CN100359272C - Refrigerator and vacuum insulation material and manufacturing method thereof - Google Patents
Refrigerator and vacuum insulation material and manufacturing method thereof Download PDFInfo
- Publication number
- CN100359272C CN100359272C CNB2005100538392A CN200510053839A CN100359272C CN 100359272 C CN100359272 C CN 100359272C CN B2005100538392 A CNB2005100538392 A CN B2005100538392A CN 200510053839 A CN200510053839 A CN 200510053839A CN 100359272 C CN100359272 C CN 100359272C
- Authority
- CN
- China
- Prior art keywords
- core
- mentioned
- inorfil aggregate
- refrigerator
- inorganic fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D23/00—General constructional features
- F25D23/06—Walls
- F25D23/065—Details
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/02—Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L59/00—Thermal insulation in general
- F16L59/06—Arrangements using an air layer or vacuum
- F16L59/065—Arrangements using an air layer or vacuum using vacuum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L59/00—Thermal insulation in general
- F16L59/04—Arrangements using dry fillers, e.g. using slag wool
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2201/00—Insulation
- F25D2201/10—Insulation with respect to heat
- F25D2201/12—Insulation with respect to heat using an insulating packing material
- F25D2201/126—Insulation with respect to heat using an insulating packing material of cellular type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2201/00—Insulation
- F25D2201/10—Insulation with respect to heat
- F25D2201/14—Insulation with respect to heat using subatmospheric pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D23/00—General constructional features
- F25D23/06—Walls
- F25D23/062—Walls defining a cabinet
- F25D23/064—Walls defining a cabinet formed by moulding, e.g. moulding in situ
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B40/00—Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Thermal Insulation (AREA)
- Refrigerator Housings (AREA)
Abstract
本发明的冰箱的制造方法的顺序如下:把新材料无机纤维集合体(7)制造成薄板状,将使用由无机纤维集合体构成的废芯材的废芯材无机纤维集合体(6)制作成薄板状。接着,把新材料无机纤维集合体(7)与废芯材无机纤维集合体(6)叠层起来,通过将粘接材料浸透在这种叠层件中并进行热压,用粘接材料把叠层件粘接起来并压制到规定的厚度,形成芯材原材料(2A)并从该芯材原材料(2A)中除去边料从而形成芯材(2)。然后,把芯材(2)和吸附部件(3)收放在由不透气性薄膜制成的外包覆材料(1)内,经抽真空、密封后制成真空绝热材料(50)。然后,在把真空绝热材料(50)设置在外箱与内箱之间后,在外箱(22)与内箱(23)之间的空间内填充发泡绝热材料(24),形成绝热体。
The procedure of the manufacturing method of the refrigerator of the present invention is as follows: the new material inorganic fiber assembly (7) is produced into a thin plate shape, and the waste core material inorganic fiber assembly (6) using the waste core material composed of the inorganic fiber assembly is produced. into a thin plate. Next, the new material inorganic fiber assembly (7) and the waste core material inorganic fiber assembly (6) are laminated, and by soaking the adhesive material in this laminate and performing hot pressing, the The laminated parts are bonded and pressed to a prescribed thickness to form a core material raw material (2A) from which edge material is removed to form a core material (2). Then, put the core material (2) and the absorbing part (3) in the outer covering material (1) made of an air-impermeable film, vacuumize and seal to make a vacuum heat insulating material (50). Then, after the vacuum heat insulating material (50) is arranged between the outer case and the inner case, the space between the outer case (22) and the inner case (23) is filled with foam heat insulating material (24) to form a heat insulator.
Description
技术领域technical field
本发明涉及使用真空绝热材料的冰箱和真空绝热材料,及其制造方法。The present invention relates to a refrigerator using a vacuum heat insulating material, a vacuum heat insulating material, and a manufacturing method thereof.
背景技术Background technique
近年来,从地球变暖的观点出发,一直在宣传削减家电产品所消耗的电能的必要性。冰箱是家电产品中电能消耗量特别多的产品,削减冰箱的电能消耗已经成为应对地球变暖必不可少的措施。在冰箱内部的装载量一定时,由于冰箱的电能消耗在很大程度上取决于冰箱内用于冷却的压缩机的效率,以及与从冰箱内泄漏的热量有关的绝热材料的绝热性能,所以,提高冰箱中压缩机的效率,以及提高绝热材料的性能是非常重要的。In recent years, from the viewpoint of global warming, the need to reduce the electric energy consumed by home appliances has been publicized. Refrigerators consume a lot of electrical energy among home appliances, and reducing the electrical energy consumption of refrigerators has become an essential measure to deal with global warming. When the amount of loading inside the refrigerator is constant, since the power consumption of the refrigerator depends largely on the efficiency of the compressor used for cooling in the refrigerator, and the insulation performance of the heat insulating material related to the heat leaked from the refrigerator, so, Improving the efficiency of compressors in refrigerators, as well as improving the performance of insulation materials is very important.
因此,为了提高绝热材料的性能,已经开始在冰箱中使用真空绝热材料。作为以往的使用真空绝热材料的冰箱,有在日本特开2001-165557号公报(专利文献1)中公开的冰箱。专利文献1中的冰箱,是用不透气的薄膜构成的包覆材料包覆用薄板状的无机纤维的集合体所构成的芯材,再将其内部抽真空密封后做成真空绝热材料,把这种真空绝热材料设置在由外箱体和内箱体所形成的空间内,再在其周围填充发泡绝热材料而形成绝热箱壁。Therefore, in order to improve the performance of heat insulating materials, vacuum heat insulating materials have been used in refrigerators. As a conventional refrigerator using a vacuum heat insulating material, there is a refrigerator disclosed in JP-A-2001-165557 (Patent Document 1). The refrigerator in
另一方面,为了回收冰箱的绝热材料以实现资源的有效利用,可以考虑把报废的发泡绝热材料用作真空绝热材料。在日本特开2001-349664号公报(专利文献2)中公开了使用报废材料作为真空绝热材料的冰箱。在这篇专利文献2的冰箱中所使用的真空绝热材料,是用气流粉碎式粉碎装置把报废的发泡绝热材料粉碎成微小的粉末,并使其几乎不残留独立的气泡,制成开孔结构的发泡绝热粉末,然后,在这种发泡绝热粉末中混入粘接材料,把这种混合物放入模具内进行热压成形后,便获得具有用粘接材料把发泡绝热粉末粘接起来的芯材的绝热材料。On the other hand, in order to recycle the insulation materials of refrigerators to realize effective utilization of resources, it may be considered to use waste foam insulation materials as vacuum insulation materials. Japanese Unexamined Patent Application Publication No. 2001-349664 (Patent Document 2) discloses a refrigerator using scrap materials as vacuum insulation materials. The vacuum insulation material used in the refrigerator of this
在专利文献1的冰箱中,由于使用薄板状无机纤维的集合体作为真空绝热材料的芯材,具有绝热性能好和强度高的优点。可是,在专利文献1中,并没有公开有关利用报废的芯材来制作薄板状无机纤维的集合体的芯材的信息,还存在着如何有效利用资源的问题。In the refrigerator of
此外,在专利文献2的冰箱中,由于是把报废的发泡绝热材料做成发泡绝热粉末之后,再制成真空绝热材料的芯材,所以存在着很难获得如使用了由无机纤维集合体构成的芯材的真空绝热材料那样的绝热性能和强度的问题。此外,在专利文献2中,也没有揭示有关回收真空绝热材料的芯材的废弃物的信息。In addition, in the refrigerator of
还有,由薄板状无机纤维集合体构成的芯材,大多是用粘接材料把薄板状无机纤维集合体数叠层层并粘接起来的叠层件,由于其端部上的棱线没有对齐等原因,所以切断后无法用作芯材。这种切断后的边料呈细长的长方形,无法再利用,一般都被废弃。因此,还存在有效地利用这种边料的问题。In addition, the core material composed of thin plate-shaped inorganic fiber aggregates is mostly a laminate in which the thin plate-shaped inorganic fiber aggregates are laminated and bonded with an adhesive material. Because of alignment and other reasons, it cannot be used as a core material after cutting. This cut-off edge material is in a long and thin rectangle, cannot be reused, and is generally discarded. Therefore, there is also a problem of effectively utilizing such offcuts.
