CN100384032C - Laser device with laser diode bar array of collimation modules - Google Patents
Laser device with laser diode bar array of collimation modules Download PDFInfo
- Publication number
- CN100384032C CN100384032C CNB001276204A CN00127620A CN100384032C CN 100384032 C CN100384032 C CN 100384032C CN B001276204 A CNB001276204 A CN B001276204A CN 00127620 A CN00127620 A CN 00127620A CN 100384032 C CN100384032 C CN 100384032C
- Authority
- CN
- China
- Prior art keywords
- laser diode
- collimation module
- array
- heat sink
- window
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000007704 transition Effects 0.000 claims abstract description 25
- 239000004065 semiconductor Substances 0.000 claims abstract description 15
- 230000003287 optical effect Effects 0.000 claims description 21
- 239000000853 adhesive Substances 0.000 claims description 4
- 230000001070 adhesive effect Effects 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 claims description 4
- 238000000576 coating method Methods 0.000 claims description 4
- 239000000565 sealant Substances 0.000 claims description 4
- 238000002834 transmittance Methods 0.000 claims description 4
- 239000003292 glue Substances 0.000 claims description 3
- 238000003491 array Methods 0.000 claims 1
- 230000008878 coupling Effects 0.000 description 28
- 238000010168 coupling process Methods 0.000 description 28
- 238000005859 coupling reaction Methods 0.000 description 28
- 238000001816 cooling Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000010292 electrical insulation Methods 0.000 description 3
- 230000017525 heat dissipation Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000010445 mica Substances 0.000 description 3
- 229910052618 mica group Inorganic materials 0.000 description 3
- 239000005304 optical glass Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910000737 Duralumin Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000001808 coupling effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 210000000707 wrist Anatomy 0.000 description 1
Images
Landscapes
- Semiconductor Lasers (AREA)
Abstract
一种含有准直模块激光二极管线列阵的激光装置,包括管壳,在管壳内的底座上置有半导体致冷器,过渡热沉、带有热沉的激光二极管线列阵的发光面对准管壳盖板上带有窗片的窗口,在激光二极管线列阵与窗片之间的窗口内置有准直模块。准直模块含有微柱面透镜和微柱面透镜列阵由固定块固定有一定粘合间隙间距。准直模块的接收面对准激光二极管线列阵的发光面。具有结构简单合理,加工调节方便,准直效率和耦合输出光功率效率高的特点。
A laser device containing a laser diode linear array with a collimation module includes a tube shell, a semiconductor cooler is placed on the base inside the tube shell, a transition heat sink, and the light-emitting surface of the laser diode linear array with the heat sink are aligned with the window with a window sheet on the tube shell cover, and a collimation module is built into the window between the laser diode linear array and the window sheet. The collimation module contains a micro-cylindrical lens and a micro-cylindrical lens array fixed by a fixing block with a certain bonding gap spacing. The receiving surface of the collimation module is aligned with the light-emitting surface of the laser diode linear array. It has the characteristics of simple and reasonable structure, convenient processing and adjustment, and high collimation efficiency and coupled output light power efficiency.
Description
本发明是关于一种含有准直模块激光二极管线列阵的激光装置。The invention relates to a laser device containing a laser diode line array of a collimation module.
