distance of the target, the measuring ruler frequency adopts the method of direct measuring ruler frequency selection, take f 0 =mf 1 =mf 2 = ...=mf n , then the ranging accuracy ΔD 0 =mΔD 1 =mΔD 2 =...=mΔD n , the measuring range D 0 =1/mD 1 =1/mD 2 =...=1/mD n , m value is 100 to 1000;
(2)根据上述测尺频率f0,f1,f2...fn选取正弦信号并进行加权求和合成处理,得到其中:Et为最终合成的调制信号,A为正弦信号幅度,为正弦信号的初始相位,然后采用该信号对激光器功率进行调制并对目标实施测距;(2) Select the sinusoidal signal according to the frequency f 0 , f 1 , f 2 . Where: E t is the final synthesized modulation signal, A is the amplitude of the sinusoidal signal, is the initial phase of the sinusoidal signal, which is then used to modulate the laser power and perform ranging on the target;
(3)经目标反射的回光信号经光电转换电路后得到电信号为:其中:ki为接收电路对频率为的转换增益,φi为调制频率为fi的光信号经目标反射后产生的相位延迟,处理电路对信号Er采用多路并行带通滤波选频处理得到各信号分量,同时测得各信号与发射信号的相位延迟φi,进而可同时求得各测尺频率的测距结果最后通过数据融合处理可求得最终测距结果D。(3) The electrical signal obtained after the return light signal reflected by the target passes through the photoelectric conversion circuit is: Among them: k i is the conversion gain of the receiving circuit to the frequency , φ i is the phase delay generated by the optical signal with the modulation frequency f i reflected by the target, and the processing circuit adopts multi-channel parallel band-pass filter frequency selection processing for the signal E r Obtain each signal component, and measure the phase delay φ i between each signal and the transmitted signal at the same time, and then obtain the ranging results of each measuring ruler frequency at the same time Finally, the final ranging result D can be obtained through data fusion processing.
加权求和合成处理中还采用了特性预补偿,补偿后的调制信号为相应的接收信号为αi为针对光电接收系统对频率为fi的调制光信号的频率衰减特性设定的抗衰减特性预补偿因子,αi的取值应使得αi·ki=C,C为常数,即接收系统对回光信号中各测尺频率的光信号产生相同的增益。The characteristic pre-compensation is also used in the weighted sum synthesis process, and the modulated signal after compensation is The corresponding received signal is α i is the anti-attenuation characteristic precompensation factor set for the frequency attenuation characteristic of the modulated optical signal with frequency f i in the photoelectric receiving system, the value of α i should be such that α i k i =C, C is a constant, that is The receiving system produces the same gain for the light signals of each measuring ruler frequency in the return light signal.
上述方法使用的多频同步调制的大量程高精度快速激光测距装置,包括多频信号发生单元、激光器、激光功率调制驱动单元、激光发射镜头、激光接收镜头、测量光光电探测器、测量光光电转换电路、参考光光电探测器、参考光光电转换电路、数据融合距离计算单元,还包括多频信号合成单元、分光镜、多路带通选频滤波单元、多路同步测相单元;The multi-frequency synchronously modulated large-scale high-precision fast laser ranging device used in the above method includes a multi-frequency signal generating unit, a laser, a laser power modulation drive unit, a laser emitting lens, a laser receiving lens, a measuring light photodetector, a measuring light Photoelectric conversion circuit, reference light photodetector, reference light photoelectric conversion circuit, data fusion distance calculation unit, also includes multi-frequency signal synthesis unit, spectroscope, multi-channel band-pass frequency-selective filter unit, multi-channel synchronous phase measurement unit;
多频信号发生单元根据所选择的测尺频率产生相应频率的多路正弦信号,该多路信号经过多频信号合成单元合成处理后作用到同步调制单元对激光器的功率进行调制,调制后的激光束通过激光发射镜头发射向分光镜,经过分光镜后,反射光形成测量光束射向被测目标,测量光束经目标反射后被激光接收镜头接收后经测量光光电探测器后由测量光光电转换电路转换成测量电信号,透射光形成参考光射向参考光光电探测器经参考光光电转换电路后形成参考电信号,测量电信号和参考电信号经带通选频滤波单元后由多路同步测相单元给出个测尺频率经过目标反射后的产生的相位差,距离合成计算单元将测得的相位差进行合成处理得到最终测距结果。The multi-frequency signal generation unit generates multi-channel sinusoidal signals of corresponding frequencies according to the selected frequency of the measuring scale. After the multi-channel signal is synthesized by the multi-frequency signal synthesis unit, it acts on the synchronous modulation unit to modulate the power of the laser. The modulated laser The beam is sent to the beam splitter through the laser emitting lens. After passing through the beam splitter, the reflected light forms a measuring beam and shoots to the measured target. The measuring beam is reflected by the target and is received by the laser receiving lens. After passing through the measuring light photoelectric detector, it is converted by the measuring light The circuit is converted into a measurement electrical signal, the transmitted light forms a reference light, and the reference light photoelectric detector passes through the reference light photoelectric conversion circuit to form a reference electrical signal. The measurement electrical signal and the reference electrical signal are synchronized by multiple channels after passing through a band-pass frequency-selective filter unit. The phase measurement unit provides the phase difference generated by the frequency of the measuring ruler after the target reflection, and the distance synthesis calculation unit synthesizes the measured phase difference to obtain the final distance measurement result.
