CN100361279C - A pre-cleaning process after etching silicon-containing low dielectric constant material - Google Patents
A pre-cleaning process after etching silicon-containing low dielectric constant material Download PDFInfo
- Publication number
- CN100361279C CN100361279C CNB031169325A CN03116932A CN100361279C CN 100361279 C CN100361279 C CN 100361279C CN B031169325 A CNB031169325 A CN B031169325A CN 03116932 A CN03116932 A CN 03116932A CN 100361279 C CN100361279 C CN 100361279C
- Authority
- CN
- China
- Prior art keywords
- silk
- etching
- silicon wafer
- chamber
- degassing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 27
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 21
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 21
- 239000010703 silicon Substances 0.000 title claims abstract description 21
- 238000005530 etching Methods 0.000 title claims abstract description 20
- 238000004140 cleaning Methods 0.000 title abstract description 19
- 239000000463 material Substances 0.000 title description 10
- 238000007872 degassing Methods 0.000 claims abstract description 10
- 239000003989 dielectric material Substances 0.000 claims abstract description 8
- 238000005516 engineering process Methods 0.000 claims abstract description 8
- 239000010949 copper Substances 0.000 abstract description 13
- 230000004888 barrier function Effects 0.000 abstract description 11
- 229910052802 copper Inorganic materials 0.000 abstract description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 abstract description 8
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- 238000004544 sputter deposition Methods 0.000 abstract description 6
- 230000010354 integration Effects 0.000 abstract description 4
- 238000001816 cooling Methods 0.000 abstract description 3
- 239000004065 semiconductor Substances 0.000 abstract description 3
- 230000001934 delay Effects 0.000 abstract 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000000151 deposition Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 238000004528 spin coating Methods 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Landscapes
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
本发明属于半导体集成电路制造工艺技术领域,具体涉及到一种SiLK刻蚀后的预清洗工艺。随着器件尺寸愈来愈小,互连RC延迟对器件开启速度影响愈来愈大。目前人们用铜和低介电材料来减少RC互连延迟。SiLK是一种新的低介电材料,它在工艺集成过程中还存在一些问题。本发明改进提出了一种SiLK刻蚀后的预清洗工艺,具体过程为:将刻蚀后的SiLK硅片设备的去气腔室(CHC);然后将去气后硅片进入预清洗腔室(CHA),用Ar等离子体对硅片进行低能溅射刻蚀;最后,将硅片分别进入冷却室(CH1)和阻挡层(CH2)腔室淀积阻挡层,如Ti/TiN或Ta/TaN。The invention belongs to the technical field of semiconductor integrated circuit manufacturing technology, and in particular relates to a pre-cleaning process after SiLK etching. As device sizes get smaller, interconnect RC delays have an increasing impact on device turn-on speed. Copper and low dielectric materials are currently used to reduce RC interconnect delays. SiLK is a new low-dielectric material, but it still has some problems in process integration. The present invention improves and proposes a pre-cleaning process after SiLK etching, and the specific process is: the degassing chamber (CHC) of the SiLK silicon wafer device after etching; then the silicon wafer after degassing is entered into the pre-cleaning chamber (CHA), use Ar plasma to perform low-energy sputtering etching on the silicon wafer; finally, put the silicon wafer into the cooling chamber (CH1) and the barrier layer (CH2) chamber to deposit the barrier layer, such as Ti/TiN or Ta/ TaN.
Description
技术领域technical field
本发明属于半导体集成电路制造工艺技术领域,具体涉及到一种含硅低介电常数材料(SiLK)刻蚀后的预清洗工艺。The invention belongs to the technical field of semiconductor integrated circuit manufacturing technology, and in particular relates to a pre-cleaning process after etching of a silicon-containing low dielectric constant material (SiLK).