在先技术中高功率(连续20W~100W,准连续60W~300W)激光二极管线列阵(以下简称为LDBAR)是一种具有广泛应用的重要激光源。不管用光学系统还是用光纤耦合传输,都面临一个如何高效准直耦合LDBAR发射的激光功率的关键高难度的技术问题。为此,90年代国际光学界提出了多种准直结构,其中一种较好的结构是,先用柱面微透镜列阵准直LDBAR慢轴平面的发散束,再用大柱面透镜准直快轴平面内的发散束,得到近长条矩形准直束,准直效率达到T≈90%;但快轴平面内光束发散度还偏大,致使聚焦光学系统或近平行准直光束传输光学系统的整机透过率仅为≤70%而且大柱面透镜的加工难度大,加工成本高(在先技术Optics Letters,1995,20(2):155)。In the prior art, high-power (continuous 20W-100W, quasi-continuous 60W-300W) laser diode bar array (hereinafter referred to as LDBAR) is an important laser source with wide application. Regardless of whether the optical system or the optical fiber coupling is used for transmission, there is a key and difficult technical problem of how to efficiently collimate and couple the laser power emitted by the LDBAR. For this reason, in the 1990s, the international optical community proposed a variety of collimation structures. One of the better structures is to first use a cylindrical microlens array to collimate the divergent beam of the LDBAR slow axis plane, and then use a large cylindrical lens to collimate the beam. The divergent beam in the plane of the straight fast axis can obtain a nearly elongated rectangular collimated beam, and the collimation efficiency can reach T≈90%. The overall transmittance of the system is only ≤70%, and the processing of large cylindrical lenses is difficult and costly (prior technology Optics Letters, 1995, 20(2): 155).
本发明的目的为克服在先技术中的不足,提供一种含有准直模块激光二极管线列阵的激光装置,结构简单合理,加工和调节方便,提高准直效率和整个装置的透过率。The object of the present invention is to overcome the deficiencies in the prior art and provide a laser device containing a laser diode bar array with a collimation module, which has a simple and reasonable structure, is convenient to process and adjust, and improves the collimation efficiency and the transmittance of the entire device.
