CN100369243C - Semiconductor package with heat dissipation structure - Google Patents
Semiconductor package with heat dissipation structure Download PDFInfo
- Publication number
- CN100369243C CN100369243C CNB031558178A CN03155817A CN100369243C CN 100369243 C CN100369243 C CN 100369243C CN B031558178 A CNB031558178 A CN B031558178A CN 03155817 A CN03155817 A CN 03155817A CN 100369243 C CN100369243 C CN 100369243C
- Authority
- CN
- China
- Prior art keywords
- fin
- semiconductor package
- package part
- radiator structure
- heat sink
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16135—Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
- H01L2224/16145—Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32135—Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
- H01L2224/32145—Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32225—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73201—Location after the connecting process on the same surface
- H01L2224/73203—Bump and layer connectors
- H01L2224/73204—Bump and layer connectors the bump connector being embedded into the layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73253—Bump and layer connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/153—Connection portion
- H01L2924/1531—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
- H01L2924/15311—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/19—Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
- H01L2924/191—Disposition
- H01L2924/19101—Disposition of discrete passive components
- H01L2924/19105—Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
Landscapes
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
技术领域technical field
本发明是关于一种具有散热结构的半导体封装件,特别是关于一种可降低成本与封装件高度的具有散热结构的半导体封装件。The invention relates to a semiconductor package with a heat dissipation structure, in particular to a semiconductor package with a heat dissipation structure which can reduce the cost and the height of the package.
背景技术Background technique
倒装芯片球栅阵列(Flip-Chip Ball Grid Array,FCBGA)半导体封装件是一种同时具有倒装芯片与球栅阵列的封装结构,图17就是现有具有散热片的倒装芯片封装件剖视图,如图所示,该封装件是使至少一芯片的作用表面(Active Surface)可通过多个焊点(Solder Bumps)电性连接至基板(Substrate)的一表面上,并在该基板的另一表面上植设多个作为输入/输出(I/O)端的焊球(Solder Ball);这种封装结构可使体积大幅缩减,同时也减去现有焊线(Wire)的设计,可降低阻抗、提升电性品质,避免信号在传输过程中的衰减,因此已成为芯片与电子组件的主流封装技术。A flip-chip ball grid array (Flip-Chip Ball Grid Array, FCBGA) semiconductor package is a packaging structure that has both a flip chip and a ball grid array. Figure 17 is a cross-sectional view of an existing flip-chip package with a heat sink. , as shown in the figure, the package is such that the active surface (Active Surface) of at least one chip can be electrically connected to one surface of the substrate (Substrate) through a plurality of solder joints (Solder Bumps), and on the other surface of the substrate A plurality of solder balls (Solder Ball) used as input/output (I/O) terminals are planted on one surface; this packaging structure can greatly reduce the volume, and at the same time, the design of the existing wire (Wire) can be subtracted, which can reduce the Impedance, improve electrical quality, and avoid signal attenuation during transmission, so it has become the mainstream packaging technology for chips and electronic components.
由于该倒装芯片球栅阵列封装的优越特性,使其多用于高集成度(Integration)的多芯片封装件中,以满足这种电子组件的体积与运算需求,但是这类电子组件由于其高频率运算特性,使其在运行过程产生的热量高于一般的封装件,因此,其散热效果的好坏就成为影响这类封装件品质的关键;对现有的倒装芯片球栅阵列封装件而言,它是直接将散热片(Heat Sink)粘覆在芯片的非作用表面(Non-active Surface)上,不需通过导热性较差的封装胶体(Encapsulant)传递热量,从而形成芯片-胶粘剂-散热片-外界的直接散热路径,与其它散热方式相比,它具有较好的散热功效。Due to the superior characteristics of the flip-chip ball grid array package, it is mostly used in highly integrated multi-chip packages to meet the volume and computing requirements of this electronic component, but this type of electronic component is due to its high The frequency calculation characteristics make it generate more heat than ordinary packages during operation. Therefore, the quality of its heat dissipation effect becomes the key to the quality of this type of package; for the existing flip-chip ball grid array package In other words, it directly sticks the heat sink (Heat Sink) on the non-active surface (Non-active Surface) of the chip, without transferring heat through the poor thermal conductivity encapsulant (Encapsulant), thus forming a chip-adhesive - Heat sink - the direct heat dissipation path to the outside world, which has better heat dissipation effect compared with other heat dissipation methods.
对于这类封装结构的散热片,现有技术如图18所示,直接用粘胶材料61将散热片60的支撑部60b粘接在基板62上,并将散热片60的平坦部60a用导热胶63粘接在芯片64的非作用表面64a上,通过外露的平坦部60a散逸芯片64的热量,例如美国专利第5,311,402号、第5,909,474号、第5,909,057号或第5,637,920号专利等现有技术,都揭示了这种近似结构,并根据其定位需求而逐渐发展出其它定位散热片的方式,例如以螺栓或其它定位件将散热片的支撑部锁固在基板上,从而强化散热片的附着力等。For heat sinks with this type of packaging structure, as shown in Figure 18 in the prior art, the
然而,不论相关技术如何发展,也不论其如何改变散热片的定位方式或如何提升其散热效率,该散热片的平坦部与其周围支撑部的结构设计却始终未改变,这是由于在该倒装芯片封装件中,散热片是以罩盖形式覆盖在基板上,并通过散热片的平坦部与其周围支撑部围置出的容设空间将芯片包覆其中,因此,在这种结构限制下,该散热片的剖面形状必须设计成如图18所示的凹陷形状,并随着芯片数量与集成度的提高,适度增加容设空间的体积与封装件的高度。However, no matter how the related technology develops, and no matter how it changes the positioning method of the heat sink or how to improve its heat dissipation efficiency, the structural design of the flat part of the heat sink and its surrounding support parts has not changed all the time. In the chip package, the heat sink is covered on the substrate in the form of a cover, and the chip is covered by the accommodation space surrounded by the flat part of the heat sink and its surrounding support parts. Therefore, under the limitation of this structure, The cross-sectional shape of the heat sink must be designed as a concave shape as shown in FIG. 18 , and with the increase of the number of chips and the degree of integration, the volume of the accommodation space and the height of the package should be appropriately increased.
