CN100344147C - 在记录纸上形成图像的设备 - Google Patents
在记录纸上形成图像的设备 Download PDFInfo
- Publication number
- CN100344147C CN100344147C CNB991041232A CN99104123A CN100344147C CN 100344147 C CN100344147 C CN 100344147C CN B991041232 A CNB991041232 A CN B991041232A CN 99104123 A CN99104123 A CN 99104123A CN 100344147 C CN100344147 C CN 100344147C
- Authority
- CN
- China
- Prior art keywords
- sign
- row
- parallax
- image
- unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/46—Colour picture communication systems
- H04N1/50—Picture reproducers
- H04N1/506—Reproducing the colour component signals picture-sequentially, e.g. with reproducing heads spaced apart from one another in the subscanning direction
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Color Electrophotography (AREA)
- Electrostatic Charge, Transfer And Separation In Electrography (AREA)
- Control Or Security For Electrophotography (AREA)
- Handling Of Sheets (AREA)
- Color, Gradation (AREA)
Abstract
借助于多个图像承载单元,校正标志形成单元将以左和右线形式的混色标志列转印在传送带形式的移动部件上。混色标志列用作校正在彩色图像之间的图像偏移的标志,各混色标志列由以偏移方式相互叠加的K-C、K-M和K-Y两种颜色标志构成。校正值计算单元检测转印在移动部件上的混色标志的亮度图形,并根据该亮度图形的相位计算用于在彩色图像之间图像偏移的校正值。位置偏移校正单元根据由校正值计算单元获得的校正值自动地校正在彩色图像之间的偏移。
Description
技术领域
本发明涉及图像形成设备,利用打印机、复印机等的具有电子照相记录打印功能的多个静电记录单元,通过不同颜色图像的叠加转印打印形成全彩色的图像。特别涉及能够检测和校正在多个可移动静电记录单元之间彩色图像位置偏移的图像形成设备。
背景技术
至今,静电记录型彩色打印机配有沿记录纸传送方向一前一后地排列的黑色(K)、蓝绿色(C)、深红色(M)和黄色(Y)四个静电记录单元。根据图像数据,用于四种颜色的静电记录单元光扫描光敏磁鼓,以形成潜象,用彩色色料在显影容器中显影该潜象,以叠加方式按黄(Y)、深红(M)、蓝绿(C)和黑(K)的顺序,将显影后的图像转印到按某一速度传送的记录纸上,最后用固定器件或其它处理完成热固定。在缺少彩色色料的情况下,必须全部或部分地替换黑色(K)、蓝绿色(C)、深红色(M)和黄色(Y)静电记录单元。为此,每个静电记录单元都提供有打开设备盖就可容易地拆除的结构。
另一方面,为了提高具有这种结构的彩色打印机的彩色打印质量,即在该彩色打印机中沿记录纸传送方向一前一后地排列YMCK静电记录单元,必须减小用静电记录单元将其转印到移动记录纸上的色料图像的位置偏移,提高色匹配准确度。例如,在水平扫描方向(垂直于纸传送方向的方向)和垂直扫描方向上的分辨率都为600dpi,象素节距约为42μm,那么位置偏移就必须减小到42μm或更低。
可是,在常规纵列(tandem)型彩色打印机的情况下,因可拆卸地配置YMCK静电记录单元,因而与以固定方式安装的情况相比有较大的位置偏移,通过改善机械匹配精度或组装精度,难以实现色匹配准确度为42μm或更低的位置偏移。为解决该问题,在例如日本专利公开平8-85236中,测试图形抗蚀剂标志被转印在传送带上的四个矩形角上,并被CCD读出,以相对于预定的设备分辨率基准坐标系检测在抗蚀剂标志检测坐标系中图像的偏移,从而根据输出到激光扫描器的图像数据,进行基于已检测其输出坐标位置的图像偏移的校正。可是,在这种常规位置偏移检测和位置偏移校正中,所有黄色(Y)、深红色(M)、蓝绿色(C)和黑色(K)静电记录单元都必须相对于分辨率坐标系检测抗蚀剂标志的位置偏移。此外,使用CCD检测抗蚀剂标志的位置偏移需要较多的位置偏移检测时间和大量硬件,从而导致生产成本增加。尽管可以相信,通过允许机械地调节光发射阵列可校正位置偏移,但通过这样的机械调节使位置偏移抑制在42μm以下是难以行得通的。由此,使用光发射阵列的彩色打印机常常达到例如300μm那么大的位置偏移,使其难以通过彩色成分的叠加获得令人满意的打印质量。
因而本发明提出一种方法,按黑色(K)、蓝绿色(C)、深红色(M)和黄色(Y)的顺序将右抗蚀剂标志列和左抗蚀剂标志列转印在带上,以便读出各颜色标志的位置,计算作为从其它颜色标志到黑色(K)标志的距离与其正常距离之差的图像位置偏移(美国专利申请号09/086956,申请日05/29/98)。但是,该方法具有这样的缺陷,即较大的标志至标志距离使得可将偏移归因于包含于检测距离中带传送速度的起伏,从而妨碍了图像偏移的准确检测。
发明内容
按照本发明,提供一种能够高精度地自动图像偏移校正而不受带传送速度偏移影响的图像形成设备。
本发明的图像形成设备包括:为循环带形式、按某一速度传送且具有粘附在其上的记录纸的移动部件;沿记录纸传送方向排列的多个图像承载单元(静电记录单元),用于形成符合图像数据的潜象,该图像数据是通过在光敏磁鼓上光扫描,用不同显影容器使它们显影和将它们转印在位于移动部件上的记录纸上而获得的。在本发明的情况下,这种纵列型图像形成设备配有校正标志形成单元,校正值计算单元和位置偏移校正单元。校正标志形成单元借助多个图像承载单元将混色标志列转印在移动部件上,混色标志列用作校正在彩色图像之间的图像偏移的标志,各混色标志列由多个以偏移方式相互叠加的标志构成。校正值计算单元检测转印在移动部件上的混色标志的亮度图形,以根据亮度图形的相位计算在彩色图像之间图像偏移的校正值。校正单元根据由校正值计算单元获得的校正值自动地校正在彩色图像之间的偏移。校正标志形成单元形成作为混色标志列的混色横向线标志列和混色倾斜线标志列,混色横向线标志列由多个大体垂直于移动部件移动方向的横向线标志列构成,混色倾斜线标志列由与所述移动部件移动方向大体成对角相交的多个倾斜细线标志构成。其中混色横向线标志列用于计算沿与移动部件移动方向一致的垂直扫描方向的图像偏移校正值ΔY。混色倾斜线标志列用于计算沿相对于与移动部件移动方向垂直的水平扫描方向的倾斜的斜方向的图像偏移校正值ΔZ。并且,混色横向线标志列和混色倾斜线标志列两者都用于计算沿大体垂直于移动部件移动方向的水平扫描方向的图像偏移校正值ΔX。