本发明的激光装置包括:如图1、2、3所示。有管壳1,管壳1的底面是边缘四周均匀分布有四个供固定管壳1用的螺丝沉孔2的底座101。管壳1的顶上是带有中心窗口601的盖板6。盖板6与底座101之间有管壁102。盖板6边缘上有凸肩602置于管壁102顶端口上的端口凹槽5内。凸肩602与端口凹槽5的接合处置有密封胶。在管壳1外的底座101上有多个通到管壳1内的电极引脚16。在管壳1内底座101上置有半导体致冷器15,在半导体致冷器15上置有过渡热沉8,在过渡热沉8上置有激光二极管线列阵11的热沉13。置于热沉13上的激光二极管线列阵11的发光面对准盖板6上带有窗片10的窗口601。上述置于管壳1内的激光二极管线列阵11以及盖板6上的窗口601和窗片10都与管壳1是同一中心轴线00。在激光二极管线列阵11与窗片10之间的窗口601内置有包含微柱面透镜902和微柱面透镜列阵901的准直模块9。准直模块9内的微柱面透镜902对着激光二极管线列阵11的发光面。如图4所示。准直模块9的接收面905与盖板6的内表面齐平。准直模块9的中心轴线与窗口601与激光二极管线列阵11的中心轴线OO重合。准直模块9与激光二极管线列阵11和窗片10同光轴。在管壳1内,管壁102与半导体致冷器15和过渡热沉8之间有左右对称的固定在底座101上的两个调节固定块4。调节固定块4上有一端对着过渡热沉8,另一端与管壁102上的螺孔相通的调节螺丝孔3。如图2所示,此调节螺丝孔3供拧进调节螺钉用。在管壳1内,管壁102与半导体致冷器15和过渡热沉8之间有前后对称的固定在底座101上的两个平移槽块17。平移槽块17对着过渡热沉8的部位有槽块凹槽1701与过渡热沉8上的热沉凹槽801相配构成一槽道,在槽道内置有导轨20。如图3所示,导轨20与调节螺丝孔3内的调节螺钉配合使过渡热沉8带动激光二极管线列阵11作左右移动。在半导体致冷器15与过渡热沉8之间有压电元件10。调节压电元件10可以使置于过渡热沉8上固定在热沉13上的激光二极管线列阵11上下移动。上述的两个调节固定块(4)和两个平移槽块17与过渡热沉8与半导体致冷器15之间均有电绝缘片7。此电绝缘片7最好用云母片。The laser device of the present invention includes: as shown in FIGS. 1 , 2 and 3 . There is a
所说的准直模块9中的微柱面透镜902和微柱面透镜列阵901沿着长度方向的两端分别有第一固定块904和第二固定块908将两者固定,两者之间有粘合间隙907,在粘合间隙907里放有光学粘合胶。微柱面透镜902的两透光面和微柱面透镜列阵901的两透光面均镀有对激光二极管线列阵11发射的光束透过率大于或等于99.5%的增透膜906。微柱面透镜902的入光面为准直模块9的接收面905,微柱面透镜列阵901的出光面为准直模块9的输出面903。如图4所示。The two ends of
所说的准直模块9的长度Lm大于激光二极管线列阵的长度Lc,即Lm>Lc,通常的情况下Lm=Lc+2mm就可以了。主要是要求准直模块9的有效长度要大于激光二极管线列阵11的有效发光面的长度。准直模块9的宽度Dm大于激光二极管线列阵11的宽度Dc,即Dm>Dc。The length L m of the
所说的准直模块9内的微柱面透镜902的曲率半径R<2mm,微柱面透镜902的焦距f<1.5mm。The radius of curvature R of the
如上述,本发明图1、2、3所示的激光装置,下面结合附图再具体说明。图中,1是管壳,管壳1的底面是用紫铜做的底座101,底座101的底面连接在散热器上。2是布于底座101边缘成90°对称均布的四只螺丝沉孔,用以拧入螺丝把底座101固定于散热器上。3是旋通管壁102和调节固定块4,顶端顶在过渡热沉8侧面上的一对调节螺丝孔其表面氧化黑。4是坐落于底座101上左右对称的一对调节固定块,可以用铝块制作表面氧化黑,每块中间对称部位绝缘地贯穿二根电极引线,它的二侧有一对对称分布的上下光孔,用螺丝把调节固定块4固定于底座101上,并沿圆弧形侧面紧贴管壳1内的管壁102。5是管壁102顶端口上的端口凹槽与盖板6的凸肩602接合,其接合处用环氧树脂作为密封胶起固定与密封作用。管壳1内有对称置放的四对8根电极,其材料为Φ2.5~3mm的紫铜丝,其中有激光二极管线列阵11、半导体致冷器15、温度传感器、压电元件14分别连接二根电极。这些电极与管座101上的电极引脚16相连。过渡热沉8的结构形状为正方形底,侧面呈半金字塔平顶,以有利于LDBAR11工作散热是作为热沉13的冷端面,它的底板与压电元件14用导热硅胶形成滑动密合连接,过渡热沉8的正中部位自底板上表面至顶面成垂直凹立槽,LDBAR11的热沉13用对称分布的四只螺丝(图2)固定过渡热沉8的垂直立凹槽中心位置。LDBAR11的发光面垂直于管壳中心轴线(00),这时LDBAR11热沉13的下边沿距离过渡热沉8的底板留有约1mm的空隙,以保证LDBAR11的热沉13(也称LDBAR11的下电极)与过渡热沉8的电接触良好,而LDBAR11的上电极12与过渡热沉8的电绝缘良好。LDBAR的上电极12,用二只螺丝19(如图3中上面二只)与下电报(即热沉13)形成电绝缘固定连接,图3中下面一只螺丝18用作LDBAR11的上电极的引线固定。LDBAR11是通过其能承受的弹簧片1201软过渡由上电极12压焊于下电极13上。LDBAR11的出光面正好与上下电极端面完全对齐。上下电极对LDBAR11一方面起机械保护作用,另一方面下电极作为轴向调节耦合距离的参考基准。