本发明具有以下特点及良好效果:The present invention has following characteristics and good effect:
现有的多频调制激光测距技术均采用分时选通调制信号对激光功率进行调制进而实施测距的方法,此方法的测距时间随测尺频率的增加而增长,对运动目标测距时很难得到实时测距结果,进而引起测距误差。本发明提出了多频同步调制激光测距方法,即在激光发射单元将多频调制信号合成后对激光器功率进行调制,同时在接收时采用了与该调制方法相对应的多路同步带通滤波选频测相的方式进行信号处理。采用该方法可以在同一时刻得到多频调制测距中各测尺频率的测距结果,进而得到最终测距值,保证了测距速度和实时性,这是区别现有技术的创新点之一;The existing multi-frequency modulation laser ranging technology adopts the method of time-division gating modulation signal to modulate the laser power and then implement the ranging method. The ranging time of this method increases with the frequency of the measuring ruler. It is difficult to obtain real-time ranging results, which will cause ranging errors. The invention proposes a multi-frequency synchronous modulation laser ranging method, that is, the laser power is modulated after the multi-frequency modulation signal is synthesized by the laser emitting unit, and at the same time, a multi-channel synchronous band-pass filter corresponding to the modulation method is used when receiving Signal processing is carried out by means of frequency selective phase measurement. Using this method, the ranging results of each measuring ruler frequency in the multi-frequency modulation ranging can be obtained at the same time, and then the final ranging value can be obtained, which ensures the ranging speed and real-time performance. This is one of the innovations different from the existing technology ;
本发明还针对提出的多频同步调制激光测距方法提出了对多频调制信号进行特性预补偿加权求和合成的处理方法,对调制信号的特性预补偿处理使得光电接收单元对多频调制相位法激光测距中频率相差很大的测尺频率所调制的光功率信号产生相同的增益,避免了因光电接收单元的频率衰减特性使得低频调制光信号在接收时产生饱和而高频调制光信号在接收时因衰减太大信噪比降低,这是区别现有技术的创新点之二。The present invention also proposes a processing method for performing characteristic pre-compensation, weighted summation and synthesis of multi-frequency modulation signals for the proposed multi-frequency synchronous modulation laser ranging method. In the laser ranging method, the optical power signal modulated by the frequency of the measuring ruler with a large frequency difference produces the same gain, which avoids the saturation of the low-frequency modulated optical signal and the high-frequency modulated optical signal due to the frequency attenuation characteristics of the photoelectric receiving unit. When receiving, the signal-to-noise ratio is reduced due to too much attenuation, which is the second innovative point different from the prior art.
下面结合附图详细介绍本发明提出的多频同步调制大量程高精度快速激光测距方法与装置。The multi-frequency synchronous modulation large-range high-precision fast laser ranging method and device proposed by the present invention will be described in detail below in conjunction with the accompanying drawings.