通过在其之间有偏移地相互叠加两种颜色之一的第一横向线与所述两个颜色中的另一种颜色的第二横向线,使其在移动方向上具有相同线宽L同时在移动方向上具有各个不同的节距P1和P2,校正标志形成单元形成混色横向线标志列。校正标志形成单元按这样的方式,即相应于由校正值计算单元计算的图像偏移校正值的检测范围确定第一横向线标志和第二横向线标志的线宽L,并且校正标志形成单元按这样的方式,即相应于检测范围中的校正值的分辨率(成比例的节距精度),确定第一标志和第二标志的节距P1与P2之间的差ΔP。最好,标志形成有例如一个点的分辨率,尽管在这种情况下,标志列变得太长,会导致存储标志读出结果的大存储容量。这样,校正标志形成单元形成多个混色横向线标志列,在移动部件移动的方向上该混色横向线标志列具有相应于检测范围的不同线宽L并具有相应于分辨率的不同节距差ΔP。更具体地说,它形成具有较大节距的混色横向线标志列和具有较小节距的混色横向线标志列,在各范围将它们相加在一起计算图像偏移,根据该相加图像偏移发现校正值。结果,缩短了标志形成距离,从而可减少存储器。
在移动部件移动的方向上校正标志形成单元累接形成混色横向线标志列。特别是,它累接形成具有较小范围和高分辨率的横向细线标志列,以测出由标志列计算的校正值的平均值,提高精度。当第二横向线标志列的节距P2大于第一横向线标志列的节距P1时,校正标志形成单元限定第二横向线标志列的标志数N2为:N2=(线宽L)/(节距差ΔP)×2+1
校正标志形成单元限定第一横向线标志列的标志数N1为:
N1=N2+1
通过在其之间有偏移地相互叠加两种颜色之一的第一倾斜线与所述两个颜色中的另一种颜色的第二横向线,使其在移动方向上具有相同线宽L同时在移动方向上具有分别不同的节距P1和P2,校正标志形成单元形成混色倾斜线标志列。该混色倾斜线标志列的细节也与混色横向线标志列的情况相同。亦即,校正标志形成单元按这样的方式,即相应于由校正值计算单元计算的图像偏移校正值的检测范围确定第一横向线标志和第二横向线标志的线宽L,并且校正标志形成单元按这样的方式,即相应于检测范围中的校正值的分辨率(成比例的节距精度),确定第一倾斜线标志和第二倾斜线标志的节距P1与P2之间的差ΔP。校正标志形成单元形成多个混色倾斜线标志列,在移动部件移动的方向上该混色倾斜线标志列具有相应于检测范围的不同线宽L并具有相应于分辨率的不同节距差ΔP。当第二倾斜线标志列的节距P2大于第一倾斜线标志列的节距P1时,校正标志形成单元限定第二倾斜线标志列的标志数N2为:
N2=(线宽L)/(节距差ΔP)×2+1
校正标志形成单元限定第一倾斜线标志列的标志数N1为:
N1=N2+1
校正标志形成单元形成作为混色倾斜线标志列的第一混色倾斜线标志列和第二混色倾斜线标志列,该第一混色倾斜线标志列由与移动部件移动方向大体成对角相交的多个倾斜线标志构成,该第二混色倾斜线标志列由与第一混色倾斜线标志列的标志的对角相交相反的对角相交的多个倾斜线标志构成,第一和第二混色倾斜线标志列在移动部件的移动方向上并置。在以这种方式形成两组具有不同倾斜方向的情况下,混色倾斜线标志列的混色相位相对于沿水平扫描方向的偏移相互相反地变化,而在垂直扫描方向的偏移有相同混色变化结果,因而通过算术平均两个图像偏移,沿垂直扫描方向的图像偏移可被消除,那么即使沿与带移动方向一致的垂直扫描方向有不均匀的速度,也可精确地获得仅沿水平扫描方向的图像偏移。作为混色倾斜线标志列的另一种模式,校正标志形成单元可按在大体垂直于所述移动部件移动方向的方向上并置的方式形成第一混色倾斜线标志列和第二混色倾斜线标志列。
其中,移动部件为循环带形式,校正标志形成单元在大体为循环带周边长度的整数倍的长度上形成混色倾斜线标志列。校正值计算单元计算沿与移动部件移动方向一致的垂直扫描方向的图像偏移的校正值ΔY,作为在彩色图像之间图像偏移的校正值。亦即,根据右和左混色横向线标志列之一的亮度图形的相位,校正值计算单元计算沿垂直扫描方向的图像偏移的校正值ΔY。校正值计算单元计算沿大体垂直于移动部件移动方向的水平扫描方向的图像偏移的校正值ΔX,作为在彩色图像之间图像偏移的校正值。亦即,根据混色横向线标志列和混色倾斜线标志列的亮度图形的相位,校正值计算单元计算沿水平扫描方向的图像偏移的校正值ΔX。实际上,校正值计算单元进行下列计算求出沿扫描方向的图像偏移的校正值ΔX:从依据具有较大和较小节距的混色横向线标志列的亮度图形相位获得的沿水平和垂直扫描方向的合成图像偏移Ad中,减去根据具有较大和较小节距的混色横向线标志列的亮度图形相位获所得的沿垂直扫描方向的图像偏移Ab,并且在所得差上再加上根据具有不同斜度和较小节距的混色倾斜线标志列获得的沿水平扫描方向的图像偏移Ae。更具体地说,相应于左和右混色标志列,校正值计算单元进行下列计算:从依据具有较大和较小节距的混色横向线标志列的亮度图形相位获得的沿水平和垂直扫描方向的合成图像偏移Ad中,减去根据具有较大和较小节距的混色横向线标志列的亮度图形相位获所得的沿垂直扫描方向的图像偏移Ab,并且在所得差上再加上根据具有不同斜度和较小节距的混色倾斜线标志列获得的沿水平扫描方向的图像偏移Ae,求出沿扫描方向的左和右图像偏移的校正值ΔXl和ΔXr,然后,校正值计算单元根据右和左列的水平扫描方向的图像偏移的平均值计算沿水平扫描方向的所述校正值ΔX。校正值计算单元计算沿相对于大体垂直于移动部件移动方向的水平扫描方向倾斜的斜方向的图像偏移的校正值ΔZ,作为在彩色图像之间图像偏移的校正值。亦即,根据左和右混色横向线标志列的亮度图形的相位,校正值计算单元计算沿斜方向的图像偏移的校正值ΔZ。更具体地说,根据混色横向线标志列的亮度图形的相位,校正值计算单元找出沿垂直扫描方向的左和右列的图像偏移,校正值计算单元根据在左和右图像偏移之间的差计算沿斜方向的图像偏移的校正值ΔZ。
校正标志形成单元将黑和蓝绿色、黑和深红色、以及黑和黄色的各混色标志列转印在移动部件上,并且校正值计算单元检测黑和蓝绿色、黑和深红色、以及黑和黄色的各混色标志列的亮度图形,以根据各亮度图形的相位分别计算蓝绿色、深红色和黄色图像相对于黑色图像的各图像偏移的校正值。
在本发明的另一模式中,为防止发生作为抗蚀剂标志转印在有例如损坏或脏表面等缺陷的移动部件即循环琏上的结果的校正值计算结果的误差,校正标志形成单元在多个周期上重复地将混色标志列转印在移动部件上,因而校正值计算单元根据在多个同期上转印的混色标志计算图像偏移的校正值,校正值计算单元判断多个校正值中的有效值,根据有效值的平均值发现最后的校正值。
在这种情况下,校正值标志形成单元形成作为混色标志列的混色横向线标志列和混色倾斜线标志列,混色横向线标志列由大体垂直于移动部件移动方向的多个横向线标志构成,混色倾斜线标志列由与移动部件移动方向大体成对角相交的多个倾斜线标志构成,校正标志形成单元在各周期位置偏移的多个周期上将两种中的混色横向线标志列转印在移动部件上。
附图说明
根据参照附图的下列详细说明,将更明了本发明的上述和其它目的、特征和优点。
图1是本发明设备本体的内部结构的说明图;
图2是图1的静电记录单元的剖面图;
图3是传送带单元和静电记录单元的拆卸状态的说明图;
图4A和4B是本发明硬件配置的方框图;
图5是用于检测转印的抗蚀剂标志的传感器的设置的说明图;
图6是图5的传感器结构的说明图;
图7是本发明处理功能的方框图;
图8是其中存储有用于校正图像偏移的校正值的表的说明图;
图9是按照本发明的总的打印处理的流程图;
图10是图像偏移检测原理的说明图;
图11是用于图像偏移量校正值检测中的被转印于带上的混色标志列的布置的说明图;
图12是按专门方式表示的图11的K-C标志列的说明图;
图13是图11的K-C标志列的另一实施例的说明图;
图14是按专门方式表示的图11的横向线标志列的最前端部分的说明图;
图15是由图7的校正值计算单元执行的图像偏移校正值检测处理的一般流程图;
图16是以放大比例表示的图12的K-C横向线标志列的说明图;
图17A和17B是相互叠加以形成图16的K-C横向线标志列的K横向线标志列和C横向线标志列的说明图;
图18A-18E是K横向线标志列、C横向线标志列、和混色K-C横向线标志列的排列结构以及通过传感器读出获得的亮度图形的说明图;
图19A-19E是当C横向线标志列相对于K横向线标志列朝向正方向(相位超前方向)位移时获得的K-C横向线标志列以及亮度图形的说明图;
图20A-20E是当C横向线标志列相对于K横向线标志列朝向负方向(相位滞后方向)位移时获得的K-C横向线标志列以及亮度图形的说明图;