因此,该凹陷的容设空间设计已逐渐成为这类封装件改良上的限制,并成为现今封装件向高散热、低成本与小体积化方向发展的-大阻碍,也是此类技术在未来发展上有难以跨越的障碍;其原因是这种散热片都是以锻造(Forging)的方式制成,此锻压出的散热片上的容设空间而形成支撑部,例如图18A、图18B所示的方形散热片60,先将一板状铜或铝材料置入高温模具内,在其锻造温度范围内施加冲击力或加压,进而锻压出该方形凹陷区域65,并可在接置到基板62时将芯片64包覆在该凹陷区域65内,此制法受限于锻造机与锻锤(ForgingHammer)的操作与设备成本,形成产量上的一大负荷,也使制造成本随着散热片尺寸的变化而提高。Therefore, the accommodating space design of the recess has gradually become a limitation on the improvement of this type of package, and has become a major obstacle to the development of today's package in the direction of high heat dissipation, low cost and small volume, and it is also the future development of this type of technology. There are obstacles that are difficult to overcome; the reason is that this kind of heat sink is made by forging (Forging), and the accommodation space on the forged heat sink forms a supporting part, such as shown in Figure 18A and Figure 18B For the
除此之外,由于锻锤的成形精度有限,使散热片的厚度比例(AspectRatio,t/T),如图18A、图18B所示具有一定的上限,无法使散热片60的总厚度T降低到接近容设空间65的高度t,目前的锻造制法仅能使厚度比例t/T最大约为0.5左右,也就是该散热片60的总厚度T将受要开设的容设空间65的高度t影响,若容设空间65所需的高度t提高至1mm,则制成散热片60的板状材料至少也需有2mm厚,才可进行锻造法的加工;因此,当由于基板62上接置的芯片64厚度或其堆栈的数量增加,使散热片60的容设空间65的高度t增加时,该散热片60的厚度T显然也需等倍放大,使整体的封装件尺寸难以缩小,不符合轻薄短小的发展趋势,且随着芯片64的高度增加而逐渐增厚的散热片60更不利于芯片64散热,严重影响封装件的散热效能。In addition, due to the limited forming accuracy of the forging hammer, the thickness ratio (AspectRatio, t/T) of the heat sink has a certain upper limit as shown in Figure 18A and Figure 18B, and the total thickness T of the
如图19所示的封装件剖视图,当该封装件采用双芯片的堆栈结构时,与单芯片的封装件比较,该封装件的整体厚度除了增加增设的芯片66的厚度外,散热片60也因板材受限于锻造法而同时增加厚度,导致封装件的整体厚度大幅上升,既增加散热片的成本,也使散热效率下降,同时,也难符合电子工业的小尺寸发展趋势。As shown in the cross-sectional view of the package in Figure 19, when the package adopts a double-chip stack structure, compared with the single-chip package, the overall thickness of the package is not only increased by the thickness of the added
再有,以锻造法制造散热片,也受限于锻锤的种类与尺于,使散热片的尺寸与形状变化缺乏弹性,难以根据需要改变其造型和提高散热面积,如图20所示的封装件剖视图,是在散热片的平坦部60a上增设鳍片67(Fin),以提升散热片60与外界的接触面积,此设计即是因散热片60的设计限制,使鳍片67仅能形成在平坦部60a的正上方,而无法有其它方位的设计,进而也导致整体封装件厚度的大幅增加;另外,该封装件也可能如图21所示,在基板62上增设一被动组件68(Passive Component)以提高该封装件的电性效能,此时,该散热片60上开设的容设空间65体积需略为加大以容设被动组件68,然而,由于受锻造法的锻锤尺寸的限制,该散热片60将无法根据基板62上的布局变化而任意改变其尺寸与形状,可能使其增加不必要的区域,并需重新进行新尺寸的批量制造,形成线路布局与设计上的牵制。In addition, the forging method is also limited by the type and size of the forging hammer, which makes the size and shape of the heat sink inflexible, making it difficult to change its shape and increase the heat dissipation area as required, as shown in Figure 20 The cross-sectional view of the package is to add fins 67 (Fin) on the
同时,这种现有制法是在高温下利用锻锤的瞬间冲压力而锻压出散热片的容设空间,因此,当制程完成后,该散热片的容设空间边缘会因应力集中而有残留应力(Residual Stress)的产生,使该铜或铝材料的晶格组成产生破坏,所以,当接置有该散热片的封装件在后续可靠度测试或长期使用后,将可能如图22所示,在该散热片的平坦部60a与支撑部60b的交界处出现残留应力导致的裂缝69,进而发生裂缝延伸而破坏该散热片的结构。At the same time, this existing manufacturing method uses the instantaneous stamping force of the forging hammer to forge the accommodation space of the heat sink at high temperature. The generation of residual stress (Residual Stress) will cause damage to the lattice composition of the copper or aluminum material. Therefore, after the subsequent reliability test or long-term use of the package connected to the heat sink, it may be as shown in Figure 22 It is shown that
此外,现有散热片设计与其制法的缺点还不仅是这些,当散热片接置在基板上时,是通过环绕在该平坦部周围的支撑部而粘着在该基板上,而平坦部与支撑部又是一体成型的材料,因此,当封装件进行后续高温制程时,由于散热片与芯片的热膨胀系数(Coefficient ofThermal Expansion,CTE)相距很大,散热片的平坦部的热变形量将略大于芯片,此时由于平坦部的周围受到支撑部的束缚,将使其热应变难以释放而造成如图23所示的变形,使平坦部60a与芯片64或导热胶63间产生分层70而降低散热效能,甚至导致散热片60的支撑部60b与基板62间的分层(图未标),使散热片60在受震时脱落。In addition, the disadvantages of the existing heat sink design and its manufacturing method are not limited to these. When the heat sink is placed on the substrate, it is adhered to the substrate through the support portion surrounding the flat portion, and the flat portion and the support The part is an integrally formed material. Therefore, when the package undergoes a subsequent high-temperature process, the thermal deformation of the flat part of the heat sink will be slightly larger than At this time, because the periphery of the flat part is bound by the support part, it will be difficult to release the thermal strain and cause the deformation as shown in Figure 23, so that the
由此可知,对倒装芯片封装件的最初散热需求而言,该散热片设计确实为一合适的解决方向,然而,随着电子工业逐步朝向高集成度、高散热、低成本与小体积等趋势发展,这种散热片因其结构与制法的限制,已成为进一步发展的主要障碍,同时,限于现有锻造技术的瓶颈,若只针对这种散热片进行结构改良,也难以完全克服现有问题,这就形成了产业升级上的困境。It can be seen that for the initial heat dissipation requirements of flip-chip packages, the heat sink design is indeed a suitable solution direction. However, as the electronics industry gradually moves towards high integration, high heat dissipation, low cost and small size, etc. With the development of the trend, this kind of heat sink has become the main obstacle to further development due to the limitation of its structure and manufacturing method. At the same time, it is limited to the bottleneck of the existing forging technology. If there is a problem, this creates a dilemma in industrial upgrading.