附图说明 Description of drawings
图1为现有技术中所采用的多频调制相位法激光测距原理框图Fig. 1 is the principle block diagram of the multi-frequency modulation phase method laser ranging method adopted in the prior art
图2为本发明的多频同步调制相位法激光测距装置示意图Fig. 2 is the schematic diagram of multi-frequency synchronous modulation phase method laser distance measuring device of the present invention
图3为本发明的多频同步调制特性预补偿方法示意图Fig. 3 is a schematic diagram of the multi-frequency synchronous modulation characteristic pre-compensation method of the present invention
图4为本发明的特性预补偿因子设定方法示意图Fig. 4 is a schematic diagram of the characteristic precompensation factor setting method of the present invention
图5为本发明的多路同步带通滤波选频测相示意图Fig. 5 is the multi-channel synchronous band-pass filtering frequency selective phase measurement schematic diagram of the present invention
图6为本发明提供的双频同步调制相位式激光测距装置示意图Figure 6 is a schematic diagram of a dual-frequency synchronously modulated phase laser ranging device provided by the present invention
图7为本发明中的共轴激光发射接收结构示意图Fig. 7 is a schematic diagram of the coaxial laser transmitting and receiving structure in the present invention
图8a为本发明中采用分光棱镜36实现参考光和测量光光束分束示意图Fig. 8a is a schematic diagram of beam splitting of reference light and measuring light by using
图8b为本发明中采用置孔反射镜37实现参考光和测量光光束分束示意图Fig. 8b is a schematic diagram of beam splitting of reference light and measuring light by using hole-setting
图8c为本发明的置孔反射镜37示意图Fig. 8c is a schematic diagram of the
具体实施方式 Detailed ways
多频同步调制大量程高精度快速激光测距方法Multi-frequency synchronous modulation large-scale high-precision fast laser ranging method
图3给出了本发明所采取的将多频调制信号进行预补偿加权合成处理后对激光器功率进行同步调制的示意图。FIG. 3 shows a schematic diagram of synchronously modulating laser power after multi-frequency modulation signals are precompensated and weighted to be synthesized by the present invention.
首先在解决相位法激光测距测量精度和量程的矛盾上采用多频调制方法,即采用多种调制频率(测尺频率)f0,f1,f2...fn对目标进行测距。测尺频率采用直接测尺频率选择的方法,即f0=mf1=mf2=...=mfn。m取值根据测相精度的不同可从100至1000,典型值为100。然后由多频信号发生单元4根据测尺频率f0,f1,f2...fn产生相应频率的正弦信号First of all, the multi-frequency modulation method is adopted to solve the contradiction between the measurement accuracy and the range of the laser ranging by the phase method, that is, a variety of modulation frequencies (measurement frequency) f 0 , f 1 , f 2 ... f n are used to measure the distance of the target . The measuring ruler frequency adopts the method of direct measuring ruler frequency selection, that is, f 0 =mf 1 =mf 2 =...=mf n . The value of m can be from 100 to 1000 according to the phase measurement accuracy, and the typical value is 100. Then the multi-frequency
其中A为信号幅度,为信号初始相位,i=0...n。where A is the signal amplitude, is the initial phase of the signal, i=0...n.
该正弦信号经过预补偿因子设置单元18后幅度根据补偿因子的不同发生相应改变,即After the sinusoidal signal passes through the pre-compensation
其中αi为预补偿因子,i=0...n。Where α i is a pre-compensation factor, i=0...n.
多频信号合成单元10的作用是将各个测尺频率信号进行合成,使得各测尺频率信号能够同时作用到激光器上,即实现多频同步调制。合成后的信号为The function of the multi-frequency
该信号经过激光器功率调制驱动单元2对激光器1实施多频同步调制。图4给出了特性预补偿因子的设定方法。The signal implements multi-frequency synchronous modulation on the laser 1 through the laser power modulation drive unit 2 . Figure 4 shows the setting method of the characteristic pre-compensation factor.