图21A-21E是以一般形式表示的两种颜色横向线标志列和混色横向线标志列的说明图;
图22A-22C是具有图像偏移检测分辨率为±1点的理想横向线标志列的说明图;
图23是由图7的校正值计算单元执行的K-C横向线标志检测处理的流程图;
图24A和24B是在图23的步骤S3中进行的A/D转换值归一化处理的说明图;
图25是图11的横向线标志列的设置细节的说明图;
图26是在图25的预置标志列组中布置的标志列的说明图;
图27是跟随在图26之后的设置于最前端标志列组中的标志列的说明图;
图28A-28C是用于形成图27的K-C横向细线标志列的K横向细线标志列和C横向细线标志列的设置结构的说明图;
图29A和29B是组合横向线标志列和横向细线标志列所获得的图像偏移范围和分辨率的说明图;
图30是由图7的校正值计算单元执行的K-C横向细线标志检测处理的流程图;
图31是以放大比例表示的图12的K-C倾斜线标志列的说明图;
图32A和32B是用于形成图31的K-C倾斜细线标志列的K倾斜细线标志列和C倾斜细线标志列的设置结构的说明图;
图33A-33E是K倾斜线标志列、C倾斜线标志列、和混色K-C倾斜线标志列的排列结构以及通过传感器读出获得的亮度图形的说明图;
图34是由图7的校正值计算单元执行的K-C倾斜线标志检测处理的流程图;
图35是以放大比例表示的图12的K-C倾斜细线标志列的说明图;
图36A和36B是相互叠加以形成图35的K-C倾斜细线标志列的K倾斜细线标志列和C倾斜细线标志列的说明图;
图37A和37B是相互叠加以形成图35的K-C相反倾斜的细线标志列的K相反倾斜的细线标志列和C相反倾斜的细线标志列的说明图;
图38A和38B是组合倾斜线标志列和倾斜细线细线标志列所获得的图像偏移范围和分辨率的说明图;
图39是由图7的校正值计算单元执行的K-C倾斜细线标志检测处理的流程图;
图40A和40B是由图7的校正值计算单元执行的校正值计算处理的流程图;
图41是在图40A的步骤S1中沿垂直扫描方向的校正值ΔY的计算程序的说明图;
图42是在图40A的步骤S2中沿斜方向的校正值ΔZ的计算程序的说明图;
图43是在图40B的步骤S3、S4和S5中沿水平扫描方向的校正值ΔX的计算程序的说明图;
图44A-44D是由图7的位置偏移校正单元执行的校正处理的流程图;
图45是在多个周期上将抗蚀剂标志累接转印在循环带上的另一实施例的说明图;和
图46A和46B是基于在多个同期上转印的图45抗蚀剂标志的检测的校正值计算处理的流程图。
具体实施方式
(设备结构)
图1展示本发明的打印设备内部结构。设备本体10装有传送记录介质例如记录纸页的传送带单元11,传送带单元11旋转配置可传送的由电介质材料例如适当的合成树脂材料制备的循环带12。循环带12围绕四个滚筒22-1、22-2、22-3和22-4延伸。传送带单元11可拆卸地装配于设备本体10上。滚筒22-1起驱动滚筒的作用。借助驱动机构(未示出),驱动滚筒22-1使循环带12按某一速度沿箭头所指的顺时针方向旋转。驱动滚筒22-1还起消除来自循环带12的电荷的AC消除滚筒作用。滚筒22-2用作驱动滚筒。驱动滚筒22-2还用作为充电滚筒,用于使电荷到达循环带12。滚筒22-3和22-4用作引导滚筒并分别设置于驱动滚筒22-1和驱动滚筒22-2的附近。在驱动滚筒22-2与驱动滚筒22-1之间的循环带12的上旋转部分构成记录纸页移动通道。将记录纸页装在送纸箱中,用拾取滚筒16一张接一张地从送纸箱14的最顶层拾取该记录纸页。接着记录纸页通过记录纸引导通道18,由一对记录纸馈送滚筒20从较靠近驱动滚筒22-2的循环带12引入在带上侧的记录纸移动通道上。在穿过记录纸移动通道之后,从驱动滚筒22-1对记录纸放电。由于循环带12被驱动滚筒22-2充电,当记录纸从驱动滚筒22-2引入记录纸引导通道上时,记录纸静电粘附于循环带12上,以防止运动中的记录纸位置偏移。另一方面,在放电侧的驱动滚筒22-1用作电荷消除滚筒,以便在循环带12与驱动滚筒22-1接触的部位清除循环带12的电荷。由此,当记录纸穿过驱动滚筒22-1时,清除记录纸的电荷,结果记录纸容易地与循环带12分离并放电,而不会被下带部分捕获。设备本体10装有用于Y、M、C和K的四个串联排列的静电记录单元24-1、24-2、24-3和24-4,即在驱动滚筒22-2与驱动滚筒22-1之间限定的循环带12上侧上的记录纸移动通道,按上述顺序从上流朝向下流一前一后地排列。尽管所用的显影剂分别是黄色色料成分(Y)、深红色色料成分(M)、蓝绿色色料成分(C)和黑色色料成分(K)、但静电记录单元24-1和24-4具有相同的结构。由此,静电记录单元24-1至24-4在沿循环带12上侧的记录纸移动通道移动的记录纸上顺序地按叠加方式转印和记录黄色色料图像、深红色色料图像、蓝绿色色料图像和黑色色料图像,形成全彩色色料图像。
图2特别放大地表示图1的静电记录单元24-1至24-4中的一个。静电记录单元24包括根据记录动作顺时针旋转的光敏磁鼓32。在光敏磁鼓32上,例如以电晕充电器或scorotron充电器的形式设置预充电器34,预充电器34对光敏磁鼓32的旋转表面充以均匀电荷。正对光敏磁鼓32的充电区域设置用作光写入单元的LED阵列36,以将静电潜象写在光敏磁鼓32上。更具体地说,沿LED阵列36的水平扫描方向排列光发射元件,并根据从作为来自计算机或字处理器的打印信息供给的图像数据导出的象素数据(点计数据)的分级(graduation)电平对其进行驱动,使静电潜象作为点图像写入。通过位于光敏磁鼓32上的显影容器40静电显影写在光敏磁鼓32上的静电潜象,作为预定色料的充电色料图像。用位于下面的导电转印滚筒42静电转印光敏磁鼓32上的充电色料图像。更具体地说,静电转印滚筒42相对于光敏磁鼓32具有经过循环带12的微小间隙,并使由循环带12传递的记录纸具有与充电色料图像的极性相反极性的电荷,从而将光敏磁鼓32上的充电色料图像静电转印到记录纸上。通过转印处理,色料残留物粘附于光敏磁鼓32的表面上而未被转印到记录纸上。用位于记录纸移动通道下流的色料清除器43从光敏磁鼓32清除色料残留物。用螺旋输送机将这样被清除的色料残留物返送到显影容器40,作为显影色料重复使用。
再回到图1,在通过沿限定于驱动滚筒22-2与驱动滚筒22-1之间的循环带12的记录纸移动通道期间,通过四色Y、M、C和K图像叠加使记录纸被转印,构成全彩色图像。然后从驱动滚筒22-1朝向热滚筒型热固定器件26输送记录纸,其中热固定器件26用于在记录纸上热固定全彩色图像。在完成热固定之后,记录纸通过引导滚筒并堆积在设置于设备本体之上的堆积箱28中。尽管在图1的状态中只能看见更靠近观看者的传感器30-1,但正对循环带12的下带表面,沿垂直于带移动方向的方向布置着一对传感器30-1和30-2。按照本发明的位置偏移检测,传感器30-1和30-2用于光学读出用于检测位置偏移的抗蚀剂,其中抗蚀剂被转印到循环带12上。
图3展示可从图1的设备本体10内部拆卸的传送带单元11,具有配置于传送带单元11上的静电记录单元24-1至24-4的附着/分离结构。盖54按下列方式附设于设备本体10的顶部,即盖54可围绕左侧端自由地打开或关闭。框架55设置于设备本体10内,两个引线56布置在框架55的顶部上。另一方面,在上面示出的传送带单元11的侧表面配有正对在设备本体10侧面的框架55并在相应于引线56的位置处具有引线孔的框架58。借助该结构,在打开盖54之后可拔起传送带单元11,以便可从在设备主体10侧面的引线(pin)56向上拉出。静电记录单元24-1至24-4以这种方式安装在传送带单元11上,即配置在静电记录单元24-1至24-4的侧表面上的引线50固定于在连接板51顶部上向上开口的连接凹槽52中,其中该连接板51布置在传送带单元11的两侧表面上。连接凹槽52由上部V字形开口和与该开口接续并具有与引线50相同宽度的下部直开口构成,引线50可与连接凹槽52对齐并可向下推,以确保其在传送带单元11上预定位置的精确定位。在期望用色料填充静电记录单元24-1至24-4或进行维护的情况下,例如静电记录单元24-3被向上拉时,可容易地从单元11上将它们拆卸下来。