综上所述,如何开发出一种具有散热结构的半导体封装件,使新式散热结构无须以锻造方式制造,同时也不具有厚度比例的限制,同时还可提高散热效率、增加尺寸变化的弹性,且不会在成型过程中产生应力集中,是相关研发领域需迫切面对的课题。To sum up, how to develop a semiconductor package with a heat dissipation structure, so that the new heat dissipation structure does not need to be manufactured by forging, and there is no restriction on the thickness ratio, and at the same time, it can improve the heat dissipation efficiency and increase the flexibility of dimensional changes. And it will not cause stress concentration during the molding process, which is an urgent issue in the related research and development fields.
发明内容Contents of the invention
为克服上述现有技术的缺点,本发明的一目的在于提供一种无须用锻造方法制造的散热片、且可降低成本的具有散热结构的半导体封装件。In order to overcome the above disadvantages of the prior art, an object of the present invention is to provide a semiconductor package with a heat dissipation structure that does not require a heat sink manufactured by a forging method and can reduce costs.
本发明的还一目的在于提供一种可降低封装件高度的具有散热结构的半导体封装件。Another object of the present invention is to provide a semiconductor package with a heat dissipation structure that can reduce the height of the package.
本发明的另一目的在于提供一种不具有厚度比例限制的具有散热结构的半导体封装件。Another object of the present invention is to provide a semiconductor package with a heat dissipation structure that does not have a thickness ratio limitation.
本发明的再一目的在于提供一种可增大散热面积以提高散热效率的具有散热结构的半导体封装件。Another object of the present invention is to provide a semiconductor package with a heat dissipation structure that can increase the heat dissipation area to improve heat dissipation efficiency.
本发明的又一目的在于提供一种可避免散热片应力集中的具有散热结构的半导体封装件。Another object of the present invention is to provide a semiconductor package with a heat dissipation structure that can avoid the stress concentration of the heat sink.
本发明的且另一目的在于提供一种可避免封装件变形或分层的具有散热结构的半导体封装件。Another object of the present invention is to provide a semiconductor package with a heat dissipation structure that can avoid deformation or delamination of the package.
本发明的且再一目的在于提供一种可提升散热片附着力的具有散热结构的半导体封装件。Another object of the present invention is to provide a semiconductor package with a heat dissipation structure that can improve the adhesion of the heat sink.
本发明的且又一目的在于提供一种可增加散热片尺寸形状的变化弹性的具有散热结构的半导体封装件。Yet another object of the present invention is to provide a semiconductor package with a heat dissipation structure that can increase the flexibility of changing the size and shape of the heat sink.
为达上述及其它目的,本发明提供的具有散热结构的半导体封装件包括:具有第一表面及与其相对的第二表面的基板;至少一接置在基板的第一表面上且电性连接至基板的芯片;一散热结构,包括第一散热片和第二散热片,该第一散热片具有第一定位部,而该第二散热片具有至少一个第二定位部及至少一个镂空部;其中,第二散热片接置在基板的第一表面上,第一散热片通过第一定位部接置在第二散热片的第二定位部上,并将芯片包覆在该第一散热片、第二散热片的镂空部与基板围置成的空间中;以及多个植接在基板的第二表面上的焊球。In order to achieve the above and other purposes, the semiconductor package with a heat dissipation structure provided by the present invention includes: a substrate having a first surface and a second surface opposite to it; at least one is placed on the first surface of the substrate and electrically connected to The chip of the substrate; a heat dissipation structure, including a first heat dissipation fin and a second heat dissipation fin, the first heat dissipation fin has a first positioning portion, and the second heat dissipation fin has at least one second positioning portion and at least one hollow portion; wherein , the second heat sink is placed on the first surface of the substrate, the first heat sink is placed on the second positioning portion of the second heat sink through the first positioning portion, and the chip is wrapped on the first heat sink, In the space surrounded by the hollow part of the second cooling fin and the substrate; and a plurality of solder balls planted on the second surface of the substrate.
上述的第一散热片与第二散热片均是平板状散热片,且第一散热片为一顶层散热片,第二散热片则包括一底层散热片与至少一夹层散热片,通过形成于表面上的定位部而相互堆栈定位在基板上;其中,散热片及定位部以低成本的冲压方法冲制(Stamp)而成,分别形成在每一散热片的周缘位置,第一定位部与第二定位部分别为可相互嵌合定位的凸缘与凹孔的组合。The above-mentioned first heat sink and second heat sink are flat heat sinks, and the first heat sink is a top heat sink, and the second heat sink includes a bottom heat sink and at least one interlayer heat sink, formed on the surface The positioning parts on the top are stacked and positioned on the substrate; wherein, the heat sink and the positioning part are stamped by a low-cost stamping method (Stamp), and are respectively formed at the peripheral position of each heat sink, the first positioning part and the second positioning part The two positioning parts are respectively a combination of flanges and concave holes that can be fitted and positioned with each other.