在盖板6的窗口601内置有与LDBAR11同光轴同方位的含有微柱面透镜902和微柱面透镜列阵901的准直模块9。如图4所示,准直模块9以微柱面透镜902对着LBDAR11发光面,微柱面透镜列阵901在后,其间粘合间隙907的间距为50μm至260μm。盖板6可用硬铝LY12制做表面深度氧化黑。准直模块9置于盖板6上的窗口601内。准直模块9的输入光表面即接收面905必须与盖板6的内表面完全平齐;准直模块9中的各光学元件的输入输出面均对LDBAR11激光波长镀T≥99.5%的增透膜906;准直模块9的光轴必须与LDBAR11的光轴严格一致;窗片10也要对LDBAR11激光波长镀T≥99.5%的增透膜;窗片10与准直模块9也是同光轴,同时窗片10又是本装置的输出端密封窗兼有一定的耦合的反馈镜的作用。准直模块9的接收面与LDBAR11的发光面之间的耦合距离通常为85μm±5μm。As mentioned above, the laser device shown in Figures 1, 2 and 3 of the present invention will be described in detail below in conjunction with the accompanying drawings. In the figure, 1 is a tube shell, and the bottom surface of the
图3中17是前后对称的一对平移槽块,表面氧化黑,中间对称部位上下各贯穿二根电极(与电极绝缘),其二侧有二只上下光孔,用螺丝把平移槽块17固定在管壳1内的底座101上,其圆弧侧面与管壁102内侧密合。过渡热沉8的底板的前后侧面与平移槽块17对应配合的侧面分别有一个90°热沉凹槽801和槽块凹槽1701构成前后槽道内各动配一根Φ4圆棒导轨20,导轨20表面氧化黑。在平移槽块17与导轨20之间插入电绝缘良好的云母片(~30μm厚)。导轨20机构既起到灵活安装拆卸过渡热沉8的作用又起到左右平移微调过渡热沉8和LDBAR11的左右耦合对准的作用。另外,为测LDBAR11的实际工作温度,在过渡热沉8底板上如图3箭头所指近LDBAR11的热沉13方便的位置上有Φ2~Φ5的光孔,以接触安装温度传感器(热敏电阻或AD590)用。Among Fig. 3, 17 is a pair of front and rear symmetrical translation slot blocks, the surface is oxidized black, and the middle symmetrical part runs through two electrodes (insulated from the electrodes) up and down, and two upper and lower light holes are arranged on its two sides, and the
本发明装置,LDBAR11与管壳1绝缘安全可靠工作。如上述所述,装置的8根电极与管壳1绝缘,装置的底座101、盖板6、调节固定块4、调节螺丝孔3、平移槽块17与壳体1绝缘,装置的底座101、盖板6、调节固定块4、调节螺丝孔3、平移槽块17、导轨20、过渡热沉8的表面均深度氧化黑,并且在过渡热沉8与调节螺丝孔3及导轨20之间均插入电绝缘良好的云母绝缘片7,盖板6与过渡热沉8顶面之间通常会有微隙,即使无空隙,在二者完好的深度表面氧化黑情况下,电绝缘也是良好的。如此,LDBAR11只通过二根电极引入工作电流,而与管壳1绝缘良好,这样既避免LDBAR11注入电流的分流影响,也避免了操作人(一般情况应于腕带防静电环带)的调试或使用操作接触可能带入LDBAR11工作回路的静电或浪涌电尖峰的影响,而保证LDBAR11安全可靠工作。对于价格昂贵的LDBAR11来说,这一措施保证了在调试中或后面的使用操作安全都极为重要。In the device of the present invention, the LDBAR11 is insulated from the
本发明装置的调试安装特征如下:把准直模块9置于也就是镶嵌入盖板6上窗口601内的中心位置中,用胶粘固定位,其微柱面透镜902接收面必须与盖板6内表面平齐,并且必须调整其光轴与LDBAR11及装置中心轴线OO一致不偏斜,方位一致。LDBAR11在过渡热沉8上的左右位置要求预先在显微镜下大致调定,即把LDBAR11连同其热沉13基本调定在过渡热沉8的竖立凹立槽的左右中心位置上固定。LDBAR11与准直模块9左右耦合对准中心位置,微调靠调节螺丝孔3内的螺钉调节过渡热沉8的左右位置来调定,微调整的标准是达到准直模块9的输出光斑出现光强度最大、清晰度最高,光斑最小的零级绕射极限光斑,而二侧的一级微弱光斑的位置对于装置光轴来说是严格对称的。