(硬件配置和功能)
图4A和4B是本发明打印设备硬件配置的方框图。本发明的硬件由发动机(engine)60和控制器62构成。发动机60包括机械控制器64,它完成对包括图1的传送带单元11和静电记录单元24-1至24-4的打印机械部分进行控制的功能。与机械控制器64有关的是用于传感器处理的MPU 66,MPU 66按照本发明执行偏移量校正处理。用于传感器处理的MPU 66接收从设置于循环带12下的传感器对30-1和30-2发出的检测信号。机械控制器64通过发动机连接器70连接到控制器62侧。如显示部分所示,配置于发动机中的打印机械包括循环带12和分别配置于Y、M、C和K静电记录单元的LED阵列36-1、36-2、36-3和36-4。控制器62包括用于控制器的MPU 72,它通过接口处理单元74和控制器连接器76连接到例如用作主机设备的个人计算机92上。个人计算机92包括对由任何应用程序94提供的彩色图像数据进行打印处理的驱动器96,驱动器96通过个人计算机连接器98连接到控制器62的控制器连接器76上。用于控制器62的控制器的MPU 72配有将从个人计算机92发射的Y、M、C和K图像数据扩展用于存储器的象素数据(点数据)。另一方向,用于控制器的MPU 72通过接口处理单元78和控制器连接器80连接到发动机60上,接口处理单元78接收由发动机60侧检测的位置偏移信息,从而允许对在扩展成图像存储器82-1至82-4中的各图像的象素数据进行位置偏移校正。用于控制器的MPU 72配有寻址单元84,当各颜色象素数据被扩展在图像存储器82-1至82-4中时寻址单元84进行寻址。跟随在寻址单元84之后的是地址转换单元86,它依据由通过接口处理单元78从发动机60侧提供的位置偏移信息进行地址转换。
图5是沿垂直于循环带12的传送方向的横向线截取的剖面图,表示传感器30-1和30-2以及配置在图4A和4B的发动机60侧的驱动电路单元的排列结构。两个传感器30-1和30-2沿垂直于带传送方向的方向并列在循环带12的下面。传感器30-1和30-2分别配有激光二极管100-1和100-2,激光二极管100-1和100-2的波长为780nm且分别具有光电二极管106-1和106-2。用驱动器110发射的光驱动驱动激光二极管100-1和100-2。来自光电二极管106-1和106-2的光接收信号被放大器108-1和108-2放大,然后通过AD转换器68将其取入用于传感器处理的MPU 66中。驱动器110响应来自DA转换器的信号进行工作,该DA转换器配置于用于传感器处理的MPU 66中,以驱动激光二极管100-1和100-2进行光发射。
图6展示举例说明图5的传感器30-1的具体结构。图6中,激光二极管100-1设置于外壳105的右侧。在激光二极管100-1的前面设置带准直仪的图像形成透镜102,用其使来自激光二极管100-1的透镜光束汇聚,在带12表面上的图像形成位置101形成入射角为θ1的最小束点。照射在图像形成位置101的激光束的束点直径限于例如几十微米。光电二极管106-1沿起自带12上图像形成位置101且输出角为θ2的光轴方向经由聚光透镜104设置。在按照本发明图像偏移校正的情况下,为了检测K、C、M和Y颜色图像的图像偏移,以偏移方式将C、M和Y色料抗蚀剂标志叠加在K色料抗蚀剂标志上所获得的混合颜色的抗蚀剂标志被转印在带上,以便用传感器30-1和30-2检测该混合颜色的抗蚀剂标志的明亮度图像。在这种情况下,被转印在带12表面上的混合颜色的抗蚀剂标志是未固定的色料,基本上没有或有少量的眩光,从而不能期望利用反射进行任何光检测。这样,在本发明传感器30-1和30-2的情况下,来自激光二极管100-1的微小束点照射在未固定的转印色料上,从而由光电二极管106-1接收所生成的散射光。由此,当带表面支持着未固定的色料作为抗蚀剂标志转印结果时,传感器30-1和30-2的检测信号是白色电平,尽管其值根据未固定色料的转印量朝向黑色电平降低。沿设置于其反面上的引导板107引导循环带12。可是,在引导板107位于其上形成有从激光二极管100-1发射的束点的束点检测位置101之后的情况下,照射在半透明带12上的束点可被设置于反面的引导板107反射,允许散射光进入光电二极管106-1,从而引起噪声光。这样,设置于循环带12后的引导板107配有在围绕会产生散射光的噪声检测位置101的部分形成的通孔109,从而防止作为在引导板107上反射的结果的噪声光产生。在本发明中使用的传感器30-1和30-2可以是透射型传感器,它由在与带相对的位置上相互相对地排列的光发射元件和光接收元件构成。在透射型传感器的情况下,当没有抗蚀剂标志时,检测信号变成白色电平,作为通过带的接收光的结果。根据转印的抗蚀剂标志,光接收信号的电平依据未固定的色料的转印量朝黑色电平降低。由于用于本发明中的传感器30-1和30-2检测已转印到循环带上的混色标志列的亮度,因而具有光学低分辨率的传感器例如用于检测有无色料粘性的色料粘附量传感器就足以有效,而不必使用如图6那样的具有非常严格的光束系统的激光束。
图7是本发明打印设备的功能性方框图,该设备由图4A和4B的硬件构成,该设备包括校正标志形成单元116,校正值运算单元118,校正值存储器单元122和图像偏移校正单元120。由配置于图4A和4B的发动机60中的MPU 66和配置于控制器62中的MPU 72执行这些功能。在图像偏移校正之前,校正标志形成单元116经由LED驱动单元130形成混色标志列,混色标志列用于通过Y、M、C和K的LED阵列36-1至36-4检测在循环带12上的校正值。用于图像偏移校正的混色标志列转印到与循环带12的传送方向垂直的水平扫描方向上的扫描范围的前沿和后沿,用传感器30-1和30-2分别检测两个标志列。本发明的图像偏移校正使用具有最强对比度的K打印图像作为其标准,检测用于相对于K校正其余的Y、M和C的打印图像的图像偏移的校正值。更具体地说,校正标志形成单元116保持在具有后述的图形形式的混色标志列上的打印信息。通过使用在混色标志列上的该打印信息,借助例如四种颜色Y、M、C和K的LED阵列36-1至36-4的平行驱动,将K-C、K-M和K-Y两个颜色的偏移叠加获得的混色标志列转印并形成在循环带12上。由校正标志形成单元116保持的有关混色标志列的信息可以为位映象图形形式,尽管以向量信息形式最好,但反过来它又被扩展成用于利用LED驱动单元130打印的位映象数据。根据由传感器30-1和30-2读出的K-C、K-M和K-Y的混色标志列的亮度图形的相位,相对于具有最强对比度的黑K抗蚀剂标志,校正值运算单元118算出其余颜色Y、M和C的图像偏移校正值。由校正值运算单元118算出的校正值是其余颜色C、M和Y的沿水平扫描方向相对于黑色K沿水平扫描方向的绝对位置的校正值ΔX,沿垂直扫描方向相对于黑色K的校正值ΔY,和其余颜色C、M和Y的沿斜方向相对于黑色K的校正值ΔZ(斜校正值)。为了提高依据由传感器30-1和30-2检测的K-C、K-M和K-Y的混色标志列的亮度图形计算校正值的精度,校正值运算单元118通过傅里叶变换寻找傅里叶系数a和b,根据这些傅里叶系数a和b测得相位Φ,以根据相位Φ计算校正植。例如如图8所示那样,按用于蓝绿色的表122C、用于深红色的表122M和用于黄色的表122Y的形式对由校正值运算单元118计算的校正植进行存储器。根据存储器于校正值存储器单元122中的图像偏移校正值,图7的图像偏移校正单元120依据对图像存储器82-1至82-4的象素数据进行的扩展,对图像偏移校正进行寻址转换。为了提供该寻址转换功能,图4的控制器62包括专用的寻址转换单元86。