此外,本发明的散热结构可根据封装件的需求而有各种实施方式,例如,该第一散热片与第二散热片的内缘或外缘可在堆栈后相互对齐,也可在堆栈后令其内缘或外缘相互错位排列,同时,当具有多个夹层散热片时,则每一个夹层散热片的内缘或外缘也可用相互对齐或相互错位的排列方式堆栈在底层散热片上。In addition, the heat dissipation structure of the present invention can be implemented in various ways according to the requirements of the package. For example, the inner or outer edges of the first heat dissipation fin and the second heat dissipation fin can be aligned with each other after stacking, or can be aligned after stacking. The inner or outer edges of the interlayer heat sinks are misaligned. At the same time, when there are multiple interlayer heat sinks, the inner or outer edges of each interlayer heat sink can also be stacked on the bottom heat sink in a mutually aligned or mutually misplaced arrangement.
再有,第一散热片的面积可视需要加大,以提高封装件的散热效能,而第一散热片上可增设一散热风扇,或堆栈至少一增层散热片,并令该增层散热片上对应芯片的位置形成至少一镂空部,以加速芯片散热。In addition, the area of the first heat sink can be enlarged as needed to improve the heat dissipation performance of the package, and a heat dissipation fan can be added on the first heat sink, or at least one build-up heat sink can be stacked, and the build-up heat sink can At least one hollow part is formed corresponding to the position of the chip to accelerate the heat dissipation of the chip.
第二散热片与基板接触的表面上也可用冲压制法开设多个开槽,供敷设在基板上的粘胶材料填充,提升第二散热片的附着力,该开槽的内壁表面可设计成阶梯表面或倾斜表面,以增加粘胶材料与开槽的粘着面积,避免散热片受震后脱落。A plurality of slots can also be opened by stamping method on the surface of the second heat sink in contact with the substrate, which can be filled with the adhesive material laid on the substrate to improve the adhesion of the second heat sink. The inner wall surface of the slot can be designed as Stepped surface or inclined surface to increase the adhesion area between the adhesive material and the slot, so as to prevent the heat sink from falling off after being shaken.
综上所述,由于本发明的散热结构中的各散热片都是堆栈而成,且均为平板状设计,所以其内部并无残留应力的集中;同时,由于该堆栈式散热片的每一散热片均具有极小的厚度,且也可视需要改变堆栈层数,所以该散热结构不受厚度比例(Aspect Ratio)上的限制,还可大幅降低现有封装件的高度。因此,通过本发明的散热结构,可舍弃现有的散热片与其锻造制法,充分解决现有散热片的容设空间与锻造制法上的发展限制,还满足了封装技术对高集成度、高散热、低成本与小体积化等的需求。To sum up, since the cooling fins in the heat dissipation structure of the present invention are all stacked and designed in a flat plate shape, there is no concentration of residual stress inside; at the same time, since each of the stacked cooling fins The heat sinks have a very small thickness, and the number of stacked layers can also be changed according to the needs, so the heat dissipation structure is not limited by the thickness ratio (Aspect Ratio), and the height of the existing package can also be greatly reduced. Therefore, through the heat dissipation structure of the present invention, the existing heat sink and its forging method can be discarded, the development limitations of the existing heat sink space and the forging method are fully resolved, and the requirements of packaging technology for high integration, Demand for high heat dissipation, low cost and small size.
附图说明Description of drawings
图1是本发明的具有散热结构的半导体封装件的实施例1剖视图;1 is a cross-sectional view of Embodiment 1 of a semiconductor package with a heat dissipation structure of the present invention;
图2A至图2C是本发明的实施例1的顶层散热片、夹层散热片与底层散热片示意图;2A to 2C are schematic diagrams of the top heat sink, interlayer heat sink and bottom heat sink of Embodiment 1 of the present invention;
图3A至图3C是本发明的实施例1的第一定位部、第二定位部与第三定位部的成型制法示意图;3A to 3C are schematic diagrams of the forming method of the first positioning part, the second positioning part and the third positioning part according to Embodiment 1 of the present invention;
图4是本发明的具有散热结构的半导体封装件的实施例2剖视图;4 is a sectional view of Embodiment 2 of the semiconductor package with heat dissipation structure of the present invention;
图5是本发明的具有散热结构的半导体封装件的实施例3剖视图;5 is a cross-sectional view of Embodiment 3 of the semiconductor package with heat dissipation structure of the present invention;
图6是本发明的具有散热结构的半导体封装件的实施例4剖视图;6 is a cross-sectional view of Embodiment 4 of the semiconductor package with heat dissipation structure of the present invention;
图7是本发明的具有散热结构的半导体封装件的实施例5剖视图;7 is a cross-sectional view of Embodiment 5 of the semiconductor package with heat dissipation structure of the present invention;
图8A及图8B是本发明的具有散热结构的半导体封装件的实施例6剖视图;8A and 8B are cross-sectional views of Embodiment 6 of the semiconductor package with heat dissipation structure of the present invention;
图9是本发明的具有散热结构的半导体封装件的实施例7剖视图;9 is a cross-sectional view of Embodiment 7 of the semiconductor package with heat dissipation structure of the present invention;
图10是本发明的具有散热结构的半导体封装件的实施例8剖视图;10 is a cross-sectional view of Embodiment 8 of a semiconductor package with a heat dissipation structure of the present invention;
图11A是本发明的具有散热结构的半导体封装件的实施例9剖视图;11A is a cross-sectional view of Embodiment 9 of the semiconductor package with heat dissipation structure of the present invention;
图11B是图11A所示的夹层散热片的示意图;Fig. 11B is a schematic diagram of the interlayer heat sink shown in Fig. 11A;
图12A是本发明的具有散热结构的半导体封装件的实施例9剖视图;12A is a cross-sectional view of Embodiment 9 of the semiconductor package with heat dissipation structure of the present invention;
图12B是图12A所示夹层散热片的示意图;Fig. 12B is a schematic diagram of the interlayer heat sink shown in Fig. 12A;
图13是本发明的具有散热结构的半导体封装件的实施例10剖视图;13 is a cross-sectional view of
图14A及图14B是本发明的具有散热结构的半导体封装件的实施例11剖视图;14A and 14B are cross-sectional views of
图15是具有本发明另一散热片定位部的实施例的封装件剖视图;Fig. 15 is a cross-sectional view of a package having another embodiment of a heat sink positioning portion of the present invention;
图16A至图16C是本发明另一散热片定位部的形成位置示意图;16A to 16C are schematic diagrams of the formation positions of another heat sink positioning part of the present invention;
图17是现有具有散热片的倒装芯片封装件剖视图;17 is a sectional view of a conventional flip-chip package with a heat sink;
图18A是图18所示的方形散热片示意图;Fig. 18A is a schematic diagram of the square heat sink shown in Fig. 18;
图18B是图18A所示方形散热片剖视图;Fig. 18B is a cross-sectional view of the square heat sink shown in Fig. 18A;
图19是现有具有双芯片堆栈结构的倒装芯片封装件剖视图;Fig. 19 is a cross-sectional view of a conventional flip-chip package with a double-chip stack structure;
图20是现有具有散热鳍片的倒装芯片封装件剖视图;20 is a sectional view of a conventional flip-chip package with heat dissipation fins;
图21是现有接置有被动组件的倒装芯片封装件剖视图;Fig. 21 is a cross-sectional view of a conventional flip-chip package with passive components;
图22是现有倒装芯片封装件的散热片出现裂缝的示意图;以及FIG. 22 is a schematic diagram of a crack in the heat sink of a conventional flip-chip package; and
图23是现有倒装芯片封装件的散热片发生分层的示意图。FIG. 23 is a schematic diagram of the delamination of the heat sink of the conventional flip-chip package.