在多频调制相位式激光测距中为了提高测距精度就需要提高精测尺的频率,为了增大量程需要降低粗测尺的频率,这样一来实现大量程和高精度测距时调制信号带宽很宽,一般从几千赫兹到几十兆赫兹,而光电检测电路都有一定的带宽,通常对高频信号产生不同程度的衰减,频率越高衰减越大,其特性如图4中曲线21所示。本发明中对激光器的功率采用了多频同步调制,如果相应测尺频率的调制信号幅度相同,当设定光电转换电路增益G保证低频(粗测尺频率)成分信号不产生饱和失真时,高频(精测尺频率)成分信号就会因衰减而信噪比降低,进而使得测量精度降低;当设定光电转换电路增益G保证高频(精测尺频率)成分信号满足一定幅度要求时,低频信号则会产生饱和失真,引起测相误差。In the multi-frequency modulation phase laser ranging, in order to improve the ranging accuracy, the frequency of the fine measuring ruler needs to be increased, and in order to increase the range, the frequency of the coarse measuring ruler needs to be reduced, so as to realize the modulation signal during large-range and high-precision ranging The bandwidth is very wide, generally from a few kilohertz to tens of megahertz, and the photoelectric detection circuit has a certain bandwidth, which usually produces different degrees of attenuation for high-frequency signals. The higher the frequency, the greater the attenuation. Its characteristics are shown in the curve in Figure 4 21. In the present invention, the power of the laser device has adopted multi-frequency synchronous modulation. If the modulation signal amplitude of the corresponding measuring ruler frequency is the same, when the photoelectric conversion circuit gain G is set to ensure that the low frequency (coarse measuring ruler frequency) component signal does not produce saturation distortion, the high The signal-to-noise ratio will be reduced due to attenuation, and the measurement accuracy will be reduced; when the gain G of the photoelectric conversion circuit is set to ensure that the high-frequency (precision measuring ruler frequency) component signal meets a certain amplitude requirement, Low-frequency signals will produce saturation distortion and cause phase measurement errors.
为此,本发明提出了采用特性预补偿方法来解决上述问题,特性预补偿的基本思想是根据光电接收电路的频率特性在激光功率调制单元对多频调制信号各频率分量的幅度进行一定的调整,使得光电接收电路对各频率分量的激光调制信号产生相同的增益。图4中曲线21为光电接收电路的频率特性,其对测尺频率f0,f1,f2...fn的增益为k0,k1,k2...kn。为了使光电接收电路对各测尺频率的光信号产生如直线20所示的相同增益C,在图中作曲线19,该曲线和曲线21关于直线20对称,则可得到相应测尺频率的预补偿因子α0,α1,α2...αn,该因子使得αi·ki=C,i=0,1...n。For this reason, the present invention proposes to adopt characteristic pre-compensation method to solve the above-mentioned problem, and the basic idea of characteristic pre-compensation is to carry out certain adjustment to the amplitude of each frequency component of multi-frequency modulation signal in laser power modulation unit according to the frequency characteristic of photoelectric receiving circuit , so that the photoelectric receiving circuit produces the same gain for the laser modulation signal of each frequency component.
图5给出了多路同步带通滤波选频测相实现方法。Figure 5 shows the implementation method of multi-channel synchronous band-pass filter frequency selection and phase measurement.
发射激光束经目标反射后的回光信号经测量光光电探测器6及测量光光电转换电路7后得到的测距信号为其中:ki为接收电路对频率为fi的调制光信号的转换增益,φi为调制频率为fi的光信号经目标反射后产生的相位延迟,αi的取值应使得αi·ki=C,C为常数。而经参考光光电探测器13及参考光光电转换电路14得到的参考信号为其中:βi为内光路产生的相位延迟。The distance measurement signal obtained after the emitted laser beam is reflected by the target after the return light signal passes through the measurement light photoelectric detector 6 and the measurement light
为了同时测得测距信号Er和参考信号E′r中各频率分量的相位差,本发明采用了多路同步带通滤波选频测相,即对测距信号Er和参考信号E′r中各测尺频率设定多路带通选频滤波单元15,然后由多路同步测相单元16同时给出各测尺频率对应的相位差φi-βi,i=0,1...n。最后由数据融合距离计算单元17的到最终测距结果,并由距离显示单元22显示。In order to simultaneously measure the phase difference of each frequency component in the ranging signal Er and the reference signal E'r , the present invention adopts multi-channel synchronous band-pass filter frequency selective phase measurement, that is, the distance measuring signal Er and the reference signal E' The frequency of each measuring scale in r sets the multi-channel band-pass frequency-
采用上述方法,可以在同一时刻得到多频调制测距中各测尺频率的测距结果进而得到最终测距值,在不失多频调制相位法激光测距可以同时满足量程和精度要求特点的基础上提高了测距速度保证了测距的实时性。Using the above method, the ranging results of each measuring ruler frequency in the multi-frequency modulation ranging can be obtained at the same time, and then the final ranging value can be obtained. Without losing the multi-frequency modulation phase method, laser ranging can meet the characteristics of range and accuracy requirements at the same time. On the basis of improving the ranging speed to ensure the real-time ranging.