图9是在配有图7的功能的本发明打印设备中执行打印处理作用的一般流程图。首先当激活设备时,在步骤S1中进行预定的初始化处理,初始化处理包括在步骤S2中检测图像偏移校正值的处理。在步骤S2中检测图像偏移校正值的处理完成之后,在步骤S3中进行检测,看是否有从主个人计算机提出的要求打印的请求。如果已提出打印请求,那么程序进入步骤S4,在该步骤中在从个人计算机发射的图像数据被扩展入图像存储器中时进行图像偏移校正处理。然后,当在步骤S5中完成打印准备时,在步骤S6中由发动机进行打印处理。在该处理过程中,在步骤S7中进行检测,看是否已发出了调整图像偏移的指令。如果已发出了调整图像偏移的指令,那么程序返回到步骤S2重新执行类似于在电源激活时进行的检测图像偏移校正值的处理。在步骤S7中用于有效的图像偏移调整的指令包括操作员的人工指令或基于来自上级个人计算机的命令的指令。并且,图像偏移可认为是由配置于发动机60中的静电记录单元的机械因素造成的并随设备内的环境温度改变。因此可监视每当经过预置时间表规定的时间后从供电到在步骤S2中自动进行图像偏移校正值的检测处理所经过的时间。在这种情况下可这样设置时间表,即由于在设备内的温度变化大,因而在紧随供电之后要缩短进行图像偏移校正值检测的间隔,并随从供电开始的经过时间的增加,延长进行图像偏移校正值检测的间隔。
(图像偏移校正值的检测)
图10展示由图7的校正值运算单元118进行的其余颜色Y、M和C相对于具有最强对比度的黑色K图像的目标图像的图像偏移检测原理,示出蓝绿色C的目标图像的图像偏移情况。首先,确定基准打印线132,其作为具有在垂直于纸传送方向的方向上的宽度为134的AT4纸的黑色K的打印线。相对于该基准打印线132,因C静电记录单元相对于黑色K静电记录单元的机械偏移等,因而打印的蓝绿色C的目标打印线140有相对于理想打印线的位置偏移。其中P11是基准线132的起始位置,P12是其终止位置,P21是目标打印线140开始偏移的起始位置,P22是其终止位置,用三个分量可限定目标打印线140相对于理想打印线148的位置偏移:
I、沿起始位置P21的水平扫描方向的图像偏移校正值ΔX;
II、沿起始位置P21的垂直扫描方向的图像偏移校正值ΔY;
III、由在位置P21和P22的垂直扫描方向上的图像偏移校正值确定的线倾斜指示的斜方向上的校正值(斜校正值)ΔZ。
为了实现图10的图像偏移校正值ΔX、ΔY和ΔZ的检测,沿图11所示的循环带12的移动方向将两个抗蚀剂标志列转印到循环带12上,并用传感器30-1和30-2对其进行用于计算的检测。利用图7的校正标志形成单元116进行抗蚀剂标志转印,在循环带12左侧且位于传感器30-1的检测线35-1上,形成K-C标志列150-1、K-M标志列152-1、K-Y标志列154-1和横向细线标志列156-1。相类似地,在循环带12右侧且位于传感器30-2的检测线35-2上,形成K-C标志列150-2、K-M标志列152-2、K-Y标志列154-2和横向细线标志列156-2。下面说明用传感器30-1检测左侧标志列的情况。K-C标志列150-1是通过相互以偏移方式叠加K标志列和C标志列形成的混色标志列。K-M标志列152-2是通过相互以偏移方式叠加K标志列和M标志列形成的混色标志列。K-Y标志列154-2是通过相互叠加K标志列和Y标志列形成的混色标志列。并且,通过预定次数地累接重叠的K-C、K-M和K-Y两个颜色标志列形成横向细线标志列156-2。
以图11的标志列组作为一个单元,图7的校正标志形成单元116构成在长度等于循环带12周边长度的大体整数倍的长度上累接的图11的标志列组图形。
图12展示设置于图11顶部的K-C标志列150-1和150-2的具体实例。例如在左侧的K-C标志列150-1的情况下,在前端形成K预置标志155-1,其后跟随横向细线标志列158-1、倾斜细线标志列160-1、倾斜细线标志列162-1、反向倾斜的细线标志列164-1。在右侧的K-C标志列150-2的情况下也一样,形成横向细线标志列158-2、倾斜细线标志列160-2、倾斜细线标志列162-2和反向倾斜的细线标志列164-2。自然,各标志是按偏移方式在K标志列上叠加C标志列而形成的混合标志列的形式。这种K-C标志列150-1和150-2的标志列结构用于图11的第二K-M标志列152-1和152-2以及第二标志列154-1和154-2。
图13展示图11的K-C标志列150-1和150-2的另一实施例,其特征在于右侧标志列倾斜线的倾斜与左侧标志列倾斜线的倾斜相反。亦即,图12的右侧和左侧倾斜细线标志列160-1和160-2、倾斜细线标志列162-1和162-2、以及相反倾斜的细线标志列164-1和164-2被给予相同的倾斜方向。在图13中,与其相反,左侧的倾斜细线标志列160-1、倾斜细线标志列162-1和相反倾斜的细线标志列164-1具有与右侧的倾斜细线标志列160-3、倾斜细线标志列162-3和相反倾斜的细线标志列164-3相反的倾斜方向。
图14展示图11的横向细线标志列前端部分的实施例。以传感器30-1检测的左侧横向细线标志列156-1为例,在前端设置K预置标志165-1,其后跟随具有相同标志列图形顺序累接的K-C横向细线标志列166-11、K-M横向细线标志列168-11和K-Y横向倾斜细线标志列170-11。在本发明实施例中,图形累接的次数是39。在右侧的横向细线标志列156-2的情况下也一样,在前端设置K预置标志165-2,其后跟随具有三个标志列的顺序总数39次累接的K-C横向细线标志列166-21、K-M横向细线标志列168-21和K-Y横向倾斜细线标志列170-21。
图15是由用于检测图10的三个偏移校正量ΔX、ΔY和ΔZ的校正值运算单元118执行的处理的一般过程的流程图,其中由传感器30-1和30-2读出由图7的校正标志形成单元116形成在循环带12上的图11-14的标志列进行运算。在该图像偏移校正值检测处理的情况下,首先在步骤S1中,根据传感器30-1和30-2读出的图11的K-C标志列150-1和150-2的读出信号,相应于基于横向细线标志列158-1和158-2、倾斜细线标志列160-1和160-2、以及倾斜细线标志列162-1、162-2、164-1和164-2的标志列检测图像偏移,其细节示于图12中。接着在步骤S2中,基于各标志列,对图11的K-M标志列152-1和152-2进行类似图像偏移检测。然后在步骤S3中,基于各标志列,对图11的K-Y标志列154-1和154-2进行类似图像偏移检测。然后在步骤S4中,基于在横向细线标志列156-1和156-2中叠力K-C、K-M和K-Y获得的横向细线标志列,对各图像偏移进行检测,其细节示于图14中。在步骤S1-S4中根据标志列完成这样的图像偏移检测之后,最后在S4中,基于检测的图像偏移,计算如图10所示的沿水平扫描方向的校正值ΔX,沿垂直扫描方向Y和沿斜方向的校正值(斜校正值)ΔZ。
(基于横向线标志列的图像偏移检测)
图16是由图12的传感器30-1检测的设在左侧K-C标志列150-1前端的横向线标志列158-1的放大图,该标志列由K预置标志174和K-C横向线标志列158构成。相互叠加图17A的K横向线标志列176和图17B的C横向线标志列178并以两种颜色的混色标志列形式转印它们,形成该K-C横向线标志列158。在图17A中,跟随在K预置标志174之后,形成由六个并列的标志K1-K6构成的K预置标志176。与此相对,图17B中的C横向线标志列178由五个标志C1-C5构成。在K横向线标志列176和C横向线标志列178中,前端标志K1和C1位于相同位置,后端标志K6和C5也位于相同位置,但具有不同的节距。