因此,曾考虑将无机纤维集合体的边料进行粗粉碎后的材料夹在薄板状的无机纤维集合体之间,并在其中加入粘接材料,经热压成形后制成真空绝热材料。可是,由于这种真空绝热材料的芯材要与薄板状无机纤维集合体一起进行热压加工,因而,存在各粉碎物之间的粘接不一定能进行得很充分,强度很差的问题。Therefore, it has been considered to sandwich the coarsely pulverized scrap of the inorganic fiber aggregates between thin plate-shaped inorganic fiber aggregates, add a bonding material therein, and form a vacuum heat insulating material after thermoforming. However, since the core material of this vacuum insulation material is hot-pressed together with the thin-plate-shaped inorganic fiber aggregate, there is a problem that the bonding between the pulverized materials is not always sufficient and the strength is poor.
发明内容Contents of the invention
本发明的目的是提供一种能有效地利用资源,并且使用绝热性能优良而且强度很高的真空绝热材料的冰箱和真空绝热材料,及其制造方法。It is an object of the present invention to provide a refrigerator and a vacuum heat insulating material which can effectively utilize resources and use a vacuum heat insulating material excellent in heat insulating performance and high in strength, and a manufacturing method thereof.
为了达到上述目的,本发明的冰箱的制造方法的特征在于,把新材料无机纤维集合体制造成薄板状;使用由无机纤维集合体构成的废芯材,制作成废芯材无机纤维集合体;把上述新材料无机纤维集合体与上述废芯材无机纤维集合体叠层起来;通过将粘接材料浸透在这种叠层件中并进行热压加工,用粘接材料把这个叠层件粘接起来并压制到规定的厚度,形成芯材原材料,并从上述芯材原材料中除去边料从而形成芯材;把上述芯材和用包装材料包覆的吸附部件收放在由不透气性薄膜制成的外包覆材料内,通过抽真空、密封,制成真空绝热材料;在把上述真空绝热材料配置在外箱与内箱之间后,再在上述外箱与内箱之间的空间内填充发泡绝热材料,形成绝热体。In order to achieve the above object, the manufacturing method of the refrigerator of the present invention is characterized in that the new material inorganic fiber aggregate is made into a thin plate; the waste core material composed of the inorganic fiber aggregate is used to make the waste core inorganic fiber aggregate; The above-mentioned new material inorganic fiber aggregate and the above-mentioned waste core material inorganic fiber aggregate are laminated; by soaking the adhesive material in this laminate and performing hot press processing, the laminate is bonded with the adhesive material rise and press to a specified thickness to form a core raw material, and remove edge material from the above-mentioned core material raw material to form a core material; the above-mentioned core material and the absorbent member covered with the packaging material are stored in a box made of an air-impermeable film. In the outer cladding material, vacuumize and seal to make a vacuum insulation material; after the above-mentioned vacuum insulation material is arranged between the outer box and the inner box, it is filled in the space between the above-mentioned outer box and the inner box Foam insulation material to form an insulator.
按照本发明的优选的具体结构如下。A preferred specific structure according to the present invention is as follows.
(1)通过将上述废芯材粉碎为粉碎物并进行热压加工,从而将上述废芯材无机纤维集合体做成薄板状。(1) The waste core material inorganic fiber aggregate is formed into a thin plate shape by pulverizing the waste core material into a pulverized product and hot pressing.
(2)在上述(1)的基础上,上述粉碎物是通过浸泡在硼酸水溶液中进行脱水从而压缩加工呈纤维基本呈平行状态。(2) In addition to the above (1), the pulverized material is dehydrated by soaking in an aqueous solution of boric acid, and compressed so that the fibers are substantially parallel.
此外,为达到上述目的,本发明的冰箱的结构是,把芯材和用包装材料包覆的吸附部件收放在外包覆材料内、经抽真空和密封后的真空绝热材料设置在外箱与内箱之间,并且把发泡绝热材料填充在上述外箱与上述内箱之间的空间里,构成绝热体,其特征在于,上述芯材是把薄板状的新材料无机纤维集合体和废芯材无机纤维集合体叠层起来,该废芯材无机纤维集合体是将由无机纤维集合体构成的废芯材作成薄板状而作成的,然后将这些叠层起来的无机纤维集合体进行热压,构成用粘接材料粘接起来的叠层件。In addition, in order to achieve the above object, the structure of the refrigerator of the present invention is that the core material and the absorbing part covered with the packaging material are stored in the outer covering material, and the vacuum heat insulating material after vacuumizing and sealing is arranged between the outer box and the inner box. between the boxes, and fill the space between the above-mentioned outer box and the above-mentioned inner box with a foaming heat-insulating material to form a heat-insulating body, and it is characterized in that the above-mentioned core material is a thin plate-shaped new material inorganic fiber assembly and a waste core The waste core material inorganic fiber aggregates are laminated, and the waste core material inorganic fiber aggregates are made by making the waste core materials composed of inorganic fiber aggregates into a thin plate shape, and then these laminated inorganic fiber aggregates are hot-pressed, A laminate bonded with an adhesive material is formed.
按照本发明的优选的具体结构如下。A preferred specific structure according to the present invention is as follows.