多频同步调制相位式激光测距装置Multi-frequency synchronous modulation phase laser distance measuring device
多频同步调制相位式激光测距装置主要由多频信号发生单元4、多频信号合成单元10、激光功率调制驱动单元2、激光器1、激光发射镜头11,激光接收镜头5、分光镜12、测量光光电探测器6、测量光光电转换电路7、参考光光电探测器13、参考光光电转换电路14、多路带通选频滤波单元15、多路同步测相单元16、数据融合距离计算单元17组成。The multi-frequency synchronously modulated phase-type laser ranging device is mainly composed of a multi-frequency
多频信号发生单元4根据所选择的测尺频率f0,f1,f2...fn产生相应频率的正弦信号,该信号经过多频信号合成单元10后作用到激光功率调制驱动单元2对激光器1的功率进行调制,调制后的激光束通过激光发射镜头11发射向分光镜12,经过分光镜后,反射光形成测量光束射向被测目标,测量光束经目标反射后被激光接收镜头5接收后经测量光光电探测器6后由测量光光电转换电路7转换成测量电信号,透射光形成参考光射向参考光光电探测器13经参考光光电转换电路14后形成参考电信号,测量电信号和参考电信号经多路带通选频滤波单元15后由多路同步测相单元16给出个测尺频率经过目标反射后的产生的相位差,数据融合距离计算单元17将测得的相位差进行合成处理得到最终测距结果。The multi-frequency
实施例1Example 1
双频同步调制相位式激光测距装置Dual frequency synchronous modulation phase laser distance measuring device
如图6所示,本装置主要由半导体激光器23、激光发射镜头11、分光镜12、汇聚透镜29、参考光光电探测器(PIN)13、激光接收镜头5、测量光光电探测器(APD)6、测量光光电转换电路7、参考光光电转换电路14、激光功率调制驱动单元2、双频信号特性预补偿加权求和处理单元24、信号发生单元25和26、高频带通滤波单元31和34、低频带通滤波单元33和36、高频混频单元37和39、精本振和粗本振产生单元32和35、低频混频单元38和40、低通滤波单元41和42、低通滤波单元43和44、相差测量单元45和46、微处理器单元47、距离显示单元22构成。As shown in Figure 6, the device is mainly composed of a
信号发生单元25和26采用直接数字合成技术实现,分别产生精测尺频率f0和粗测尺频率f1信号,精测频率f0取7.500MHz,对应的最大测程为20m,粗测频率f1取75KHz,对应的最大测程为2Km。两路信号经双频信号特性预补偿加权求和处理单元24后作用于激光功率调制驱动单元2对半导体激光器23的功率进行调制。双频信号特性预补偿加权求和处理单元采用增益可编程运算放大器和运算放大器实现;激光功率调制驱动单元采用恒流驱动的注入电流式功率调制方式。半导体激光器23发出的激光束经激光发射镜头11后产生光束47,该光束延光轴27入射到分光镜12上,被分为光束48和51,光束48作为测量光束沿光轴28照射向被测合作目标(后向反射镜),经目标反射后沿原光路返回并被汇激光接收镜头5汇聚至测量光光电探测器(雪崩光电二极管APD)6的光敏面上,经测量光光电转换电路7转换后,得到测量电信号Er(f0,f1)。光束51作为内部参考光束经过汇聚透镜29后汇聚至参考光光电探测器(硅光电二极管PIN)4的光敏面上,经参考光光电转换电路14转换后,得到参考电信号E′r(f0,f1)。测量信号Er(f0,f1)和参考信号E′r(f0,f1)经过中心频率为f0的带通后得到精测信号Er(f0)和E′r(f0),同时经过中心频率为f1的带通滤波器后得到粗测信号Er(f1)和E′r(f1)。进行双路同步带通滤波选频测相时,带通滤波器31和33的中心频率取7.500MHz,-3dB带宽为40KHz;带通滤波器33和36的中心频率取75KHz,-3dB带宽为5KHz;The
为了得到高精度的相差测量本装置采用了外差的处理方式,即将精测信号Er(f0)和E′r(f0)与精本振产生单元产生的信号E(fL0)进行混频及低通滤波;粗测信号Er(f1)和E′r(f1)与粗本振产生单元产生的信号E(fL1)进行混频及低通滤波。其中混频采用模拟乘法器实现,低通滤波采用二阶压控振荡源型低通滤波器,本振信号采用直接数字合成技术产生,精本振信号fL0取7.502MHz,粗本振信号fL1取77KHz。测量信号和参考信号经过混频处理后的中频信号频率均为2KHz。In order to obtain high-precision phase difference measurement, this device adopts a heterodyne processing method, that is, the precise measurement signals E r (f 0 ) and E′ r (f 0 ) are compared with the signal E (f L0 ) generated by the fine local oscillator generation unit. Frequency mixing and low-pass filtering: the rough measurement signals E r (f 1 ) and E′ r (f 1 ) are mixed and low-pass filtering with the signal E(f L1 ) generated by the rough local oscillator generation unit. Among them, the frequency mixing is realized by analog multiplier, the low-pass filter adopts the second-order voltage-controlled oscillation source low-pass filter, the local oscillator signal is generated by direct digital synthesis technology, the fine local oscillator signal f L0 is 7.502MHz, and the coarse local oscillator signal f L1 takes 77KHz. The frequency of the intermediate frequency signal after the measurement signal and the reference signal are mixed is 2KHz.