图18A-18E展示用于形成图16的K-C横向线标志列158的图16中的K和C横向线标志列176和178,与K-C横向线标志列158被传感器读出时所获得的亮度图形之间的关系。图18A表示跟随在K预置标志174后的K横向线标志列176,标志列176由六个标志K1-K6构成,具有沿循环带移动方向(垂直扫描方向)的标志列宽度W和节距P1。图18B表示由五个标志C1-C5构成C横向线标志列178,其线宽W等于K横向线标志列176的线宽W,其节距P2大于K横向线标志列176的节距P1。在这种情况下,K横向线标志列176的节距P1与C横向线标志列178的节距P2之间的差为ΔP。在本发明中,沿循环带移动方向(垂直扫描方向)的分辨率例如为1800dpi,该值取决于用作图4的控制器单元62的绘图LSI的处理速度,而沿垂直于循环带移动方向的水平扫描方向的分辨率设定为600dpi,该值由配置于K、C、M和Y静电记录单元24-1至24-4中的LED阵列36-1至36-4的LED芯片的排列来决定。使用由沿带移动方向600dpi的分辨率确定的点,如下说明图18A至18C的标志尺寸。
线宽度W=48点
节距P1=96点
节距P2=120点
节距差ΔP=24点
对于600dpi的点节距导致42.3μm。
这样,如果点计数用μm来表示,有下列结果。
线宽度W=2,030.4μm
节距P1=4,060.8μm
节距P2=5,076.0μm
节距差ΔP=1,015.2μm
在线宽W例如为W=48点的情况下,600dpi的点计数可如下转换成μm
48点×42.3μm=2,030.4μm
图18A的K横向线标志列176和图18B的C横向线标志列178相互叠加以进行转印,获得图18C所示的K-C横向线标志列158。当观察K-C横向线标志列158的重叠度时,前端标志K1和C1以及后端标志K6和C5相互进行完全重叠。在相对端之间,偏移节距差ΔP地重叠标志K和C,具有位于中心位置175的标志C3,其不与标志K3和K4重叠。接着,从标志K5和C4的反方向进行重叠,使标志K6和C5在最后位置相互完全重合。当用图5和6的散射光型传感器读出具有这样的K和C重叠的K-C横向线标志列158时,获得图18D所示的散射光水平的亮度图形,而在透射型传感器的情况下,获得图18E所示的透射光水平的亮度图形。在图18D的散射光水平的亮度图形中,在循环带移动方向即垂直扫描方向的K-C横向线标志列158的中心位置175的相位为零,在标志初始位置的相位为-π,在标志结束位置的相位为+π,因而如果通过分成五个区域寻找标志列的检测模式的平均值,那么或获得正弦曲线的非连续值,这导致在其两端±π的最大值,在其中心的最小值和在±π/2的中间值。另一方面,在图18E的由透射型传感器获得的透射光水平的情况下,获得在相对端±π有最小值和在中心位置±π有最大值Lmax的正弦曲线的不连续值。
图19A-19E展示从图18A-18E的没有图像偏移的状态沿前进方向偏移C横向线标志列178的情况。如图19B所示,使C横向线标志列178相对于图19A的K横向线标志列176沿前进方向偏移+A1。其中一例是使+A1=24点,这意味着偏移等于标志线宽度W的一半。在这种情况下,如图18C所示,K-C横向线标志列158代表重叠度,具有分别由图19D和19E所示的由传感器读出的散射光水平和透射光水平的亮度图形。当观看图19D的散射光水平的亮度图形时,使无任何图像偏移的虚线的最小值Lmin的相位偏移+π作为由实线指示的最小值Lmin。在图19E的透射光水平的亮度图形的情况下也一样,使无图像偏移的虚线的最大值Lmax的相位偏移+π/2作为由实线指示的最大值Lmax。即,亮度图形的相位发生了这种变化,其导致图像偏移+A1=+π/2。
图20A-20E展示沿滞后方向C横向线标志列178偏移的情况。即,使图20B的C横向线标志列178相对于图20A的K横向线标志列176图像偏移-A。其中一例是使-A等于-24点。在这种情况下,如图20C所示,通过K-C横向线标志列158的两种颜色的重叠获得标志列。由传感器读出的亮度图形如图20D的散射光水平或如图20E的透射光水平所示。
在图20D的散射光水平的亮度图形的情况下,使无图像偏移的最小值Lmin的相位偏移-π/2。。在图20E的透射光水平的亮度图形的情况下也一样,使无图像偏移的最大值Lmax的相位偏移-π/2。这意味着建立了图像偏移-A=-π/2的关系。
这样可以通过识别亮度最大或最小处的相位位置,根据叠加的标志列相对于图20A-20E的K和C标志列的图像偏移整体地检测图像偏移。
图21A-21E展示用于本发明的一般横向线标志列,其具有例如K和C两种颜色的情况。图21A表示作为基准且具有标志线宽度W和节距P1的K横向线标志列176。图21B表示将要进行图像偏移检测的也具有标志线宽度W和节距P2的C横向线标志列。在两列的节距P1与P2之间,具有表达为P1<P2的关系,其其节距差为ΔP。令N1为作为基准的K横向线标志列176的标志数,N2为将要进行图像偏移检测的C横向线标志列的标志数,那么N1和N2为
C标志数N2=(线宽W)/(节距差ΔP)×2+1 (1)
K标志数N1=N2+1 (2)
在图21B中,C横向线标志列178由标志C1-Cn构成,在其中心位置175有标志Cn/2。与此相对,K横向线标志列176由其数字一个比一个大的标志K1-Kn+1构成。并且,在图18D和18E的散射光和透射光中限定沿两个横向线标志列176和178的标志线宽度W的点计数提供例如±π的范围,具有节距差ΔP,节距差ΔP提供在±π之间决定存储器节距的分辨率。在图18A-18C中,例如W等于48点,从而图18D和18E的相位范围±π相应于±48点。并且,节距差ΔP等于48点,结果提供图18D和18E的分辨率的存储器节距π/2为24点。换言之,图18D和18E的的相位信息具有与确定图像偏移的点计数一一相应的关系,因而用点计数表示-π到+π的相位,可以立即根据最小值Lmin和最大值Lmax发现图像偏移。
图22A和22C展示本发明的理想混色标志,其图像偏移检测分辨率设定为±1点。图22A表示作为基准的K横向线标志列176,与图18A的情况相同,其线宽W等于48点,节距P等于96点。图22B表示将要进行图像偏移检测的C横向线标志列178,其线宽仍等于48点,但节距P2等于P1+1=97点,这样相应的节距差ΔP=1点,以提供±1点的分辨率。图22C表示通过叠加图22A和22B的K横向线标志列176和C横向线标志列178获得的K-C横向线标志列158。
使用如图22A-22C所示混色标志列,可以根据K-C横向线标志列158的读出图形,按±1点的精度检测图像偏移。可是,在分辨率被设定为±1点的情况下,必须排列96列K标志K1-K96和95列C标志C1-C95,这样沿带移动方向的标志阵列的长度变为
96点×96点=9216点
=389,936.8μm(约39cm)
由此,显著地增加了基于按传感器读出的读出信号的A/D转换的存储器使用量,这导致设备成本的增加。因而,在本发明的情况下,根据下列说明将明了,将图像偏称检测范围分成两个步骤,亦即,较大的一个和较小的一个,然后加在一起获得±2点的分辨率。
图23是相对于作为目标的图16的K-C横向线标志列158-1,检测图像偏移的K-C横向线标志检测处理的流程图。首先在步骤S1中,检测图16的K预置标志174的中心位置,将等于预定标志宽度一半的点计数加到中心位置上,以决定虚似上端位置。接着在步骤S2中,按作为基准的虚似上端位置设置标志读出间隔i,以读出横向线标志。更具体地说,如图16中的K-C横向线标志列158-1的右侧所示,设定间隔1、2、3、4和5,以便获得亮度,其作为对各间隔的传感器读出信号的A/D转换值。然后在步骤S3中,对由传感器读出的标志亮度值的A/D转换值进行归一化。
图24A和24B展示A/D转换值的归一化处理的内容。在图24A中,横坐标轴代表时间,纵坐标轴代表作为传感器读出信号的电压电平和A/D转换值的转换电平的按十六进制表示的00h-FFh,以表达标志读出信号182。
并且,根据来自传感器的标志读出信号通过射级输出器,使其输出产生白色电平184。限定无标志区域的黑色电平186假定作为A/D转换值的40h和作为信号电压的1.05伏。换言之,黑色电平186等于A/D转换值FF的四分之一和42伏的最大电压。其中,作为进行归一化转换的限制电平188被限制如下。
限制电平=(白色电平-黑色电平)/4+黑色电平