(1)上述废芯材无机纤维集合体是将芯材的废材料粉碎而成的粉碎物进行热压加工后的集合件。(1) The above waste core material inorganic fiber aggregate is an aggregate obtained by pulverizing the waste material of the core material and subjecting it to hot press processing.
此外,为达到上述目的,本发明的冰箱的结构是,把芯材和用包装材料包覆的吸附材料收放在外包覆材料内、经抽真空和密封后的真空绝热材料设置在外箱与内箱之间,并且把发泡绝热材料填充在上述外箱与上述内箱之间的空间里,构成绝热体,其特征在于,上述芯材是把若干块薄板状的新材料无机纤维集合体和废芯材无机纤维集合体叠层起来,该废芯材无机纤维集合体是将从芯材切断而成的长方形的废材以平面形状排列在上述薄板状的新材料无机纤维集合体之间的,然后将这些叠层起来的无机纤维集合体进行热压,构成用粘接材料粘接起来的叠层件。In addition, in order to achieve the above object, the structure of the refrigerator of the present invention is that the core material and the absorbent material wrapped with the packaging material are stored in the outer covering material, and the vacuum heat insulating material after vacuumizing and sealing is arranged between the outer box and the inner box. between the boxes, and fill the space between the above-mentioned outer box and the above-mentioned inner box with a foaming heat-insulating material to form a heat-insulator. The waste core material inorganic fiber aggregates are stacked. The waste core material inorganic fiber aggregates are formed by arranging rectangular waste materials cut from the core material in a planar shape between the thin plate-shaped new material inorganic fiber aggregates. , and then these laminated inorganic fiber aggregates are hot-pressed to form a laminate bonded with an adhesive material.
按照本发明的优选的具体结构如下。A preferred specific structure according to the present invention is as follows.
(1)废芯材无机纤维集合体至少重叠成上、下两层,并且设置成在上层与下层中长方形的废材的延伸方向互相交叉。(1) Waste core material inorganic fiber aggregates are stacked at least in upper and lower layers, and arranged so that the extending directions of the rectangular waste materials in the upper layer and the lower layer intersect with each other.
此外,为达到上述目的,本发明的冰箱的真空绝热材料的制造方法的特征在于,把新材料无机纤维集合体制作成薄板状;使用由无机纤维集合体构成的废芯材,制作成废芯材无机纤维集合体;把上述新材料无机纤维集合体与上述废芯材无机纤维集合体叠层起来;通过把粘接材料浸透在这种叠层件中并进行热压,用粘接材料把这个叠层件粘接在一起并压制成规定的厚度,制成芯材原材料,并从上述芯材原材料中除去边料从而形成芯材;把上述芯材收放在用不透气性的薄膜制成的外包覆材料内,再经抽真空和密封,制成真空绝热材料。In addition, in order to achieve the above object, the method of manufacturing a vacuum insulation material for a refrigerator according to the present invention is characterized in that a new material inorganic fiber assembly is made into a thin plate shape; a waste core material composed of an inorganic fiber assembly is used to make a waste core material Inorganic fiber assembly; the above-mentioned new material inorganic fiber assembly and the above-mentioned waste core material inorganic fiber assembly are laminated; by soaking the adhesive material in this laminate and performing hot pressing, this The laminated parts are bonded together and pressed to a specified thickness to form a core material, and the edge material is removed from the above core material material to form a core material; the above core material is stored in an air-impermeable film. In the outer cladding material, it is vacuumized and sealed to make a vacuum insulation material.
此外,为达到上述目的,本发明的真空绝热材料,它是把芯材和用包装材料包覆的吸附材料收放在外包覆材料内,经抽真空和密封后的真空绝热材料,其特征在于,上述芯材是把薄板状的新材料无机纤维集合体,与使用芯材的废材的薄板状的废芯材无机纤维集合体叠层起来,然后将这些叠层起来的无机纤维集合体进行热压,构成用粘接材料粘接起来的叠层件。In addition, in order to achieve the above object, the vacuum heat insulating material of the present invention is a vacuum heat insulating material in which the core material and the adsorbent material covered with the packaging material are housed in the outer covering material, vacuumized and sealed, and is characterized in that , the above-mentioned core material is a thin plate-shaped new material inorganic fiber aggregate, and a thin plate-shaped waste core material inorganic fiber aggregate using the waste material of the core material is laminated, and then these laminated inorganic fiber aggregates are processed. Hot pressing to form a laminate bonded with an adhesive material.
按照本发明,能实现资源的有效地利用的同时,能得到使用绝热性能优良,并且强度很高的真空绝热材料的冰箱和真空绝热材料,以及它们的制造方法。According to the present invention, it is possible to obtain a refrigerator and a vacuum heat insulating material using a vacuum heat insulating material excellent in heat insulating performance and high in strength, and a method for producing them, while effectively utilizing resources.
附图说明Description of drawings
图1是本发明第一实施例的冰箱的立体图;Fig. 1 is a perspective view of a refrigerator according to a first embodiment of the present invention;
图2是图1的重要部位的断面的示意图;Fig. 2 is a schematic diagram of a section of an important part of Fig. 1;
图3是图2所示的真空绝热板的单独状态的断面示意图;Fig. 3 is a schematic cross-sectional view of the separate state of the vacuum insulation panel shown in Fig. 2;
图4是表示从第一实施例的芯材原材料分离出芯材和边料的状态的立体图;Fig. 4 is a perspective view showing a state in which a core material and an edge material are separated from the core material raw material of the first embodiment;
图5是说明从第一实施例的边料制作废芯材无机纤维集合体的各个工序的说明图;Fig. 5 is an explanatory diagram illustrating each process of producing a waste core material inorganic fiber assembly from the trim of the first embodiment;
图6是第一实施例的芯材原材料的制作方法的说明图;Fig. 6 is an explanatory diagram of the manufacturing method of the core raw material of the first embodiment;
图7是把第一实施例的芯材2和吸附剂3收放在外部包覆材料1内的状态的断面图;7 is a cross-sectional view of a state in which the
图8是从用本发明的第二实施例的冰箱制造方法制得的芯材原材料分割出边料的状态的立体图;Fig. 8 is a perspective view of a state in which trims are cut from the core raw material obtained by the refrigerator manufacturing method according to the second embodiment of the present invention;
图9是说明第二实施例的芯材原材料的制作方法的立体图;Fig. 9 is a perspective view illustrating a manufacturing method of the core raw material of the second embodiment;
图10是说明本发明的第三实施例的芯材原材料的制作工序的立体图。Fig. 10 is a perspective view illustrating a manufacturing process of a core raw material according to a third embodiment of the present invention.