具体实施方式Detailed ways
实施例1Example 1
图1是本发明的具有散热结构的半导体封装件的较佳实施例剖视图,它是倒装芯片球栅阵列封装件(FCBGA),包括作为芯片承载件(ChipCarrier)的基板10,通过凸块11(Bump)电性连接至基板10且接置在基板10的第一表面10a上的芯片12,填充在凸块11周围的底部填料(Under fill)绝缘材料13,接置在基板10的第一表面10a上的底层散热片20,多个堆栈在底层散热片20上的夹层散热片25,堆栈在最顶层的夹层散热片25上的顶层散热片30,以及植接在基板10的第二表面10b且与多个凸块11电性连接的多个焊球14;其中,底层散热片20是利用敷设在基板第一表面10a上的粘胶材料16粘接在基板10上,而顶层散热片30则通过导热胶15与芯片12的非作用表面12a粘接,以散逸芯片12的热量,同时,多个夹层散热片25与底层散热片20,如图1所示,分别具有第一镂空部26与第二镂空部21,借其堆栈关系在基板10上定义出一空间,并将芯片12包覆在由顶层散热片30、第一镂空部26、第二镂空部21与基板10围置的容设空间中。Fig. 1 is the cross-sectional view of the preferred embodiment of the semiconductor package with heat dissipation structure of the present invention, it is a flip-chip ball grid array package (FCBGA), including a
顶层散热片30、夹层散热片25与底层散热片20分别如图2A、图2B、图2C所示为平板型散热片,选用镀有镍的铜或铝材料,以发挥其良好的导热效能,同时,该材料的热膨胀系数也与常用的基板材料(例如环氧树脂、聚亚酰胺、BT树脂或FR4树脂等)相近,所以也使底层散热片20与基板10间因温度变化而产生翘曲或分层的可能性降至最低;此外,每一散热片的厚度均在10密尔(mil)以下,以发挥本发明薄型化与高设计弹性的功效,夹层散热片25的堆栈数量则根据芯片12的厚度或配置层数而定,使顶层散热片30可平整地粘置在芯片12的非作用表面12a上。The
由图2B、图2C可知,该夹层散热片25与底层散热片20的中央分别开设有一第一镂空部26与一第二镂空部21,第一、第二镂空部26、21的形状为方形,以便其相互堆栈后每一镂空部的边缘可相互对齐,而在基板10上围置出一个方形空间,将芯片12包覆在该空间内,同时,如图2B所示,该夹层散热片25有两种设计尺寸,当其相互堆栈时将此大小两种尺寸的夹置片相互间隔堆栈,以令其外缘在堆栈后呈错位排列而两两互不对齐,并如图1的剖视图一般,增加封装件周围各侧的散热面积。As can be seen from Fig. 2B and Fig. 2C, the center of the
此外,顶层散热片30、夹层散热片25与底层散热片20的四个角缘分别有第一定位部32、第二定位部27与第三定位部22,其中,该第一定位部32是一凸缘,而第二定位部27则包括相互对应的一凹孔与一凸缘,第三定位部22为一孔洞,且上述各凸缘、凹孔与孔洞的位置与尺寸相互对应,当各散热片堆栈时相互嵌合定位并粘着各散热片;因此,如图1的剖视图所示,该夹层散热片25即是利用第二定位部27的凸缘嵌合在底层散热片20的第三定位部22的孔洞中,而每一夹层散热片25也分别利用第二定位部27的凸缘与凹孔的相互嵌合关系来堆栈定位,最后,再通过顶层散热片30的第一定位部32的凸缘,嵌合在最顶层夹层散热片25的第二定位部27的凹孔中,即完成本发明的散热片的堆栈定位。In addition, the four corners of the
图3A、图3B、图3C分别显示第一定位部32、第二定位部27与第三定位部22的成形方法,它是利用低成本的冲压(Stamp)制法,以预定尺寸的冲压头(Punch)冲制出所需的定位部,如图3C所示,通过水平冲压头40在平板状底层散热片20上冲压出贯穿散热片20的孔洞22a,孔洞22a的尺寸大小根据冲压头40的尺寸而定,通过贯穿散热片20的孔洞22a,也可令敷设在底层散热片20与基板10间的粘胶材料16受压而填入第三定位部22的孔洞22a中,从而强化底层散热片20的粘着性;同时,图3B是以水平冲压头40冲压夹层散热片25的上表面25a,使其上表面25a形成未贯穿散热片25的凹孔27a,受冲压的材料则受压挤而形成散热片下表面25b的凸缘27b,此时,凸缘27b的位置将对应凹孔27a的位置,其尺寸恰可嵌合在底层散热片20的孔洞22a中;另外,图3A则与图3B相同,借一水平冲压头40冲压顶层散热片30的上表面30a,也同样可在该顶层散热片30上形成一组相对应的凸缘32b与凹孔32a,并借凸缘32b嵌合在最顶层夹层散热片25的凹孔27a上;需注意的是,由于该顶层散热片30、夹层散热片25与底层散热片20需相互堆栈以定位在基板10上,故第一定位部32、第二定位部27与第三定位部22的冲制位置需一定的精度,以便堆栈与嵌合,使夹层散热片25与底层散热片20的第一镂空部26与第二镂空部21内缘能确实对齐而将芯片12包覆其中。3A, FIG. 3B, and FIG. 3C show the forming methods of the
通过上述的堆栈式散热片设计与其冲压制法,即可避免形成一体成型的现有散热片的凹陷容设空间,也无须采用锻造制法,可直接通过低成本的冲压制法,轻易制得具有高设计弹性的散热结构;同时,由于该堆栈式散热片的每一散热片20、25、30均具有极小的厚度,且也可视需要改变堆栈层数(改变夹层散热片25的配置数目即可),故该散热结构并不具有厚度比例(Aspect Ratio)上的限制,可如图1所示,令其整体散热结构的高度T接近芯片容设空间的厚度t,仅略高出一个顶层散热片30的厚度,大幅降低现有封装件的高度,可达到封装件的薄型化需求;此外,也可根据基板10上的芯片布局而任意改变各散热片的尺寸或面积,以发挥其高设计弹性的功效,或适度提高该封装件的散热效能;再者,本发明的散热结构中的各散热片20、25、30由于都是堆栈而成,且均为平板状设计而没有其它加工,所以其内部并无残留应力的集中,且在接置后也没有受束缚而无法自由变形的区域,故无论是经历后续高温制程或各种可靠性测试,都不会因环境温度变化而变形或分层,充分解决了现有技术上的所有缺点。Through the above-mentioned stacked heat sink design and its stamping method, it is possible to avoid the recessed accommodation space of the existing heat sink formed in one piece, and it is not necessary to use forging manufacturing method, and it can be directly produced by low-cost stamping method. There is a heat dissipation structure with high design flexibility; at the same time, since each
实施例2Example 2