准直模块9接收面与LDBAR11的发光面之间的最佳耦合距离为85μm±5μm。如果不用压电元件14微调控制,即没有压电元件14,这时调试的关键是底座管壁顶端口与过渡热沉8安装后的顶面一样高,这时盖板6落座盖后,盖板6的内面与准直模块9的接收面(实为同一平面)正好与过渡热沉8的顶面接合。而安装LDBAR11的发光面与过渡热沉8的顶面之间的落差(即LDBAR发光面缩进过渡热沉8的顶面)为85μm±5μm,它就是准直模块9与LDBAR11的发光面的耦合距离,用干分表可以精确测量。如果有压电元件14的微调结构。如图2所示。这时微调关键是LDBAR11的发光面与过渡热沉8的顶面的落差(缩进距离)严格控制在小于最佳耦合距离85μm,比如控制在~70μm,而还有约15±5μm的精细微调节压电元件14的来完成。上述二种情况下微调最佳耦合距离的标准是一样的,即准直模块9耦合输出光束在某一任选距离的靶面上出现一系列最清晰最细的衍射条纹以耦合效率最高为止。当然,上述第一种情况。需要靠人工反复调试LDBAR11发光面缩进过渡热沉8的顶面之间的落差,达到最佳耦合距离的标准为止,这会有一定的难度。相比之下,第二种有压电元件14更方便,更精细,只要控制压电元件14的电压就能控制达到最佳耦合距离的标准。The debugging and installation features of the device of the present invention are as follows: the
上述的准直模块9(图4)是由一种快轴准直微柱面透镜902和慢轴准直微柱面透镜列阵901粘合而成,前者通常是长12mm,厚1.5mm、宽2mm,数字孔径高达NA=0.85(光学材料的折射率n≥1.85),为绕射极限高效耦合的微柱面透镜条状的),首先它把LDBAR11的快轴大发散角35°~40°半高全宽(FWHM)激光束准直成发散角仅为~3mrad的近平行光束(平面波)。后者通常是长度为12mm,有效长度为10.8mm,厚度为0.39mm(加基底共1.5mm),由几十个绕射极限微柱面透镜元单片集成的列阵。与LDBAR11的发光元的快轴已准直的光束经一一对应的准直微柱面透镜列阵元的绕射耦合、准直后发光元的光束相互迭加,成平面波、产生零级衍射单斑远场图样。这时,其左右二侧成对称分布的一级远场束斑呈很微弱的强度,达到95%以上的LDBAR11的激光强度集中在零级衍射单斑远场图中,这就是准直模块9的高耦合效率。准直束的平行度为3mrad×40mrad(θ⊥×θ∥)。为了达到这一理想的准直耦合效果,准直模块9是:1)快轴准直微柱面透镜902必须用高折射率(n≥1.85)的光学玻璃,为与LDBAR11的θ⊥~40°相匹配,微柱面透镜902的数字孔径NA≥0.85,并且微柱面透镜902必须有低球差,达到绕射极限;2)微柱面透镜列阵901的列阵元的节距必须等于LDBAR11列阵元的节距;3)微柱面透镜列阵元的f必须与LDBAR11的发光元的束散相匹配,使耦合损失降到最小;4)微柱面透镜列阵元必须有低球面像差,达到近绕射极限耦合性能;5)准直模块9中的微柱面透镜902和微柱面透镜列阵901的入射/射出光面必须对所准直的LDBAR的激光波长镀T≥99.5%的增透膜,6)为了达到最佳的准直特性(最高耦合效率,最小耦合束的束散)微柱面透镜902条与微柱面透镜列阵901的粘合间隙907的间距通常为50μm至260μm。The above-mentioned collimation module 9 (FIG. 4) is formed by bonding a fast-axis
上述本发明的调试结构,即LDBAR11发光面与准直模块9的耦合距离微调试结构,配合左右微调机构,可以调到最佳状态可获得强度最大、清晰度最高、输出束斑发散度最小的零级单斑衍射远场束斑图。The above-mentioned debugging structure of the present invention, that is, the fine-tuning structure of the coupling distance between the light-emitting surface of LDBAR11 and the
本发明采用特种大功率(>100W)的半导体致冷器15,配以相应的大散热量散热器,只要空气冷却,无须水冷,就能维持20W、30W、40W甚至更高功率CWLDBAR11在设定温度下正常稳定可靠工作。The present invention adopts a special high-power (>100W)
本发明的优点:Advantages of the present invention:
1.由上述的结构本发明的最主要的优点在于含有准直模块9。准直模块9置于盖板6上的窗口601内,接收面905严格对准激光二极管线列阵11的发光面,并且准直模块9的接收面905就是微面柱透镜902的入射光面,也就是说准直模块9的微面柱透镜902靠近激光二极管线列阵11的由激光二极管线列阵11发出的激光束首先进入微柱面透镜902将激光二极管线列阵11快轴平面内发散的激光束准直,然后进入微柱面透镜列阵901将激光二极管线列阵11。慢轴平面内发散的激光束准直。这种结构与在先技术完全相反、在先技术是使激光二极管线列阵发射光首先进入微柱面透镜列阵准直激光二极管线列阵慢轴平面内发散的光束,然后进入大柱面透镜准直快轴平面的发散光束,则在先技术中需要大柱面透镜,它的曲率半径R>10mm、焦距f>10mm,而本发明中的微柱面透镜902的曲率半径<2mm,焦距F<1.5mm。显然本发明所用的微柱面透镜902要比在先技术的大柱面透镜加工容易,而且成本低。本发明的微柱面透镜902和微柱面透镜列阵901由第一固定块904和第二固定块908固定在一起,两者之间的粘合间隙907的间距已匹配好(通常选择在50μm~260μm之间)构成一准直模块9,使用起来非常方便,无需在安装激光装置时、再调整微柱面透镜902与微柱面透镜列阵901之间的距离,调整工序减少了,而且光路的调整精度高,减少了调整误差。提高了耦合输出光功率效率,提高了装置的耦合效率。1. The most important advantage of the present invention from the above-mentioned structure is that it contains the
2.本发明采用功率≥100W的特种半导体致冷器15进行制冷控温,并配以相应的特种大散热量的散热器,能维持LDBAR11在空气冷却而不用水冷情况下按设定温度稳定可靠工作,适合应用在CW 20W、30W、40W或更高高功率LDBAR11和Q-CW 60W~100W的或更高功率的LDBAR,拓宽了应用范围,特别适用于机载和军用。2. The present invention uses a
3.本发明装置,LDBAR11与壳体12电绝缘良好,保证了调试及使用情况下LDBAR11的安全可靠工作。由于LDBAR价格昂贵,它的安全可靠工作显示了这种装置的应用价值。3. In the device of the present invention, the LDBAR11 and the
4.本发明装置虽是用于线列阵准直模块与线列阵LDBAR的准直耦合还可以推广到二维即面列阵LDBAR(或称二极管列阵堆)与面列阵准直模块的准直耦合,所不同的只是再增加一维,而这一维的参数控制在于面阵准直模块的这一参数和面阵LDBAR的这一参数一一对应就是了。本发明装置已进一步开拓了一类准连续工作(Q-CW)而峰值光功率高达几百瓦甚至千瓦的面阵LDBAR上的应用。本发明在红外主动照明和先进的全固体化半导体激光抽运的固体激光器高新技术领域中有广泛潜在应用前景。4. Although the device of the present invention is used for the collimation coupling of the line array collimation module and the line array LDBAR, it can also be extended to the two-dimensional area array LDBAR (or diode array stack) and the area array collimation module The only difference is that one more dimension is added, and the parameter control of this dimension lies in the one-to-one correspondence between the parameter of the area array collimation module and the parameter of the area array LDBAR. The device of the present invention has further developed the application on a type of quasi-continuous work (Q-CW) and the peak optical power is as high as hundreds of watts or even kilowatts of area array LDBAR. The invention has wide potential application prospects in the high-tech fields of infrared active illumination and advanced all-solid semiconductor laser pumping solid-state lasers.