这种限制电平188的产生限制包含在标志读出信号182中的在噪声。在从标志读出信号182中减去黑色电平186而获得的值变为负数的情况下,归一化值为00h。其结果是,获得如图24B所示的归一化值200。并且,在图24A中,标志读出信号182包含在间隔自由形式标志中的后沿和前沿的大噪声。这样,限定为0电平的间隔是具有低于限制电平188的起点190和具有高于限制电平188的端点192的期限T1。在这种情况下,在点192之后标志读出信号182变到大范围上,导致点194再次超过限制电平188。结果,比较在间隔T1中的标志读出信号182和在间隔T2中的标志读出信号182,以便选择具有较小的平均值的间隔T1作为归一化电平00h的间隔。假定在随后的标志读出期间,标志读出信号182下降到大范围,那么导致限制电平188出现下降点196和上升点198。在这种情况下也一样,从点196到点198获得间隔T3,如果结果相等或低于正常值,那么限制电平188未扰动地保持到最小噪声,忽略该标志列182的下降变化。
再回到图23,在步骤S3中完成A/D转换值的归一化之后,在步骤S4之前的程序是计算图6中间隔i=1-5的平均亮度D(i)。接着在步骤S5中,计算图像偏移A1。为计算该图像偏移A1,利用非连续的傅里叶变换,以便由下式获得亮度图形的相位Φ。
Φ=ArcTan(正弦傅里叶系数a/cosine傅里叶系数b)〕
=ArcTan〔∑{Di×sin(2πi/5}/{∑(Di×cos(2πi/5)}〕 (3)
其中i=1,2,3,…,n,
n=5,
Φ=-π到+π
在按这种方式计算亮度图形的相位Φ之后,用下式将其转换成用点计数表示的图像偏移A1:
A1=(相位Φ的区段号转换值)×(分辨率ΔP)
=-{(Φ/2π)×5-0.5}×24(点〕 (4)
图25展示图11的横向细线标志列156-1和156-2的一般框图结构。在例如左侧的情况下,在K预置标志165-1之后跟随标志列组202-11至202-1j。标志列组202-11至202-1j,例如标志列组202-11由K-C横向细线标志列166、K-M横向细线标志列168和K-Y横向细线标志列170构成,其余的组重复地具有相同结构。在右侧标志列的情况下也一样,在K预置标志165-2之后跟随标志列组202-21至202-2j。标志列组202-11至202-1j,各标志列组累接地具有三种K-C、K-M和K-Y横向细线标志列166、168和170。在本发明的该实施例中,j等于39,允许标志列组累接39次。
图26展示图25的K-C和K-M横向细线标志列166和168的具体实例,以放大的方式表示图14。并且,跟随在图26之后,图27展示K-Y横向细线标志列170。
图28A-28C是用于说明形成图26的K-C横向细线标志列166的说明图。图28A示出K标志列210,其标志线宽度W等于18点,节距P1等于48点。图28B示出C横向细线标志列212,其标志线宽度W等于18点,节距P2等于50点。因此,在K标志与C标志之间的节距差ΔP为2点。由于该线宽W=18点,在通过图28C的K-C横向细线标志列166的叠加由标志列传感器读出的亮度图形中的±π范围具有相应于线宽W=18点的±18点范围。在相应于±π范围的±18点范围内的分辨率(存储器节距)结果为相应于节距差ΔP的2点。并且,由上述式(1)和(2)可知,K标志的标志数为K1-K26的26个,C标志的标志数为C1-C25的25个。
通过分别在图16的K-C横向细线标志列158中和图26的K-C横向细线标志列166中增加图像偏移检测,本发明实现在±48点范围中的±2点的分辨率。亦即,如图29A所示,从K-C横向细线标志列158获得的图29B的亮度图形的范围±π以相应于线宽W=48点的范围方式提供±48点的范围。此外,这样设置该情况下的分辨率,使其相应于节距差ΔP=24点。另一方面,在图29A的K-C横向细线标志列166的情况下,由于线宽W等于18点,所以相应于图29B的±π/4设置范围±12点,以便在那范围之内具有基于节距差ΔP=2点的分辨率。如图29B所示,这样的组合允许对于±48点的各存储器每一24点,分段设置具有2点分辨率的范围。假如由K-C横向细线标志列158计算出的图像偏移A1为+24点,由K-C横向细线标志列166计算出的图像偏移A5为+2点,那么相应于图29B的A1=+24点,选择A5=+2点,结果图像偏移为A1+A5=26点。
图30是用于检测图26的K-C横向细线标志列166的图像偏移的流程图。首先在步骤S1中,检测用于图26的横向细线的前端预置标志165的中心位置,以确定限制为预置标志线宽一半的虚似上端位置。接着在步骤S2中,如图26所示,相对于作为基准的虚似上端位置确定八个标志读出间隔1-8,以通过读出标志测出亮度图形。然后在步骤S3中,按与图24A和24B的方式相同的方式归一化A/D转换值,和在步骤S4中,计算间隔的平均亮度D(i)。在这种情况下,由于i=1-8,所以计算D(1)-D(8)。然后,在步骤S5中,计算图像偏移A5。首先根据亮度图形,即在步骤S4中获得的平均亮度D(i),通过利用下式的非连续傅里叶变换计算相位Φ。
Φ=ArcTan(正弦傅里叶系数a/cosine傅里叶系数b)〕
=ArcTan〔∑{Di×sin(2πi/5}/{∑(Di×cos(2πi/8)}〕 (5)
其中i=1,2,3,…,n
n=8,
Φ=-π到+π
由于在间隔j=1-13上累接图26的K-C横向细线标志列166,因而由下式给出在任意间隔j中的图像偏移(A5)。
间隔偏移量(A5)j=(相位Φ的分段数转换值)×(分辨率ΔP)-(累接间隔偏移)
={(Φ/2π)×8-0.0}×2-{2/3-(j-1)×(X/3)}〔点〕 (6)
其中j=1-13
在按这种方式获得间隔j=1-13的图像偏移(A5)1-(A5)13之后,根据下式计算平均图像偏移。
平均图像偏移量A5=∑(A5)j/j={(A5)1+(A5)2+...,+(A5)13}/13 (7)
对图26和27中所示的其余K-M横向细线标志列168和K-Y横向细线标志列170类似地进行这种根据K-C横向细线标志列166的图像偏移A5的检测。
(根据倾斜线标志列的图像偏移检测)
图31特别放大地展示图12的左侧倾斜线标志列160-1。该倾斜线标志列160-1由在其前端的K预置标志214和跟随其后的K-C倾斜线标志列172构成。
图32A和32B分别表示K标志列和C标志列,其相互叠加以获得图31的K-C倾斜线标志列172。图32A表示K标志,它包括在其前端的预置标志214和按K倾斜线标志列216的形式跟随在其后的六个标志K1-K6,其倾斜线向右上倾斜45度。图32B表示由标志C1-C5构成的C倾斜线标志列218。在这两列中,前端标志K1和C1位于相同位置,后端标志K6和C5也位于相同位置,在它们之间有位移。
图33A-33E展示K-C倾斜线标志列的形成和通过传感器读出获得的亮度图形。图33A的K倾斜线标志列216包括具有向右上倾斜45度的倾斜线标志,具有标志线宽度W和节距P1,其中标志线宽度W为沿循环带移动方向且为传感器检测位置的线宽。图33B表示C倾斜线标志列218,其线宽W等于K标志的线宽W,但其节距P2大于节距P1且节距差为大ΔP。在该实施例中,线宽W、节距P1和P2以及节距差ΔP取下值。
线宽W=36点
节距P1=72点
节距P2=90点
节距差ΔP=18点
因此,根据式(1)和式(2),K标志由六个标志K1-K6构成,C标志由五个标志C1-C5构成。图33C表示通过相互叠加图33A和33B中的K倾斜线标志列216和C倾斜线标志列218获得的K-C倾斜线标志列172。当用传感器读出该K-C倾斜线标志列172时,获得图33D的散射光电平的亮度图形或图33E的透射光电平的亮度图形。