经过低通滤波器41和42的信号进入相差测量单元45得到相差φ0,经过低通滤波器43和44的信号进入相差测量单元46得到相差φ1。微处理器单元47对两路相差信号进行距离计算并进行数据融合处理最终得到测距结果,并显示于显示单元22上。相差测量采用同步数字测相,测相精度为360°/20000,理论测距精度1mm。由于微处理器单元47可以同时得到测相单元45和46的测相结果,所以可以快速的进行数据融合进而给出最终测距结果。The signals passing through the low-
本实例中,激光束发射和接收单元采用图7所示的共轴式光学结构。该结构中,半导体激光器23发出的激光束经激光发射镜头11后形成光束47沿光轴27照射至分光镜12,分光镜12位于光轴27和28的交点处,并与光轴27和28均呈45°夹角,光轴27和28相互垂直。光束47经分光镜12后,反射光束48沿光轴28照射向被测目标,透射光束51沿光轴27照射向汇聚透镜29并被汇聚至参考光光电探测器13的光敏面上。激光束48经合作目标(后向反射镜)反射后沿光轴28返回,并被激光接收镜头5汇聚至测量光光电探测器6的光敏面上。激光束发射和接收采用该结构保证了回光信号始终汇聚于测量光光电探测器6所在的光轴上,消除了离轴光学结构在目标距离较进时产生光束偏离光电探测器所在光轴引起的盲区。同时该共轴光学结构还具有结构紧凑的优点。In this example, the laser beam emitting and receiving unit adopts the coaxial optical structure shown in FIG. 7 . In this structure, the laser beam that
其中,分光镜12可采用分光棱镜50实现,光路如图8a所示。其中反射率可取80%~90%,透射率可取20%~10%。Wherein, the
分光镜12还可以采用图7c所示的置孔反射镜,光路如图8b所示。其中反射镜中心设置通光孔53,通光孔的面积和反射镜反光部分面积只比为20%~10%;这里反射镜和通光孔的形状可以是圆形,也可以是方形,亦可以是中心对称的多边形等。The
实施例2Example 2
三频同步调制相位式激光测距装置Three-frequency synchronous modulation phase laser distance measuring device
如图6所示,本实例在双频同步调制相位式激光测距装置的基础上,在发射单元增加了一路调制信号,即粗测尺频率f2,f2取750Hz,该信号同样采用直接数字合成技术实现;相应的在接收单元增加了一路带通滤波选频测相电路,其中带通滤波器中心频率取750Hz,-3dB带宽为100Hz;相差测量单元调整为三频同步数字测相。本实例的其它单元及工作原理与实例1相同。该测距装置理论测程为200Km。As shown in Figure 6, on the basis of the dual-frequency synchronously modulated phase-type laser ranging device, this example adds a modulation signal to the transmitting unit, that is, the frequency f 2 of the coarse measuring scale, and f 2 is 750 Hz, and the signal is also used directly Digital synthesis technology is realized; correspondingly, a band-pass filter frequency selection phase measurement circuit is added to the receiving unit, in which the center frequency of the band-pass filter is 750Hz, and the -3dB bandwidth is 100Hz; the phase difference measurement unit is adjusted to three-frequency synchronous digital phase measurement. Other units and working principles of this example are the same as Example 1. The theoretical range of the distance measuring device is 200Km.