背景技术Background technique
随着IC技术的不断发展,器件尺寸愈来愈小,互连RC延迟对器件开启速度影响愈来愈大,远远超过栅延迟带来的影响,所以减少RC互连延迟成为人们关注的焦点。1997年IC业界开始用电阻率小的Cu代替电阻率大的Al,以减小互连电阻,并应用于0.22μm及以下的工艺(尽管Cu是人们不愿意引入半导体生产工艺的金属之一,主要是怕Cu在硅片和二氧化硅介质中扩散很快,万一沾污会引起器件性能不稳定);另一方面,人们用低介电材料(k值小于SiO2)来取代传统的SiO2,以减小互连金属间/层电容C,并开始应用于0.18μm及以下技术。一开始人们用掺F的SiO2---FSG(k~3.5,一种改进型SiO2)应用于0.18μm技术制造的逻辑和存贮器件,如CPU和DRAM/SRAM。而进入0.13μm技术时,人们需要k值更低的材料(k≤3)。目前有两种制备低介电材料的方法---CVD和旋涂法(Spin on),并都应用于生产线。CVD设备厂商提倡用CVD方法制作的低介电材料,如Applied Materials公司和Novellus公司正在和已开发SiOC有关的产品;而材料供应厂商则提倡用旋涂法制备低介电材料,如SiLK就是Dow Chemical公司研发的产品,其有关特性如下表所示(来自Dow chemical)。如果将SiLK和Cu应用于后道互连工艺中,器件的性能较Al/SiO2提高37%。With the continuous development of IC technology, the device size is getting smaller and smaller, and the interconnection RC delay has a greater impact on the device turn-on speed, far exceeding the impact of the gate delay, so reducing the RC interconnection delay has become the focus of attention. . In 1997, the IC industry began to use Cu with low resistivity to replace Al with high resistivity to reduce the interconnection resistance, and it was applied to the process of 0.22μm and below (although Cu is one of the metals that people are reluctant to introduce into the semiconductor production process, The main reason is that Cu will diffuse quickly in the silicon wafer and silicon dioxide medium, and the performance of the device will be unstable in case of contamination); on the other hand, people use low dielectric materials (k value is smaller than SiO 2 ) to replace the traditional SiO 2 , in order to reduce the interconnection intermetallic/layer capacitance C, and start to apply to the technology of 0.18μm and below. At the beginning, people used F-doped SiO 2 --- FSG (k ~ 3.5, an improved SiO 2 ) to apply to logic and storage devices manufactured by 0.18μm technology, such as CPU and DRAM/SRAM. When entering 0.13μm technology, people need materials with lower k value (k≤3). There are currently two methods for preparing low dielectric materials --- CVD and spin coating (Spin on), and both are used in the production line. CVD equipment manufacturers advocate low-dielectric materials made by CVD methods, such as Applied Materials and Novellus, which are developing products related to SiOC; while material suppliers advocate the use of spin-coating methods to prepare low-dielectric materials, such as SiLK is Dow The relevant characteristics of the products developed by Chemical Company are shown in the table below (from Dow chemical). If SiLK and Cu are applied to the subsequent interconnection process, the performance of the device is 37% higher than that of Al/SiO 2 .
下表是有关SiLK材料的物理和电学特性(来自Dow Chemical)The following table is about the physical and electrical properties of SiLK materials (from Dow Chemical)
但SiLK材料在应用于大生产时,与铜工艺的集成过程中还存在一些问题,如SiLK的k值变化,刻蚀气体的选择,与阻挡层的粘附性,对铜CMP工艺的忍耐程度等。SiLK(k=2.7)是一种新的低介电树脂材料,对于SiLK材料与铜的工艺集成过程所存在的问题,由于是一个全新的技术问题,目前都在积极的探索中。However, when the SiLK material is applied to mass production, there are still some problems in the integration process with the copper process, such as the change of k value of SiLK, the choice of etching gas, the adhesion to the barrier layer, and the tolerance to the copper CMP process. wait. SiLK (k=2.7) is a new low-dielectric resin material. The problems existing in the process integration process of SiLK material and copper are currently being actively explored because it is a brand-new technical problem.
发明内容Contents of the invention
本发明提出SiLK刻蚀后的预清洗工艺(主要应于大马士革工艺模块),目的在于:1.为了清除刻蚀后的残留物,如去胶后的聚合物留存在孔侧壁或底部;2.将底部未完全刻通的SiC刻蚀阻挡层用溅射方式打通。The present invention proposes a pre-cleaning process (mainly applied to the Damascus process module) after SiLK etching, with the purpose of: 1. In order to remove the residue after etching, such as the polymer after degumming remains on the side wall or bottom of the hole; 2. . Open up the SiC etch barrier layer whose bottom is not completely etched through by sputtering.