具体实施方式Detailed ways
下面,参照附图说明本发明的若干实施例。在本发明所谓的冰箱中除了家用和商用的冷藏一冷冻箱之外,还包括:自动售货机、商品陈列架、商品陈列柜、保冷箱、冷盒、冷藏-冷冻车等等。Hereinafter, several embodiments of the present invention will be described with reference to the drawings. In addition to domestic and commercial refrigeration-freezers, the so-called refrigerator of the present invention also includes: automatic vending machines, commodity display racks, commodity display cabinets, cold storage boxes, cold boxes, refrigeration-freezer cars and the like.
下面,参照图1~图7说明本发明第一实施例的冰箱和真空绝热材料。Next, a refrigerator and a vacuum insulation material according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 7. FIG.
参照图1和图2说明本实施例的冰箱的整体结构及其制造方法。图1是本发明第一实施例的冰箱的立体图;图2是图1中的重要部位断面的示意图。The overall structure of the refrigerator of this embodiment and its manufacturing method will be described with reference to FIG. 1 and FIG. 2 . Fig. 1 is a perspective view of a refrigerator according to a first embodiment of the present invention; Fig. 2 is a schematic diagram of a section of important parts in Fig. 1 .
本实施例的冰箱由以下两个部件构成:构成具有真空绝热材料50的绝热件的绝热箱体21,以及构成具有真空绝热材料的绝热件的绝热门。绝热箱体21由下列各部分构成:金属制造的外箱22;合成树脂制造的内箱23;设置在外箱22内侧的许多真空绝热材料50;以及填充在外箱22与内箱23之间的发泡绝热材料24。真空绝热材料50分别设置成与外箱22内侧的规定位置紧密贴合。具体的说,真空绝热材料50设置成与外箱22的顶板、左、右侧面、底面和背面的内侧紧密贴合。通过做成了这种使用真空绝热材料50的绝热箱体21,与单独用发泡绝热材料24构成绝热件的情况相比,就能提供热量的泄漏和电能消耗都很少的冰箱。发泡绝热材料24,可以使用例如硬质聚氨酯泡沫材料。The refrigerator of this embodiment is composed of two parts: an insulating
这种冰箱是通过把真空绝热材料50布置在外箱22的内侧之后,再把发泡绝热材料填充在外箱22与内箱23之间的空间里制成的。This refrigerator is made by filling the space between the
另外,在绝热箱体21中,形成了若干个前面开口的储藏室。从上方开始,依次把这些储藏室分隔成冷冻室和冷藏室,借助于设置在冰箱内的冷却器,将各个室分别冷却到预定的适当低的温度。另外,绝热箱体21的壁厚在20mm~50mm左右。In addition, in the heat-insulating
绝热门虽未图示,但它们都设置成能开关各储藏室前面的开口。绝热门和绝热箱体21一样,也由下列各部分构成:金属制造的外箱;合成树脂制造的内箱;设置在外箱内侧的许多真空绝热材料;以及填充在外箱与内箱之间的发泡绝热材料。这种真空绝热材料也是用与绝热箱体21一侧的真空绝热材料50同样的制造方法制成的。Although the insulating doors are not shown in the figure, they are all arranged to open and close the openings in front of each storage compartment. The insulating door, like the insulating
接着,参照图2和图3说明本实施例的真空绝热板1的基本结构。图3是图2所示的真空绝热板1的单独状态的断面示意图。Next, the basic structure of the
真空绝热材料50由芯材2、吸附部件3,以及用不透气性薄膜制成的、内部收放了芯材2和吸附部件3的外包覆材料1构成。这种真空绝热材料50,是在把芯材2和用包装材料包覆的吸附部件3收放在外包覆材料1中的状态下,通过对外包覆材料1的内部进行抽真空,并将外包覆材料1的边缘部分用热熔接方法密封而制成的。真空绝热材料50的形状没有特别的限制,可以根据所使用的部位和作业性能,使用各种适当的形状和厚度。The vacuum
芯材2是把使用废芯材的薄板状的废料无机纤维集合体6,与薄板状的新材料无机纤维集合体7叠层起来,并且对这种叠层后的无机纤维集合体6、7进行热压加工,形成用粘接剂粘接起来的叠层体。The
外包覆材料1的一侧的结构是,在作为其最外层的尼龙层的内侧,具有不透气性良好的铝之类的金属箔或者将蒸镀了铝之类金属的金属蒸镀膜夹在中间的不透气性良好的聚对苯二甲酸乙二醇酯树脂(PET),并与高密度聚乙烯树脂或聚丙烯腈树脂等能热熔接的内层薄膜做成一体。外包覆材料1的相反一侧的结构是,具有中间夹着蒸镀了铝之类金属的金属蒸镀膜的不透气性良好的聚对苯二甲酸乙二醇酯树脂(PET),并与在其内侧的不透气性更好的乙烯一乙烯醇共聚物薄膜(EVOH),高密度聚乙烯树脂和聚丙烯腈树脂等能热熔接的内层薄膜做成一体。把以上两种叠层起来的薄膜,用作为最内层的高密度聚乙烯树脂或聚丙烯腈树脂等热熔接层熔接起来,就形成了把芯材密封起来的口袋或者容器的外包覆材料1。One side of the
接着,参照图4~图7,说明本实施例的真空绝热材料50的制造方法。图4是表示从本实施例的芯材原材料分离成芯材2和边料4的状态的立体图;图5是说明从本实施例的边料4制作废芯材无机纤维集合体6的各个工序的说明图;图6是本实施例的芯材原材料2A的制作方法的说明图;图7是把本实施例的芯材2和吸附剂3收放在外部包覆材料1内的状态的断面图。Next, a method of manufacturing the vacuum
新材料无机纤维集合体7是把平均纤维直径为3~4μm的玻璃短纤维材料集合起来做成薄板状。这种新材料无机纤维集合体7不使用废的芯材,而制作成新的无机纤维集合体。The new material
另一方面,因为它的棱线不整齐等原因,要把原先制成的芯材原材料的端部切断,如图4所示除去边料4。去除了边料4的部分就是芯材2。由于去除了边料4的芯材原材料是由无机纤维集合体叠层构成的,所以边料4也是由无机纤维集合体构成的。本实施例中所使用的边料4虽是从本实施例中制造的芯材原材料2A(参见图6(b))切下来的材料,但也可以是由用其它方法制成的无机纤维集合体构成的芯材原材料上切下来的材料。On the other hand, because of reasons such as its irregular ridge line, the end portion of the core material raw material made originally will be cut off, and the
把这些边料4如图5(a)所示那样集中起来,投入粗粉碎机中,用这种粗粉碎机对边料4进行粗粉碎,成为图5(b)所示的粉碎物5。这种粉碎物5是被粗粉碎为纤维长度为某种程度残留状态的粗粉碎纤维物,本实施例的芯材如下文所述,具有平均纤维长度比新材料无机纤维长度集合体7更短的废芯材无机纤维集合体6的层状物。Collect these