本发明的散热片配置除上述实施例1外,也有其它可达到同等功效的设计,例如图4所示的本发明实施例2剖视图,与实施例1相同,设计具有大小两种尺寸的夹层散热片25,但是上述实施例1的多个夹层散热片25的第一镂空部26内缘相互对齐,令散热片外缘呈错位排列,增加封装件两侧的散热面积,本实施例的设计是使多个夹层散热片25的外缘25c相互对齐,令夹层散热片25的内缘25d(即第一镂空部26的边缘)相互错位排列,且本实施例中每一夹层散热片25的内缘25d虽呈错位排列,但其各内缘25d间仍可围置成包覆芯片12的容设空间,且其内缘25d也不会接触芯片12的两个侧表面。In addition to the above-mentioned embodiment 1, the heat sink configuration of the present invention also has other designs that can achieve the same effect. For example, the sectional view of embodiment 2 of the present invention shown in FIG. 25, but the inner edges of the
实施例3Example 3
本发明的实施例3即是结合上述实施例1与实施例2,如图5的剖视图所示,为各层散热片的内、外缘25d、25c均呈错位排列的半导体封装件,这种设计由于具有更大的散热面积与更多的散热路径,所以也具有更佳的散热效率。Embodiment 3 of the present invention is a combination of Embodiment 1 and Embodiment 2 above. As shown in the cross-sectional view of FIG. The design also has better heat dissipation efficiency due to a larger heat dissipation area and more heat dissipation paths.
实施例4Example 4
本发明实施例4是将上述各层散热片如图6所示的剖视图排列,令每一顶层散热片30、夹层散热片25与底层散热片20都具有相同的尺寸,并使其在堆栈后的内、外缘25d、25c完全切齐,而成为一周缘平整的半导体封装件,同样也可发挥本发明的功效。Embodiment 4 of the present invention arranges the heat sinks of the above layers as shown in Figure 6 in cross-sectional view, so that each
实施例5Example 5
图7所示是本发明的实施例5剖视图,其增加顶层散热片30的尺寸,使其面积远大于底层、夹层散热片20、25的面积,以加大散热表面,并通过导热胶15的传热而提高芯片12的散热效能,这种顶层散热片30的尺寸或形状并无设计上的限制,足以充分满足散热上的最大需求,不像现有技术那样,受限于制程而无法改变散热片表面的面积,也不需增设不利于薄性化封装趋势的现有散热鳍片,充分发挥本发明的高设计弹性功效。Figure 7 is a cross-sectional view of Embodiment 5 of the present invention, which increases the size of the
实施例6Example 6
本发明堆栈的散热片种类除上述的底层、夹层、顶层散热片20、25、30外,也可在顶层散热片30上额外堆栈多个增层散热片45,以进一步提高散热效能。实施例6如图8A所示,该增层散热片45为不具有镂空部的板状散热片,且其也以错位的方式排列,以增加散热面积;此外,多个增层散热片45也可如图8B的剖视图所示,分别在其中央开设一镂空部46,以使顶层散热片30上对应导热胶15(芯片12)的中央位置30c,露出增层散热片45的镂空部46外,以加速芯片12散热的速度。In addition to the bottom layer, interlayer, and top
实施例7Example 7
当本发明的散热结构用于具有堆栈芯片的封装件时,其效果更优于现有技术。如图9所示的本发明实施例7的剖视图,其是具有双层堆栈芯片的封装件,此时由于该堆栈式散热结构没有厚度比例的限制,所以顶层散热片30的厚度不会因芯片堆栈数目增加而加厚,同时,夹层散热片25也可配合堆栈芯片的尺寸而改变其镂空部26的设计,如图所示改变容设空间的形状,从而缩短最顶层芯片120的热量传递路径。When the heat dissipation structure of the present invention is used in a package with stacked chips, its effect is better than that of the prior art. As shown in Figure 9, the cross-sectional view of Embodiment 7 of the present invention is a package with double-layer stacked chips. At this time, since the stacked heat dissipation structure has no thickness ratio restrictions, the thickness of the
实施例8Example 8
此外,当基板上除芯片外另增设其它被动组件时,也可利用本发明的散热结构的设计弹性,达到最低的材料成本与最佳的散热功效。图10所示是本发明实施例8,其改变夹层散热片25的镂空部26的尺寸,使散热结构的侧边面积不会因被动组件17而增加过多,同时也可充分缩短被动组件17的散热路径,充分解决现有散热片的问题。In addition, when other passive components are added on the substrate besides the chip, the design flexibility of the heat dissipation structure of the present invention can also be used to achieve the lowest material cost and the best heat dissipation effect. Figure 10 shows Embodiment 8 of the present invention, which changes the size of the
实施例9Example 9
对于具有多芯片(Multi-Chip)设计的封装件,也可利用本发明的散热结构设计,令多个芯片都容设在镂空部围置成的容设空间中,例如图11A所示的本发明实施例9,即是通过图11B所示的夹层散热片25,利用其大面积的镂空部26设计包覆该两个芯片12,但是该镂空部26的设计并非仅限于一个,也可如图12A、图12B,分别在每一夹层散热片25与底层散热片20上开设两个镂空部26a、26b,以分别容设基板10上的两个芯片12,增加芯片12热量的传递路径选择,达到进一步提高散热速度的功效。For a package with a multi-chip design, the heat dissipation structure design of the present invention can also be used to allow multiple chips to be accommodated in the accommodation space surrounded by the hollow part, such as the present invention shown in Figure 11A Embodiment 9 of the invention uses the