SiLK低介电材料是由美国Dow Corning公司研发的新的旋涂材料,然而在铜单/双大马士革工艺集成中有许多问题需要解决,如SiLKk值的变化,硬掩膜的选择,刻蚀停止层的选择,与铜阻挡层的粘附性,对CMP工艺的忍耐程度,刻蚀气体的选择,刻蚀后通孔的清洗等。SiLK low dielectric material is a new spin-coating material developed by Dow Corning in the United States. However, there are many problems to be solved in copper single/double damascene process integration, such as the change of SiLKk value, hard mask selection, etch stop Layer selection, adhesion to copper barrier layer, tolerance to CMP process, selection of etching gas, cleaning of through holes after etching, etc.
本发明提出的SiLK刻蚀后的预清洗工艺,是用Ar等离子体方法对SiLK刻蚀后的硅片进行预清洗。具体步骤为:将刻蚀后的SiLK硅片放入设备的去气腔室(CHC)进行去气工序处理;然后将去气后的硅片进入预清洗腔室(CHA)用Ar等离子体对硅片进行溅射刻蚀,完成预清洗工艺。The pre-cleaning process after SiLK etching proposed by the present invention is to use Ar plasma method to pre-clean the silicon wafer after SiLK etching. The specific steps are: put the etched SiLK silicon wafer into the degassing chamber (CHC) of the equipment for degassing process; then put the degassed silicon wafer into the pre-cleaning chamber (CHA) and treat it with Ar plasma. The silicon wafer is sputter etched to complete the pre-cleaning process.
本发明中,上述的去气工序要求控制硅片温度为340-360℃,时间为54-66秒,Ar气流量为12-18sccm;上述的用Ar等离子进行低能溅射刻蚀或清洗的时间为24-36秒,偏压为270-330V。In the present invention, the above-mentioned degassing process requires controlling the temperature of the silicon wafer to be 340-360° C., the time is 54-66 seconds, and the Ar gas flow is 12-18 sccm; the time for the above-mentioned low-energy sputtering etching or cleaning with Ar plasma for 24-36 seconds with a bias of 270-330V.
本发明是针对刻蚀后通孔的清洗问题提出的一种工艺---Ar等离子体预清洗(在铜阻挡层淀积前)。通过比较有无预清洗工艺的电学测量结果和SEM/FIB显微图,其结论是:该工艺改善了金属的填孔性,降低金属互连电阻。Ar等离子体不仅将通孔中残留物除去,而且Ar离子溅射使通孔直角处平滑(顶部和底部),易于填空。另外,有些区域通孔底部SiC刻蚀阻挡层未完全刻通,预清洗时Ar离子溅射也能使之部分或全部开通。The present invention proposes a process—Ar plasma pre-cleaning (before the deposition of the copper barrier layer) aimed at the cleaning problem of the through hole after etching. By comparing the electrical measurement results and SEM/FIB micrographs with and without pre-cleaning process, it is concluded that this process improves the hole filling of metal and reduces the resistance of metal interconnection. Ar plasma not only removes the residue in the through hole, but also Ar ion sputtering makes the right angle of the through hole smooth (top and bottom), easy to fill in the hole. In addition, the SiC etch barrier layer at the bottom of the through hole in some areas is not completely etched through, and Ar ion sputtering during pre-cleaning can also partially or completely open it.
本发明工艺简单,效果明显,容易操作,非常适用于大生产线。The invention has simple process, obvious effect and easy operation, and is very suitable for large production lines.
具体实施方式Detailed ways
下面通过实施例具体描述本发明。The present invention will be specifically described below by way of examples.
1. 去气(Degas):将刻蚀后的SiLK硅片(比如单大马士革结构:50nm SiC/500nmSiLK/50nm SiC/150nm SiO2)放入Endural设备的去气腔室(CHC),在350℃持续60秒,Ar气流量15sccm。1. Degassing (Degas) : Put the etched SiLK silicon wafer (such as a single damascene structure: 50nm SiC/500nmSiLK/50nm SiC/150nm SiO2) into the degassing chamber (CHC) of the Endural equipment, and continue at 350°C For 60 seconds, the Ar gas flow rate was 15 sccm.
2. 通孔预清洗:将去气后硅片进入预清洗腔室(CHA),用Ar等离子体对硅片进行低能溅射刻蚀,以除去通孔内的残留物,为下一步淀积铜阻挡层作准备。清洗的具体参数如下:清洗(或刻蚀)时间:30s;偏压:300V;RF1和RF2的功率皆为300W;Ar气流量为5sccm。2. Through-hole pre-cleaning : put the degassed silicon wafer into the pre-cleaning chamber (CHA), and use Ar plasma to perform low-energy sputtering etching on the silicon wafer to remove the residue in the through-hole for the next step of deposition Copper barrier preparation. The specific parameters of cleaning are as follows: cleaning (or etching) time: 30s; bias voltage: 300V; power of RF1 and RF2 are both 300W; Ar gas flow rate is 5 sccm.