把这种粉碎物5进行热压,就成为如图5(c)所示那样的薄板状的废芯材无机纤维集合体6。即,对粉碎物5进行热压加工,使其具有一致的规定的宽度和厚度,根据需要用适量的硼酸水溶液浸泡,进行脱水,使纤维基本上处于水平状态。这样,便如图5(d)的放大图示意表示的那样,由于废芯材无机纤维集合体6的纤维6a基本上水平一致排列,所以能在提高废芯材无机纤维集合体6的强度同时,提高其绝热性能。此外,由于预先做成薄板状的废芯材无机纤维集合体6,所以它的加工处理非常容易。The pulverized
接着,如图6(a)所示的那样,把废芯材无机纤维集合体6与新材料无机纤维集合体7叠层起来。即,以在两块新材料无机纤维集合体7之间夹一块废芯材无机纤维集合体6的方式进行叠层。另外,也可以准备若干块废芯材无机纤维集合体6,将其夹在新材料无机纤维集合体7之间,在需要加厚废芯材无机纤维集合体6的厚度的情况下,在实现进一步节省资源方面是有效的。在本实施例中,废芯材无机纤维集合体6是一层,其使用量的比例是全部芯材的1/3量,然后,用同样1/3量的新材料无机纤维集合体7把废芯材无机纤维集合体6夹在中间。由于废芯材无机纤维集合体6和新材料无机纤维集合体7都是薄板状的材料,所以它们的叠层作业能很容易地进行。Next, as shown in FIG. 6(a), the waste core
通过把粘接材料浸透在上述叠层件中并进行热压,用粘接材料把这种叠层件粘接起来的同时,压制成规定厚度,制成芯材原材料2A。具体的说,作为粘接材料使用无机类或者天然的有机类粘接材料的水溶液,借助于把适量的这种水溶液浸透整个叠层件并进行热压,除掉粘接材料中的水分,通过粘接材料把构成叠层件的无机纤维粘接在一起,制成芯材原材料2A。由于把废芯材无机纤维集合体6预先制成了薄板状,所以,这种芯材原材料2A的强度,与单单把粉碎物掺和在新材料无机纤维集合体7之间的原材材相比,即使废芯材无机纤维集合体6的量很多,也能够制造出强度很高的原材料来。The core
接着,用与图4同样的方法从芯材原材料2A上去除边料4,制作成芯材2。然后,如图7所示,将这种芯材2与吸附剂3一起收放在外包覆材料1内部,使用真空包装机在2.0Pa以下保持一定时间之后,借助于密封工序制作成如图3所示的真空绝热材料50。Next, the
用这种方式制成的真空绝热材料,可以确认,外包覆材料1的表面平滑性能,与以往的只用新材料无机纤维集合体制成的真空绝热材料的性能相同。此外,用日本英弘精机社制造的型号为自动λHC-071的热传导率测定仪来测定这种真空绝热材料的热传导率时,可获得初始值为2.8mW/(m·K)这样低的值。With the vacuum heat insulating material produced in this way, it was confirmed that the surface smoothness of the
采用本实施例,在实现资源的有效利用的同时,还能获得使用绝热性能优良,而且强度很高的真空绝热材料的冰箱,和真空绝热材料及其制造方法。According to this embodiment, while achieving effective utilization of resources, a refrigerator using a vacuum heat insulating material with excellent heat insulating performance and high strength, and a vacuum heat insulating material and its manufacturing method can be obtained.
下面,利用图8和图9说明本发明的第二实施例。图8是从本发明的第二实施例的从芯材原材料上分割了边料后的状态的立体图;图9是说明第二实施例的芯材原材料的制作方法的立体图。这个第二实施例只在以下所述的各点上与第一实施例不同,其它方面基本上都与第一实施例相同。Next, a second embodiment of the present invention will be described using FIGS. 8 and 9 . Fig. 8 is a perspective view of a state in which trims are cut from the core raw material according to the second embodiment of the present invention; Fig. 9 is a perspective view illustrating a method of manufacturing the core raw material according to the second embodiment. This second embodiment differs from the first embodiment only in the points described below, and is basically the same as the first embodiment in other respects.
如图8所示,在第二实施例中,将从芯材原材料分离开来的边料4,再进一步分离为上、下两块分离边料4a。把许多块这种分离边料4a在平面上沿着水平方向没有间隙地排成一排,制作成第一层边料集合件4b。用另外的边料4a以大致与第一层边料平行的方式重叠在这种边料集合件4b上,制作成第二层边料集合件4c,以堵塞各边料之间的接缝或者在接缝处所产生的间隙。从形成芯材的强度方面来说,4b、4c等边料集合件最好叠层两层以上。As shown in FIG. 8 , in the second embodiment, the
然后,用新材料无机纤维集合体7夹住叠层成两层的边料集合件4d,用热压机对这种叠层件进行热压制,除去水分制成芯材原材料2A。这里所使用的新材料无机纤维集合体7,只有平常使用的分量的一半。如图8所示,把这种芯材原材料2A分割为芯材2和边料4。Then, the two-layered trim assembly 4d is sandwiched between the new material inorganic fiber aggregates 7, and this laminate is hot-pressed with a hot press to remove moisture to obtain a core
在加工处理的强度方面,用这种制造方法所得到的芯材2所具有的强度不成问题,完全达到了可应用于大量生产的水平。此外,按照这个第二实施例,只要把边料4分离成两块后并列起来,就能很容易地制作成边料集合件4d。In terms of processing strength, the strength of the
把这种芯材2与吸附剂3一起插入用不透气性的外包覆材料1制成的口袋中,使用真空包装机在2.0Pa下保持一定时间后进行密封所得到的真空绝热材料,虽然在外包覆材料1的表面上出现若干线状的边料6a之间的接缝,但其表面的平滑性能与采用以往的制造方法制成的真空绝热材料没有太大差别。用日本英弘精机社制造的型号为自动λHC-071的热传导率测定仪来测定这种真空绝热材料的热传导率时,可获得初始值为2.4mW/(m·K)这样低的值。Insert the
下面,利用图10说明本发明的第三实施例。图10是说明本发明的第三实施例的芯材原材料的制作工序的立体图。这个第三实施例只在以下所述的各点上与第二实施例不同,其它方面基本上都与第二实施例相同。Next, a third embodiment of the present invention will be described using FIG. 10 . Fig. 10 is a perspective view illustrating a manufacturing process of a core raw material according to a third embodiment of the present invention. This third embodiment differs from the second embodiment only in the points described below, and is basically the same as the second embodiment in other respects.