实施例10Example 10
另外,本发明也可如图13所示的实施例10设计,延长底层散热片20、夹层散热片25与顶层散热片30的侧边长度,并在顶层散热片30的延长区域30d上增设一强迫式(Forced)散热风扇50,借该风扇50抽排芯片12产生的热量,并可利用多层夹层散热片25形成的多重路径加速散热。In addition, the present invention can also be designed in
实施例11Example 11
本发明的散热结构不是用现有的锻造法制造,所以除上述各功效外,也可在底层散热片上开设其它定位机构,以解决现有散热片受震动后容易脱落的问题,实施例11就是在底层散热片20与基板10接触的表面上,利用冲压头冲制出一开槽51,使基板第一表面上10a的粘胶材料16受压而填入开槽51中,开槽51可如图14A的剖视图所示,形成阶梯状的内壁表面51a,以增加粘胶材料16与底层散热片20的粘着面积,提高散热片20的附着力,该开槽51也可如图14B的剖视图,形成锥状的倾斜内壁表面51b,也同样具有强化散热片20粘着的功效。The heat dissipation structure of the present invention is not manufactured by the existing forging method, so in addition to the above-mentioned functions, other positioning mechanisms can also be provided on the bottom heat sink to solve the problem that the existing heat sink is easy to fall off after being shaken.
上述各实施例均是通过各层平板状散热片的设计,利用其定位部相互堆栈,达到不同封装件的功效要求,但是相互堆栈的定位部仅以实施例1的说明为例,并非本发明的唯一实施方式,如图15所示的半导体封装件剖视图(以实施例1的结构为例),其定位部的冲压方向即与上述各实施例相反,但是同样可用于本发明的各实施例中,其中,形成于顶层散热片30角缘的第一定位部52为一孔洞52a,形成于夹层散热片25的第二定位部47包括相互对应的一凸缘47a与一凹孔47b,形成于底层散热片20的第三定位部42则为一凸缘42a,以便相互对应,可在各散热片堆栈时进行嵌合定位;除了这一定位部的等效实施例外,其它无须使用锻造制法而形成于散热片上的各式定位机构也都适用于本发明的散热结构中。Each of the above-mentioned embodiments is based on the design of each layer of flat heat sink, and uses its positioning parts to stack each other to meet the functional requirements of different packages. However, the stacked positioning parts are only described in Example 1 as an example, not the present invention. The only implementation mode of the semiconductor package shown in Figure 15 (taking the structure of Embodiment 1 as an example), the punching direction of the positioning part is opposite to that of the above-mentioned embodiments, but it can also be used in each embodiment of the present invention Among them, the first positioning portion 52 formed on the corner edge of the
此外,上述各实施例的定位部均形成于各散热片的角缘位置,这种位置设计除配合底层散热片20与夹层散热片25的镂空部26、21设计外,也可使散热片的定位力更为均匀稳固,但是该位置也非本发明的唯一设计,如图16A、图16B、图16C所示形成于各散热片20、25、30边缘上的定位部22、27、32,也可发挥近似的定位功效,同样可用于本发明中。In addition, the positioning parts of the above-mentioned embodiments are all formed at the corner positions of the heat sinks. This position design can not only cooperate with the design of the
综上所述,本发明的具有散热结构的半导体封装件,确提供了一种新式散热结构,无须用锻造法制造,可降低成本,且也不受厚度比例的限制,充分符合封装技术的薄型化要求;同时,该散热结构也可根据需要改变散热片形状或增大其散热面积,还可避免变形与分层,并充分兼顾其粘着稳固性,已完全克服上述现有的所有技术瓶颈。In summary, the semiconductor package with heat dissipation structure of the present invention does provide a new type of heat dissipation structure, which does not need to be manufactured by forging, can reduce costs, and is not limited by the thickness ratio, and fully meets the thin profile of packaging technology. At the same time, the heat dissipation structure can also change the shape of the heat sink or increase its heat dissipation area according to needs, and can also avoid deformation and delamination, and fully take into account its adhesion stability, which has completely overcome all the above-mentioned existing technical bottlenecks.