3. 冷却及铜阻挡层淀积:硅片清洗后分别进入冷却室(CHl)和阻挡层(CH2)腔室淀积阻挡层,如Ti/TiN或Ta/TaN。3. Cooling and deposition of copper barrier layer : After the silicon wafer is cleaned, enter the cooling chamber (CH1) and the barrier layer (CH2) chamber to deposit barrier layers, such as Ti/TiN or Ta/TaN.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB031169325A CN100361279C (en) | 2003-05-15 | 2003-05-15 | A pre-cleaning process after etching silicon-containing low dielectric constant material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB031169325A CN100361279C (en) | 2003-05-15 | 2003-05-15 | A pre-cleaning process after etching silicon-containing low dielectric constant material |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1450609A CN1450609A (en) | 2003-10-22 |
CN100361279C true CN100361279C (en) | 2008-01-09 |
Family
ID=28684299
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB031169325A Expired - Fee Related CN100361279C (en) | 2003-05-15 | 2003-05-15 | A pre-cleaning process after etching silicon-containing low dielectric constant material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100361279C (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100369215C (en) * | 2005-12-02 | 2008-02-13 | 北京北方微电子基地设备工艺研究中心有限责任公司 | Adsorption stripping process for removing exposed zone polymer |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6077782A (en) * | 1997-02-28 | 2000-06-20 | Texas Instruments Incorporated | Method to improve the texture of aluminum metallization |
US6355563B1 (en) * | 2001-03-05 | 2002-03-12 | Chartered Semiconductor Manufacturing Ltd. | Versatile copper-wiring layout design with low-k dielectric integration |
-
2003
- 2003-05-15 CN CNB031169325A patent/CN100361279C/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6077782A (en) * | 1997-02-28 | 2000-06-20 | Texas Instruments Incorporated | Method to improve the texture of aluminum metallization |
US6355563B1 (en) * | 2001-03-05 | 2002-03-12 | Chartered Semiconductor Manufacturing Ltd. | Versatile copper-wiring layout design with low-k dielectric integration |
Also Published As
Publication number | Publication date |
---|---|
CN1450609A (en) | 2003-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4425432B2 (en) | Manufacturing method of semiconductor device | |
TWI611545B (en) | Interconnection structure and manufacturing method thereof | |
CN105720004B (en) | The forming method of semiconductor structure | |
CN104347488B (en) | The forming method of interconnection structure | |
CN105097650B (en) | The forming method of contact plunger | |
CN107731739A (en) | The forming method of semiconductor structure | |
CN106409752A (en) | Formation method of semiconductor structure | |
KR100500932B1 (en) | Method of dry cleaning and photoresist strip after via contact etching | |
CN106356330B (en) | The forming method of semiconductor structure | |
CN106409751B (en) | Method for forming semiconductor structure | |
CN104425210A (en) | Method for forming semiconductor structure | |
CN106683996A (en) | Metal silicide and method for manufacturing contact hole on metal silicide | |
US7429542B2 (en) | UV treatment for low-k dielectric layer in damascene structure | |
KR100538748B1 (en) | Chromium adhesion layer for copper vias in low-k technology | |
US7851919B2 (en) | Metal interconnect and IC chip including metal interconnect | |
CN100361279C (en) | A pre-cleaning process after etching silicon-containing low dielectric constant material | |
CN110970394A (en) | Semiconductor structure and method for semiconductor process | |
CN103839876A (en) | Method and device for manufacturing semiconductor device | |
Warashina et al. | Advanced air gap formation scheme using volatile material | |
CN105742229B (en) | The forming method of semiconductor structure | |
CN1976020A (en) | Interconnection structure and forming method thereof | |
KR100567379B1 (en) | Cleaning Method and Cleaning Device for Semiconductor Devices | |
US7413994B2 (en) | Hydrogen and oxygen based photoresist removal process | |
CN104299939A (en) | Forming method of interconnection structure | |
CN100334696C (en) | Etching process for silicide low dielectric material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20080109 Termination date: 20160515 |