在第三实施例中,把许多块这种分离边料4a在平面上沿着水平方向没有间隙地排成一排,制作成第一层边料集合件4b。以使同样的边料集合件4c在水平方向上转动使其不与边料集合件4b平行的状态,最好是在转动90°的方向上重叠在边料集合件4b上,以便堵塞各边料相互间的接缝或者在接缝处产生的间隙。从形成芯材的强度方面来说,边料集合件4b、4c最好叠层成井字形的两层以上。在这个第三实施例中,第一层边料集合件4b和第二层边料集合件4c叠层成大致成90°的井字形,再用新材料无机纤维集合体7将其夹住,用热压机对这种叠层件进行热压制,除去水分制成芯材原材料2A。这里所使用的新材料无机纤维集合体7,只有通常所使用的分量的一半。与第二实施例一样,也把这种芯材原材料2A分离成芯材2和边料4。In the third embodiment, a plurality of pieces of such
用这种制造方法所得到的芯材2,所具有的加工处理方面的强度比第二实施例的更高。The
把这种芯材2与吸附剂3一起插入用不透气性的外包覆材料1制成的口袋中,使用真空包装机在2.0Pa以下保持一定时间后进行密封后所得到的真空绝热材料,与实施例1一样,虽然在外包覆材料1的表面上出现若干线状的边料4a之间的接缝,但其表面的平滑性能与采用以往的制造方法制成的真空绝热材料没有太大差别。用日本英弘精机社制造的型号为自动λHC-071的热传导率测定仪来测定这种真空绝热材料的热传导率,可获得初始值为2.2mW/(m·K)这样低的值。Insert the
Claims (9)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004166528 | 2004-06-04 | ||
JP2004166528A JP4183657B2 (en) | 2004-06-04 | 2004-06-04 | refrigerator |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1707204A CN1707204A (en) | 2005-12-14 |
CN100359272C true CN100359272C (en) | 2008-01-02 |
Family
ID=35497577
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005100538392A Expired - Fee Related CN100359272C (en) | 2004-06-04 | 2005-03-11 | Refrigerator and vacuum insulation material and manufacturing method thereof |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP4183657B2 (en) |
KR (1) | KR100695378B1 (en) |
CN (1) | CN100359272C (en) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8944541B2 (en) | 2012-04-02 | 2015-02-03 | Whirlpool Corporation | Vacuum panel cabinet structure for a refrigerator |
US9221210B2 (en) | 2012-04-11 | 2015-12-29 | Whirlpool Corporation | Method to create vacuum insulated cabinets for refrigerators |
US9599392B2 (en) | 2014-02-24 | 2017-03-21 | Whirlpool Corporation | Folding approach to create a 3D vacuum insulated door from 2D flat vacuum insulation panels |
US9689604B2 (en) | 2014-02-24 | 2017-06-27 | Whirlpool Corporation | Multi-section core vacuum insulation panels with hybrid barrier film envelope |
US9752818B2 (en) | 2015-12-22 | 2017-09-05 | Whirlpool Corporation | Umbilical for pass through in vacuum insulated refrigerator structures |
US9840042B2 (en) | 2015-12-22 | 2017-12-12 | Whirlpool Corporation | Adhesively secured vacuum insulated panels for refrigerators |
US10018406B2 (en) | 2015-12-28 | 2018-07-10 | Whirlpool Corporation | Multi-layer gas barrier materials for vacuum insulated structure |
US10030905B2 (en) | 2015-12-29 | 2018-07-24 | Whirlpool Corporation | Method of fabricating a vacuum insulated appliance structure |
US10041724B2 (en) | 2015-12-08 | 2018-08-07 | Whirlpool Corporation | Methods for dispensing and compacting insulation materials into a vacuum sealed structure |
US10052819B2 (en) | 2014-02-24 | 2018-08-21 | Whirlpool Corporation | Vacuum packaged 3D vacuum insulated door structure and method therefor using a tooling fixture |
US10161669B2 (en) | 2015-03-05 | 2018-12-25 | Whirlpool Corporation | Attachment arrangement for vacuum insulated door |
US10222116B2 (en) | 2015-12-08 | 2019-03-05 | Whirlpool Corporation | Method and apparatus for forming a vacuum insulated structure for an appliance having a pressing mechanism incorporated within an insulation delivery system |
US10345031B2 (en) | 2015-07-01 | 2019-07-09 | Whirlpool Corporation | Split hybrid insulation structure for an appliance |
US10365030B2 (en) | 2015-03-02 | 2019-07-30 | Whirlpool Corporation | 3D vacuum panel and a folding approach to create the 3D vacuum panel from a 2D vacuum panel of non-uniform thickness |
US10422573B2 (en) | 2015-12-08 | 2019-09-24 | Whirlpool Corporation | Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein |
US10422569B2 (en) | 2015-12-21 | 2019-09-24 | Whirlpool Corporation | Vacuum insulated door construction |
US10429125B2 (en) | 2015-12-08 | 2019-10-01 | Whirlpool Corporation | Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein |
US10598424B2 (en) | 2016-12-02 | 2020-03-24 | Whirlpool Corporation | Hinge support assembly |
US10610985B2 (en) | 2015-12-28 | 2020-04-07 | Whirlpool Corporation | Multilayer barrier materials with PVD or plasma coating for vacuum insulated structure |
US10712080B2 (en) | 2016-04-15 | 2020-07-14 | Whirlpool Corporation | Vacuum insulated refrigerator cabinet |
US10731915B2 (en) | 2015-03-11 | 2020-08-04 | Whirlpool Corporation | Self-contained pantry box system for insertion into an appliance |
US10807298B2 (en) | 2015-12-29 | 2020-10-20 | Whirlpool Corporation | Molded gas barrier parts for vacuum insulated structure |
US10907888B2 (en) | 2018-06-25 | 2021-02-02 | Whirlpool Corporation | Hybrid pigmented hot stitched color liner system |
US11009284B2 (en) | 2016-04-15 | 2021-05-18 | Whirlpool Corporation | Vacuum insulated refrigerator structure with three dimensional characteristics |
US11052579B2 (en) | 2015-12-08 | 2021-07-06 | Whirlpool Corporation | Method for preparing a densified insulation material for use in appliance insulated structure |
US11247369B2 (en) | 2015-12-30 | 2022-02-15 | Whirlpool Corporation | Method of fabricating 3D vacuum insulated refrigerator structure having core material |
US11320193B2 (en) | 2016-07-26 | 2022-05-03 | Whirlpool Corporation | Vacuum insulated structure trim breaker |
US11391506B2 (en) | 2016-08-18 | 2022-07-19 | Whirlpool Corporation | Machine compartment for a vacuum insulated structure |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4774320B2 (en) * | 2006-03-30 | 2011-09-14 | 日立アプライアンス株式会社 | Vacuum heat insulating material and manufacturing method thereof |
EP1916465B1 (en) | 2006-10-26 | 2013-10-23 | Vestel Beyaz Esya Sanayi Ve Ticaret A.S. | Vacuumed heat barrier |
JP5195494B2 (en) * | 2009-02-16 | 2013-05-08 | 三菱電機株式会社 | Vacuum heat insulating material and manufacturing method thereof |
CN101979233A (en) * | 2010-10-18 | 2011-02-23 | 合肥美菱股份有限公司 | Process for producing negative pressure foamed refrigerator |
US9182158B2 (en) | 2013-03-15 | 2015-11-10 | Whirlpool Corporation | Dual cooling systems to minimize off-cycle migration loss in refrigerators with a vacuum insulated structure |