附图说明: Description of drawings:
图1是本发明激光装置的顶视图。Figure 1 is a top view of the laser device of the present invention.
图2是本发明激光装置图1的A-A剖视图。Fig. 2 is a sectional view of A-A of Fig. 1 of the laser device of the present invention.
图3是本发明激光装置图1的B-B剖视图。Fig. 3 is a B-B sectional view of Fig. 1 of the laser device of the present invention.
图4是本发明激光装置中所用准直模块9的结构示意图。FIG. 4 is a schematic structural diagram of the
实施例:Example:
如图1、2、3、4的本发明激光装置,实施例中采用的激光二极管线列阵11(LDBAR)参数如下:As shown in Fig. 1, 2, 3, 4 laser device of the present invention, the laser diode bar array 11 (LDBAR) parameter that adopts in the embodiment is as follows:
激光中心波长λ 806.2nmLaser center wavelength λ 806.2nm
光功率输出PCW 20W(注入工作电流29A)Optical power output PCW 20W (injection working current 29A)
线列阵总发光面尺寸 1cm×1μm,含25个列阵元The total light-emitting surface size of the line array is 1cm×1μm, including 25 array elements
列阵元发光面大小 100μm×1μm,二个发光元之间节距400μmThe size of the light-emitting surface of the array element is 100μm×1μm, and the pitch between the two light-emitting elements is 400μm
LDBAR11激光束发散角 快轴方向θ⊥40°(FWHM)LDBAR11 laser beam divergence angle Fast axis direction θ ⊥ 40°(FWHM)
慢轴方向θ∥10°(FWHM)Slow axis direction θ ∥ 10°(FWHM)
准直模块9的构成和光学元件参数如下:The composition of the
1.微柱面透镜902为条状(bar),长度Lm=12mm,厚度T=1.5mm,宽度Dm=2mm,数值孔NA=0.85,有效焦长f=0.91mm,所用的光学玻璃材料折射率n=1.85。1. The
2.微柱面透镜列阵901,长度Lm=12mm、有效长度L′=10.8mm,宽度Dm=2mm,波纹区厚度0.39mm、连衬底总共厚1.5mm,列阵元个数25,列阵元之间节距400μm,有效焦度f′=2.21mm,所用的光学玻璃材料折射率n≥1.85。2.
3.微柱面透镜和微柱面透镜列阵901的粘合间隙907的间距为260μm和50μm时所得结果如表1所示。3. Table 1 shows the results obtained when the spacing between the microcylindrical lens and the
表1Table 1
可见准直模块9的两准直光学元件微柱面透镜902和微柱面透镜列阵901的粘合间隙907的间距最佳为50μm;在260μm的粘合间隙907的间距下,准直模块9的耦合效率有所降低,输出光功率也降低了,当然输出光束θ∥的发散度也增大了。It can be seen that the optimal spacing of the
所以粘合间隙907的间距要匹配得当,同时从表1看出即使在粘合间隙907的间距在260μm时,其装置的耦合效率也高于85%。也比在先技术中的小于70%的高。Therefore, the spacing of the
本实施例充分证明了本发明上述的优点。This embodiment fully demonstrates the above-mentioned advantages of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB001276204A CN100384032C (en) | 2000-11-30 | 2000-11-30 | Laser device with laser diode bar array of collimation modules |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB001276204A CN100384032C (en) | 2000-11-30 | 2000-11-30 | Laser device with laser diode bar array of collimation modules |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1305251A CN1305251A (en) | 2001-07-25 |
CN100384032C true CN100384032C (en) | 2008-04-23 |
Family
ID=4592633
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB001276204A Expired - Fee Related CN100384032C (en) | 2000-11-30 | 2000-11-30 | Laser device with laser diode bar array of collimation modules |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100384032C (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7816155B2 (en) * | 2007-07-06 | 2010-10-19 | Jds Uniphase Corporation | Mounted semiconductor device and a method for making the same |
CN102097742B (en) * | 2010-12-23 | 2014-04-02 | 大连艾科科技开发有限公司 | Welding coupler for first lens of laser |
CN102868081B (en) * | 2012-09-06 | 2014-04-16 | 海信集团有限公司 | Fixing device of array laser device |
CN110383607B (en) * | 2017-03-09 | 2021-03-02 | 三菱电机株式会社 | wavelength coupled laser device |
CN111965779B (en) * | 2020-07-20 | 2022-06-10 | 天津大学 | Scanning type large-area array micro-lens array structure convenient to align |