Claims (22)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB031558178A CN100369243C (en) | 2003-08-22 | 2003-08-22 | Semiconductor package with heat dissipation structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB031558178A CN100369243C (en) | 2003-08-22 | 2003-08-22 | Semiconductor package with heat dissipation structure |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1585115A CN1585115A (en) | 2005-02-23 |
CN100369243C true CN100369243C (en) | 2008-02-13 |
Family
ID=34598207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB031558178A Expired - Fee Related CN100369243C (en) | 2003-08-22 | 2003-08-22 | Semiconductor package with heat dissipation structure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100369243C (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100447989C (en) * | 2005-05-18 | 2008-12-31 | 新灯源科技有限公司 | Integrated circuit packaging and manufacturing method |
CN101466244B (en) * | 2007-12-21 | 2012-06-20 | 鸿富锦精密工业(深圳)有限公司 | Radiator |
CN102881667A (en) * | 2012-10-08 | 2013-01-16 | 日月光半导体制造股份有限公司 | Semiconductor Package Structure |
CN104733405A (en) * | 2015-04-15 | 2015-06-24 | 江苏晟芯微电子有限公司 | Pin-type heat-radiating semiconductor packaging structure |
CN110943053A (en) * | 2019-11-22 | 2020-03-31 | 中国电子科技集团公司第十三研究所 | Ceramic airtight packaging device and packaging method |
CN110957286A (en) * | 2019-12-04 | 2020-04-03 | 矽品科技(苏州)有限公司 | Slice disconnect-type fin subassembly |
TWI732509B (en) * | 2020-04-01 | 2021-07-01 | 矽品精密工業股份有限公司 | Electronic package |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5600541A (en) * | 1993-12-08 | 1997-02-04 | Hughes Aircraft Company | Vertical IC chip stack with discrete chip carriers formed from dielectric tape |
US5773886A (en) * | 1993-07-15 | 1998-06-30 | Lsi Logic Corporation | System having stackable heat sink structures |
US5956226A (en) * | 1997-10-01 | 1999-09-21 | Motorola, Inc. | Electrochemical capacitor used for thermal management |
US6060778A (en) * | 1997-05-17 | 2000-05-09 | Hyundai Electronics Industries Co. Ltd. | Ball grid array package |
US6359341B1 (en) * | 1999-01-21 | 2002-03-19 | Siliconware Precision Industries, Co., Ltd. | Ball grid array integrated circuit package structure |
CN1354512A (en) * | 2000-11-17 | 2002-06-19 | 矽品精密工业股份有限公司 | Semiconductor package with heat dissipation structure |
US6552266B2 (en) * | 1998-03-11 | 2003-04-22 | International Business Machines Corporation | High performance chip packaging and method |
-
2003
- 2003-08-22 CN CNB031558178A patent/CN100369243C/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5773886A (en) * | 1993-07-15 | 1998-06-30 | Lsi Logic Corporation | System having stackable heat sink structures |
US5600541A (en) * | 1993-12-08 | 1997-02-04 | Hughes Aircraft Company | Vertical IC chip stack with discrete chip carriers formed from dielectric tape |
US6060778A (en) * | 1997-05-17 | 2000-05-09 | Hyundai Electronics Industries Co. Ltd. | Ball grid array package |
US5956226A (en) * | 1997-10-01 | 1999-09-21 | Motorola, Inc. | Electrochemical capacitor used for thermal management |
US6552266B2 (en) * | 1998-03-11 | 2003-04-22 | International Business Machines Corporation | High performance chip packaging and method |
US6359341B1 (en) * | 1999-01-21 | 2002-03-19 | Siliconware Precision Industries, Co., Ltd. | Ball grid array integrated circuit package structure |
CN1354512A (en) * | 2000-11-17 | 2002-06-19 | 矽品精密工业股份有限公司 | Semiconductor package with heat dissipation structure |
Also Published As
Publication number | Publication date |
---|---|
CN1585115A (en) | 2005-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6980438B2 (en) | Semiconductor package with heat dissipating structure | |
US10170389B2 (en) | Stacked semiconductor die assemblies with multiple thermal paths and associated systems and methods | |
CN104733450B (en) | Three-dimensional space packaging structure and manufacturing method thereof | |
US8299608B2 (en) | Enhanced thermal management of 3-D stacked die packaging | |
US7611923B2 (en) | Method and apparatus for forming stacked die and substrate structures for increased packing density | |
US20140042607A1 (en) | Microbump seal | |
US20080042261A1 (en) | Integrated circuit package with a heat dissipation device and a method of making the same | |
US20090298236A1 (en) | Integrated Module for Data Processing System | |
US20080093733A1 (en) | Chip package and manufacturing method thereof | |
US6552267B2 (en) | Microelectronic assembly with stiffening member | |
US20070205495A1 (en) | Electronic Component With Stacked Semiconductor Chips And Heat Dissipating Means | |
US20080164605A1 (en) | Multi-chip package | |
JP2011101044A (en) | Stacked package and method of manufacturing the same | |
KR19980032206A (en) | High Performance Multichip Module Package | |
US20100290193A1 (en) | Stacked-chip packaging structure and fabrication method thereof | |
TWI681523B (en) | Mechanically-compliant and electrically and thermally conductive leadframes for component-on-package circuits | |
US7038309B2 (en) | Chip package structure with glass substrate | |
CN113764396B (en) | Semiconductor packaging structure based on rewiring layer and packaging method thereof | |
TWI391084B (en) | Pcb structure having heat-dissipating member | |
US20120168936A1 (en) | Multi-chip stack package structure and fabrication method thereof | |
US11776866B2 (en) | Semiconductor module heatspreading lid having integrated separators for multiple chips | |
CN100369243C (en) | Semiconductor package with heat dissipation structure | |
CN115332187A (en) | Package based on interposer | |
JP3944898B2 (en) | Semiconductor device | |
CN1319163C (en) | Semiconductor package with heat sink |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20080213 |