以上结合附图对本发明的具体实施方式作了说明,但这些说明不能被理解为限制了本发明的范围,本发明的保护范围由随附的权利要求书限定,任何在本发明权利要求基础上进行的改动都是本发明的保护范围。The specific embodiment of the present invention has been described above in conjunction with the accompanying drawings, but these descriptions can not be interpreted as limiting the scope of the present invention, the protection scope of the present invention is defined by the appended claims, any claims on the basis of the present invention The changes made are within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006100729905A CN100394211C (en) | 2006-04-07 | 2006-04-07 | Multi-frequency synchronous modified large range high precision fast laser ranging method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006100729905A CN100394211C (en) | 2006-04-07 | 2006-04-07 | Multi-frequency synchronous modified large range high precision fast laser ranging method and apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1825138A CN1825138A (en) | 2006-08-30 |
CN100394211C true CN100394211C (en) | 2008-06-11 |
Family
ID=36935897
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2006100729905A Expired - Fee Related CN100394211C (en) | 2006-04-07 | 2006-04-07 | Multi-frequency synchronous modified large range high precision fast laser ranging method and apparatus |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100394211C (en) |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101141200B (en) * | 2007-10-15 | 2010-08-04 | 哈尔滨工业大学 | Multi-wavelength source generation device based on multi-frequency phase modulation |
CN101387700B (en) * | 2008-10-12 | 2011-09-21 | 北京大学 | Data Fusion Method and System Based on Multiple Laser Scanners |
CN101387702B (en) * | 2008-10-22 | 2011-02-16 | 东南大学 | Phase inspecting method for phase laser range finder |
CN101806897B (en) * | 2009-02-17 | 2012-05-30 | 南京德朔实业有限公司 | Photoelectric distance measuring method and device |
DE102009029372A1 (en) * | 2009-09-11 | 2011-03-24 | Robert Bosch Gmbh | Measuring device for measuring a distance between the measuring device and a target object by means of optical measuring radiation |
CN102176021B (en) * | 2011-01-25 | 2013-03-27 | 华中科技大学 | Ranging device based on laser phase method |
CN102305591B (en) * | 2011-08-17 | 2013-01-16 | 哈尔滨工业大学 | Multi-frequency synchronization phase laser ranging device and method based on dual-acousto-optic shift frequency |
DE102014209375A1 (en) | 2014-05-16 | 2015-11-19 | Robert Bosch Gmbh | Multi-target laser rangefinder |
CN104049250B (en) * | 2014-06-14 | 2016-07-06 | 哈尔滨工业大学 | The high-precise synchronization of anti-multifrequency aliasing surveys chi semiconductor laser range apparatus and method |
CN104035088B (en) * | 2014-06-14 | 2016-08-24 | 哈尔滨工业大学 | The double light source laser ranging system of same pacing chi of tracing to the source of anti-multifrequency aliasing and method |
CN104035089B (en) * | 2014-06-14 | 2017-07-18 | 哈尔滨工业大学 | The anti-light accurate measurement chi semiconductor laser range apparatus and method of tracing to the source for learning aliasing |
CN104865577A (en) * | 2015-05-25 | 2015-08-26 | 上海翌森信息科技有限公司 | Laser range finding system |
CN105405006A (en) * | 2015-12-11 | 2016-03-16 | 福建新大陆支付技术有限公司 | Acoustic wave payment circuit and acoustic wave payment method applied to POS terminal |
CN108594254B (en) * | 2018-03-08 | 2021-07-09 | 北京理工大学 | A method to improve the ranging accuracy of TOF laser imaging radar |
CN109031333B (en) * | 2018-08-22 | 2020-08-21 | Oppo广东移动通信有限公司 | Distance measurement method and device, storage medium, electronic equipment |
CN109889252B (en) * | 2019-02-18 | 2022-03-08 | 中国科学院上海光学精密机械研究所 | Inter-satellite laser communication system |
JP7233302B2 (en) * | 2019-05-29 | 2023-03-06 | 株式会社ミツトヨ | Measuring device and method |
CN110927737A (en) * | 2019-11-26 | 2020-03-27 | 华中科技大学 | Multi-frequency modulation laser dynamic target distance and speed measurement system and method |