CN115616793B (en) * | 2022-11-21 | 2023-03-21 | 苏州中辉激光科技有限公司 | Multi-mirror-group sealed collimation cavity, laser equipment and light path debugging method of laser equipment |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1251911A (en) * | 1999-09-30 | 2000-05-03 | 中国科学院上海光学精密机械研究所 | Laser telescope for laser diode array |
US6088168A (en) * | 1997-04-11 | 2000-07-11 | Blue Sky Research | Laser diode assembly including a carrier-mounted crossed pair of cylindrical microlenses |
WO2000060399A1 (en) * | 1999-03-31 | 2000-10-12 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Optical arrangement for symmetrizing the radiation of two-dimensional arrays of laser diodes |
-
2000
- 2000-11-30 CN CNB001276204A patent/CN100384032C/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6088168A (en) * | 1997-04-11 | 2000-07-11 | Blue Sky Research | Laser diode assembly including a carrier-mounted crossed pair of cylindrical microlenses |
WO2000060399A1 (en) * | 1999-03-31 | 2000-10-12 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Optical arrangement for symmetrizing the radiation of two-dimensional arrays of laser diodes |
CN1251911A (en) * | 1999-09-30 | 2000-05-03 | 中国科学院上海光学精密机械研究所 | Laser telescope for laser diode array |
Also Published As
Publication number | Publication date |
---|---|
CN1305251A (en) | 2001-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8842705B2 (en) | Light emitting systems | |
US8000360B2 (en) | Laser diode assemblies | |
US7668214B2 (en) | Light source | |
US6240116B1 (en) | Laser diode array assemblies with optimized brightness conservation | |
KR100285221B1 (en) | High Power Semiconductor Laser System | |
CN103368066B (en) | A kind of ramp type multitube semiconductor laser coupling device and method | |
US20090129420A1 (en) | High power laser diode array comprising at least one high power diode laser and laser light source comprising the same | |
JP2008501236A (en) | Laser diode array mount and step mirror for shaping a symmetric laser beam | |
CN102916341A (en) | Method for combining beams of single-tube semiconductor laser devices | |
EP2928031B1 (en) | Laser light source module and laser light source device | |
US10541508B2 (en) | Diode laser with housing | |
CN109586163B (en) | Multi-single-tube high-power semiconductor laser packaging structure and laser | |
CN100384032C (en) | Laser device with laser diode bar array of collimation modules | |
US9008137B1 (en) | Method and apparatus for compact and efficient introduction of high radiant power into an optical fiber | |
US20230163558A1 (en) | Semiconductor laser device | |
US8457173B2 (en) | Silicon-based lens support structure for diode laser | |
CN113764972B (en) | Laser device | |
CA2332864C (en) | Scalable vertically diode-pumped solid-state lasers | |
CN2454954Y (en) | linear array semiconductor laser with collimation module | |
US9008147B2 (en) | Silicon-based lens support structure and cooling package with passive alignment for compact heat-generating devices | |
US20230095425A1 (en) | Quantum cascade laser device | |
KR101206357B1 (en) | Microlens embedded Semiconductor laser diode | |
Schlüter et al. | Dense spatial multiplexing enables high brightness multi-kW diode laser systems | |
JP4128037B2 (en) | Semiconductor laser device | |
CN105511089A (en) | Device for adjusting beam parametric product of big power semiconductor laser linear array |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C06 | Publication | ||
PB01 | Publication | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20080423 Termination date: 20091230 |