JP6192554B2 (en) * | 2014-02-03 | 2017-09-06 | 三菱電機株式会社 | Manufacturing method of vacuum insulation |
CN107009719A (en) * | 2017-04-11 | 2017-08-04 | 南京创维家用电器有限公司 | Antimicrobial sheet material and preparation method, inner bag and preparation method, refrigeration plant |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1275894A1 (en) * | 2000-04-21 | 2003-01-15 | Matsushita Refrigeration Company | Heat insulation box, and vacuum heat insulation material used therefor |
CN1425116A (en) * | 2000-04-21 | 2003-06-18 | 松下冷机株式会社 | Vacuum insulating material and device using the same |
JP2004012125A (en) * | 2003-07-31 | 2004-01-15 | Matsushita Refrig Co Ltd | Heat insulating box |
JP2004060794A (en) * | 2002-07-30 | 2004-02-26 | Matsushita Refrig Co Ltd | Vacuum heat insulating material, and manufacturing method of its core material |
-
2004
- 2004-06-04 JP JP2004166528A patent/JP4183657B2/en not_active Expired - Fee Related
-
2005
- 2005-02-25 KR KR1020050015607A patent/KR100695378B1/en not_active Expired - Fee Related
- 2005-03-11 CN CNB2005100538392A patent/CN100359272C/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1275894A1 (en) * | 2000-04-21 | 2003-01-15 | Matsushita Refrigeration Company | Heat insulation box, and vacuum heat insulation material used therefor |
CN1425116A (en) * | 2000-04-21 | 2003-06-18 | 松下冷机株式会社 | Vacuum insulating material and device using the same |
JP2004060794A (en) * | 2002-07-30 | 2004-02-26 | Matsushita Refrig Co Ltd | Vacuum heat insulating material, and manufacturing method of its core material |
JP2004012125A (en) * | 2003-07-31 | 2004-01-15 | Matsushita Refrig Co Ltd | Heat insulating box |
Cited By (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11549744B2 (en) | 2012-04-02 | 2023-01-10 | Whirlpool Corporation | Method of making a folded insulated structure |
US8986483B2 (en) | 2012-04-02 | 2015-03-24 | Whirlpool Corporation | Method of making a folded vacuum insulated structure |
US9038403B2 (en) | 2012-04-02 | 2015-05-26 | Whirlpool Corporation | Vacuum insulated door structure and method for the creation thereof |
US9071907B2 (en) | 2012-04-02 | 2015-06-30 | Whirpool Corporation | Vacuum insulated structure tubular cabinet construction |
US9140481B2 (en) | 2012-04-02 | 2015-09-22 | Whirlpool Corporation | Folded vacuum insulated structure |
US10697697B2 (en) | 2012-04-02 | 2020-06-30 | Whirlpool Corporation | Vacuum insulated door structure and method for the creation thereof |
US10663217B2 (en) | 2012-04-02 | 2020-05-26 | Whirlpool Corporation | Vacuum insulated structure tubular cabinet construction |
US10746458B2 (en) | 2012-04-02 | 2020-08-18 | Whirlpool Corporation | Method of making a folded vacuum insulated structure |
US8944541B2 (en) | 2012-04-02 | 2015-02-03 | Whirlpool Corporation | Vacuum panel cabinet structure for a refrigerator |
US9885516B2 (en) | 2012-04-02 | 2018-02-06 | Whirlpool Corporation | Vacuum insulated door structure and method for the creation thereof |
US9874394B2 (en) | 2012-04-02 | 2018-01-23 | Whirlpool Corporation | Method of making a folded vacuum insulated structure |
US9835369B2 (en) | 2012-04-02 | 2017-12-05 | Whirlpool Corporation | Vacuum insulated structure tubular cabinet construction |
US9463917B2 (en) | 2012-04-11 | 2016-10-11 | Whirlpool Corporation | Method to create vacuum insulated cabinets for refrigerators |
US9833942B2 (en) | 2012-04-11 | 2017-12-05 | Whirlpool Corporation | Method to create vacuum insulated cabinets for refrigerators |
US10350817B2 (en) | 2012-04-11 | 2019-07-16 | Whirlpool Corporation | Method to create vacuum insulated cabinets for refrigerators |
US9221210B2 (en) | 2012-04-11 | 2015-12-29 | Whirlpool Corporation | Method to create vacuum insulated cabinets for refrigerators |
US9689604B2 (en) | 2014-02-24 | 2017-06-27 | Whirlpool Corporation | Multi-section core vacuum insulation panels with hybrid barrier film envelope |
US9599392B2 (en) | 2014-02-24 | 2017-03-21 | Whirlpool Corporation | Folding approach to create a 3D vacuum insulated door from 2D flat vacuum insulation panels |
US10052819B2 (en) | 2014-02-24 | 2018-08-21 | Whirlpool Corporation | Vacuum packaged 3D vacuum insulated door structure and method therefor using a tooling fixture |
US10365030B2 (en) | 2015-03-02 | 2019-07-30 | Whirlpool Corporation | 3D vacuum panel and a folding approach to create the 3D vacuum panel from a 2D vacuum panel of non-uniform thickness |
US11713916B2 (en) | 2015-03-05 | 2023-08-01 | Whirlpool Corporation | Attachment arrangement for vacuum insulated door |
US11243021B2 (en) | 2015-03-05 | 2022-02-08 | Whirlpool Corporation | Attachment arrangement for vacuum insulated door |
US10161669B2 (en) | 2015-03-05 | 2018-12-25 | Whirlpool Corporation | Attachment arrangement for vacuum insulated door |
US10731915B2 (en) | 2015-03-11 | 2020-08-04 | Whirlpool Corporation | Self-contained pantry box system for insertion into an appliance |
US10345031B2 (en) | 2015-07-01 | 2019-07-09 | Whirlpool Corporation | Split hybrid insulation structure for an appliance |
US11052579B2 (en) | 2015-12-08 | 2021-07-06 | Whirlpool Corporation | Method for preparing a densified insulation material for use in appliance insulated structure |
US10429125B2 (en) | 2015-12-08 | 2019-10-01 | Whirlpool Corporation | Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein |
US11691318B2 (en) | 2015-12-08 | 2023-07-04 | Whirlpool Corporation | Method for preparing a densified insulation material for use in appliance insulated structure |
US12202175B2 (en) | 2015-12-08 | 2025-01-21 | Whirlpool Corporation | Method for preparing a densified insulation material for use in appliance insulated structure |
US11009288B2 (en) | 2015-12-08 | 2021-05-18 | Whirlpool Corporation | Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein |
US10041724B2 (en) | 2015-12-08 | 2018-08-07 | Whirlpool Corporation | Methods for dispensing and compacting insulation materials into a vacuum sealed structure |