IL279280B (en) | 2020-12-08 | 2022-08-01 | Rafael Advanced Defense Systems Ltd | Method and method for finding a laser range |
CN113310400B (en) * | 2021-05-26 | 2022-03-15 | 桂林电子科技大学 | A Closed-loop Controlled Synchronous Dynamic Gain Compensation Method for Laser Interferometry |
CN114910922B (en) * | 2022-04-07 | 2024-09-06 | 燕山大学 | Atmospheric refractive index compensation laser ranging device and method based on three-color laser |
CN114740488A (en) * | 2022-04-07 | 2022-07-12 | 湖南北斗微芯产业发展有限公司 | Laser ranging method and device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1034142C (en) * | 1993-05-15 | 1997-02-26 | 莱卡公开股份有限公司 | Device for measuring distance |
CN1134673C (en) * | 1996-10-21 | 2004-01-14 | 莱卡地球系统公开股份有限公司 | Device for calibrating distance-measuring apparatus |
-
2006
- 2006-04-07 CN CNB2006100729905A patent/CN100394211C/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1034142C (en) * | 1993-05-15 | 1997-02-26 | 莱卡公开股份有限公司 | Device for measuring distance |
CN1134673C (en) * | 1996-10-21 | 2004-01-14 | 莱卡地球系统公开股份有限公司 | Device for calibrating distance-measuring apparatus |
Non-Patent Citations (4)
Title |
---|
双纵模双频激光精密测距仪的研究. 周秀云,张涛.机械,第31卷第12期. 2004 |
双纵模双频激光精密测距仪的研究. 周秀云,张涛.机械,第31卷第12期. 2004 * |
实用双纵模激光精密测距仪. 张涛,周肇飞,周秀云,陈琍.四川大学学报(工程科学版),第33卷第3期. 2001 |
实用双纵模激光精密测距仪. 张涛,周肇飞,周秀云,陈琍.四川大学学报(工程科学版),第33卷第3期. 2001 * |
Also Published As
Publication number | Publication date |
---|---|
CN1825138A (en) | 2006-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100394211C (en) | Multi-frequency synchronous modified large range high precision fast laser ranging method and apparatus | |
CN101349757B (en) | Active collaboration type phase laser distance measuring method and apparatus | |
WO2019237911A1 (en) | Light emitting module, light emitting unit, light signal detection module, optical system and laser radar system | |
AU2004213528B2 (en) | Method and device for deriving geodetic distance data | |
CN103712689B (en) | Continuous laser device spectral line width measurement device based on optical frequency comb | |
US5737085A (en) | Precision optical displacement measurement system | |
CN102540170A (en) | Calibration method based on phase measurement of double-wavelength laser tube and distance measurement device of double-wavelength laser tube | |
JP7419394B2 (en) | LIDAR system with mode field expander | |
CN204719233U (en) | A kind of target detection unit based on double-frequency laser | |
WO2022057390A1 (en) | Light emitting module, optical signal detection module, optical system, and lidar system | |
CN104035099A (en) | Dual-transmitting dual-receiving phase measurement-based calibration method and range finding device | |
CN102226842A (en) | Doppler Wind LiDAR Optical Receiver System | |
CN107966707B (en) | Laser ranging system | |
CN212723359U (en) | Pulse phase hybrid ranging laser radar | |
CN111398978B (en) | Improved medium-and-long-range phase type laser range finder and range finding method | |
JP2016212098A (en) | Scanner tracker composite device including focus adjustment mechanism | |
CN110927737A (en) | Multi-frequency modulation laser dynamic target distance and speed measurement system and method | |
CN110161483A (en) | Laser radar system | |
CN111007525A (en) | Arbitrary absolute distance measuring device based on single-flying-second optical frequency comb balance cross correlation | |
CN117250634A (en) | Stratospheric scanning-free and blind-spot wind field detection lidar | |
CN105137595B (en) | Laser beam scanning angle trigger device | |
CN203720351U (en) | Laser radar measuring instrument for measuring object angles and angular velocities accurately | |
CN115308715A (en) | Method and system for sparse modulation wind-measuring radar | |
JP3427187B2 (en) | Distance measuring apparatus and measuring method using modulated light | |
CN209086435U (en) | Laser Distance Measuring Equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20080611 |
|
CF01 | Termination of patent right due to non-payment of annual fee |