US10422573B2 (en) | 2015-12-08 | 2019-09-24 | Whirlpool Corporation | Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein |
US10222116B2 (en) | 2015-12-08 | 2019-03-05 | Whirlpool Corporation | Method and apparatus for forming a vacuum insulated structure for an appliance having a pressing mechanism incorporated within an insulation delivery system |
US10422569B2 (en) | 2015-12-21 | 2019-09-24 | Whirlpool Corporation | Vacuum insulated door construction |
US10914505B2 (en) | 2015-12-21 | 2021-02-09 | Whirlpool Corporation | Vacuum insulated door construction |
US9752818B2 (en) | 2015-12-22 | 2017-09-05 | Whirlpool Corporation | Umbilical for pass through in vacuum insulated refrigerator structures |
US9840042B2 (en) | 2015-12-22 | 2017-12-12 | Whirlpool Corporation | Adhesively secured vacuum insulated panels for refrigerators |
US10610985B2 (en) | 2015-12-28 | 2020-04-07 | Whirlpool Corporation | Multilayer barrier materials with PVD or plasma coating for vacuum insulated structure |
US10018406B2 (en) | 2015-12-28 | 2018-07-10 | Whirlpool Corporation | Multi-layer gas barrier materials for vacuum insulated structure |
US10514198B2 (en) | 2015-12-28 | 2019-12-24 | Whirlpool Corporation | Multi-layer gas barrier materials for vacuum insulated structure |
US10807298B2 (en) | 2015-12-29 | 2020-10-20 | Whirlpool Corporation | Molded gas barrier parts for vacuum insulated structure |
US10030905B2 (en) | 2015-12-29 | 2018-07-24 | Whirlpool Corporation | Method of fabricating a vacuum insulated appliance structure |
US11577446B2 (en) | 2015-12-29 | 2023-02-14 | Whirlpool Corporation | Molded gas barrier parts for vacuum insulated structure |
US11752669B2 (en) | 2015-12-30 | 2023-09-12 | Whirlpool Corporation | Method of fabricating 3D vacuum insulated refrigerator structure having core material |
US11247369B2 (en) | 2015-12-30 | 2022-02-15 | Whirlpool Corporation | Method of fabricating 3D vacuum insulated refrigerator structure having core material |
US11009284B2 (en) | 2016-04-15 | 2021-05-18 | Whirlpool Corporation | Vacuum insulated refrigerator structure with three dimensional characteristics |
US11609037B2 (en) | 2016-04-15 | 2023-03-21 | Whirlpool Corporation | Vacuum insulated refrigerator structure with three dimensional characteristics |
US10712080B2 (en) | 2016-04-15 | 2020-07-14 | Whirlpool Corporation | Vacuum insulated refrigerator cabinet |
US11320193B2 (en) | 2016-07-26 | 2022-05-03 | Whirlpool Corporation | Vacuum insulated structure trim breaker |
US11391506B2 (en) | 2016-08-18 | 2022-07-19 | Whirlpool Corporation | Machine compartment for a vacuum insulated structure |
US12275050B2 (en) | 2016-08-18 | 2025-04-15 | Whirlpool Corporation | Machine compartment for a vacuum insulated structure |
US10598424B2 (en) | 2016-12-02 | 2020-03-24 | Whirlpool Corporation | Hinge support assembly |
US10907888B2 (en) | 2018-06-25 | 2021-02-02 | Whirlpool Corporation | Hybrid pigmented hot stitched color liner system |
Also Published As
Publication number | Publication date |
---|---|
JP2005345025A (en) | 2005-12-15 |
KR20060042182A (en) | 2006-05-12 |
KR100695378B1 (en) | 2007-03-15 |
JP4183657B2 (en) | 2008-11-19 |
CN1707204A (en) | 2005-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100359272C (en) | Refrigerator and vacuum insulation material and manufacturing method thereof | |
CN100400957C (en) | Vacuum insulation material and refrigerator with vacuum insulation material | |
US20180266620A1 (en) | Vacuum heat insulator, heat insulation device provided with same, and method for manufacturing vacuum heat insulator | |
CN101382377B (en) | Vacuum heat-insulating material and refrigerator using the same | |
EP1510747B1 (en) | Vacuum thermal insulating material, process for producing the same and refrigerator including the same | |
JP2008185220A (en) | Vacuum insulation | |
KR100617666B1 (en) | Refrigerator | |
WO2012111311A1 (en) | Heat insulation box body | |
JP5492685B2 (en) | Vacuum heat insulating material and refrigerator using the same | |
JP5599383B2 (en) | Vacuum heat insulating material, heat insulating box using vacuum heat insulating material, equipment using vacuum heat insulating material, and method for manufacturing vacuum heat insulating material | |
JP4778996B2 (en) | Vacuum heat insulating material and refrigerator using the same | |
JP5571610B2 (en) | Vacuum insulation material manufacturing method, vacuum insulation material and refrigerator equipped with the same | |
US20180339490A1 (en) | Vacuum insulation material, vacuum insulation material manufacturing method, and refrigerator including vacuum insulation material | |
CN105444503B (en) | The manufacture method of vacuum insulation part, insulated cabinet and vacuum insulation part | |
JP3793113B2 (en) | Vacuum heat insulating material, manufacturing method thereof, and heat insulating box using vacuum heat insulating material | |
JP3549453B2 (en) | refrigerator | |
JP2001349492A (en) | Laminated heat insulating material utilizing waste or the like and method of manufacturing the same | |
CN108332002A (en) | Vacuum heat insulation materials, the manufacturing method of vacuum heat insulation materials and refrigerator | |
JP2019113078A (en) | Vacuum heat insulation material and refrigerator disposed with the same | |
JP2013040717A (en) | Vacuum heat insulation material, and refrigerator using the same | |
EP3284995A1 (en) | Vacuum heat insulator, and heat-insulating container and heat-insulating wall using same | |
JP2015200361A (en) | Vacuum heat insulating material and refrigerator using the same | |
JP2014119081A (en) | Vacuum insulation material and refrigerator using vacuum insulation material | |
JP2014206225A (en) | Vacuum heat insulation material and refrigerator using the same | |
JP2016080063A (en) | Process of manufacture of vacuum heat insulation material and refrigerator using this vacuum heat insulation material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20080102 Termination date: 20160311 |