在图33D的散射光电平的亮度图形情况下,因在相位0的位置图像偏移为零,因而最小值Lmin位于相位0的位置。相反,在图33E的透射光电平的亮度图形的情况下,最大值Lmax位于相位0的位置,该位置也是中心位置215。在这种情况下,亮度图形的范围±π具有相应于线宽W=36点的±36点的范围,其分辨率为按照节距差ΔP的18点。当C倾斜线标志列218在循环带移动方向(垂直扫描方向)上有相对于K倾斜线标志列216的偏移时,K-C倾斜线标志列172的亮度图形的变化与图19A-19E和图20A-20E关于横向细线标志列的情况相同。除此之外,在K-C倾斜线标志列172的情况下,随着沿大体垂直于C倾斜线标志列218的循环带移动方向的水平扫描方向的偏移,重叠度也变化,结果亮度图形的相位变化。亦即,按照作为带移动方向的垂直扫描方向和大体垂直于带移动方向的水平扫描方向的图像偏移,K-C倾斜线标志列172的相位偏移。
图34是表示检测图31的K-C倾斜线标志列172的图像偏移A2的处理的流程图。首先在步骤S1中,检测图31的K倾斜线预置标志214的中心位置,以确定为预定标志线宽一半的虚似上端位置。接着在步骤S2中,相对于作为基准的虚似上端位置设置作为标志读出间隔I的间隔1-5,并用传感器读出倾斜线标志列,以得出表示亮度的A/C转换值。然后在步骤S3中,按图24A和24B的方式归一化A/D转换值,和在步骤S4中,计算倾斜线标志列的间隔I=1-5的平均亮度D(i)。最后在步骤S5中,计算图像偏移A2。亦即,根据下式基于非连续傅里叶变换计算相位Φ。
Φ=ArcTan〔∑{Di×sin(2πi/5)-0.5}/(∑(Di×cos(2πi/5)}〕
(8)
其中i=1,2,3,...,n
n=5,
Φ=-π到+π
用下式将代表图像偏移的相位Φ转换成点数。
A2=-{(Φ/2π)×5-0.5}×18〔点〕 (9)
对其余的K-M倾斜线标志列和K-Y倾斜线标志列170进行这种通过读出K-C倾斜线标志列172获得的图像偏移A5的检测。
图35放大地表示图12的左K-C倾斜细线标志列162和164。通过相互叠加K倾斜细线标志列220和C倾斜细线标志列222,形成K-C倾斜细线标志列162。图36A的K倾斜细线标志列220具有宽度W和节距P1。另一方面,图36B的C倾斜细线标志列222具有相同的宽度W但其节距P2大于P1,其节距差为ΔP。其中,在该实施例中,线宽度W、节距P1和P2以及节距差ΔP具有下列值。
线宽W=6点
节距P1=48点
节距P2=50点
节距差ΔP=2点
据此,根据上式(1)和(2),有八个K标志K1-K8和七个C标志C1-C7。
图37A和37B分别展示用于形成图35中的K-C相反倾斜的细线标志列164的K标志列和C标志列。图37A表示K相反倾斜的细线标志列224,其使用与图36A相反的向左上倾斜45度的倾斜细线标志列。图37B表示C相反倾斜的细线标志列226,其使用与图36B相反的向左上倾斜45度的倾斜细线标志列。K相反倾斜的细线标志列224的线宽W为与图36A和36B的情况相同的6点,节距为48点。相反,C相反倾斜的细线标志列226相对于图36B向正侧位移一点。亦即,在图36B的情况下,相对于标志K1-K7,标志C1-C7的图像偏移分别是2、4、6、8、10、12和14点,而在图37B中,它们分别是1、3、5、7、9、11、13和15点。
图35的K-C倾斜细线标志列162通过与图31的K-C倾斜线标志列172组合具有两个阶段的图像偏移范围和分辨率。图38A和38B展示通过K-C倾斜线标志列172组合与K-C倾斜细线标志列162的组合,在图像偏移范围和分辨率的两个阶段之间的关系。在这种情况下,如图38B所示,在±π的范围内K-C倾斜线标志列172具有±36点的范围,其线宽W=36点,在那时具有由节距差ΔP=18点确定的以18-点单位的分辨率。另一方面,K-C倾斜线标志列162具有±6点的范围,在那范围内线宽W=6点并具有相应于节距差ΔP=2点的分辨率。通过这种具有大范围和小范围的倾斜线标志列的组合,可以利用具有减小长度的标志列实现±36点范围和±2点分辨率的图像偏移检测。
并且,在图35的K-C倾斜细线标志列162和K-C相反倾斜的细线标志列164的情况下,由此检测的图像偏移A3和A4被算术(addition)平均,以消除沿带传送方向的垂直扫描方向的图像偏移,由此可消除起因于带传送速度偏移的位移,以确保精确地计算沿大体垂直于带传送方向的水平扫描方向的图像偏移。
图39是用于图35的K-C倾斜细线标志列162和K-C倾斜细线标志列164的图像偏移检测处理的流程图。首先在步骤S1中,相对于图12的K预置标志155-1的虚似上端位置确定用于右上倾斜细线标志列的八个读出间隔i=1-8,以便读出标志测出亮度。接着在步骤S2中,象图24A和24B那样对A/D转换值进行归一化。然后在步骤S3中,计算倾斜细线标志列的间隔的平均亮度D(i),和在S4中,根据右面连续傅里叶变换计算图像偏移A3。亦即,根据下式,基于非连续傅里叶变换,计算相位Φ。
Φ=ArcTan〔∑{Di×sin(2πi/8}/{∑(Di×cos(2πi/8)}〕 (10)
其中i=1,2,3,...,n
n=5,
Φ=-π到+π
在按这种方式计算亮度图形的相位Φ之后,用下式将算出的相位Φ转换成点计数,以获得图像偏移A3。
A3={(Φ/2π)×8-0.0}×2(点〕 (11)
然后在步骤S5中,按与步骤S1相同的方式,相对于图12的K预置标志155-1的虚似上端位置确定用于相反的左上倾斜细线标志列164的读出间隔i=1-8,由传感器读出标志,以获得代表亮度的A/D转换值。接着在步骤S6中,对A/D转换值进行归一化,和在步骤S7中,计算K-C相反倾斜的细线标志列164的间隔1-8的平均亮度D(i)。然后在步骤S8中计算图像偏移A4。首先根据非连续傅里叶变换利用式(10)计算相位Φ。然后根据下式将相位Φ转换成图像偏移的点计数。
A4={(Φ/2π)×8-0.5}×2(点〕 (12)
(计算转换值ΔX、ΔY和ΔZ)
图40A和40B是计算图像偏移校正值ΔX、ΔY和ΔZ的处理的流程图,利用图7的校正值计算单元118,根据标志列的图像偏移A1、A2、A3和A4的计算结果进行该处理。首先在步骤S1中,计算沿与带传送方向一致的垂直扫描方向的校正值ΔY。象图11的情况那样,为了计算该校正值ΔY,利用例如从K-C横向线标志列158-1算出的信息块230的图像偏移A11,和根据K-C横向线标志列166-1获得的信息块232的图像偏移A51,根据下式计算沿垂直扫描方向的左侧图像偏移B1。
沿垂直扫描方向的左侧偏移量Bl={(A1l-A5l)/16}×16R的整数+A51
=(A1l-A5l)的整数+A51 (13)
该图像偏移B1是沿水平扫描方向的600dpi的图像偏移,因此为了确保沿垂直扫描方向的1800dpi,根据下式计算沿垂直扫描方向的校正值。
沿垂直扫描方向的校正值ΔY=(3×Bl)的整数 (14)
返回到图40A和40B,该程序在用于计算沿斜方向校正值ΔZ的下一步骤S2之前。在图42的程序之后进行沿斜方向校正值ΔZ的计算。首先根据在横向线标志列158-1的信息块236中所示的图像偏移A11和根据横向细线标志列166-1的信息块238的图像偏移A51计算在信息块240中所示的沿垂直扫描方向的图像偏移B1。这由式(13)导出。由于已获得对于右侧横向线标志列158-2和横向细线标志列166-2的信息块242和244的图像偏移A1r和A5r,因而可按与左侧情况相同的方式由下式算出对于信息块246的沿垂直扫描方向的图像偏移Br。
沿垂直扫描方向的右侧偏移量Br={(A1r-A5r)/16}×16R的整数+A5r
=(A1r-A5r)的整数+A5r (15)
在按这种方式获得在信息导体240和246中沿垂直扫描方向的右图像偏移Br和左图像偏移Bl之后,可按信息块250的形式得到它们之间的差,然后从600dpi转换成1800dpi,以根据下式算出沿斜方向的校正值ΔZ。
沿斜方向的校正值ΔZ={3×(Br-Bl)}的整数 (16)
再回到图40A和40B,在下面的步骤S3、S4和S5中计算沿水平扫描方向的校正值ΔX。其中,在步骤S3中进行沿水平扫描方向的左侧校正值ΔXl的计算处理,在步骤S4中进行沿水平扫描方向的右侧校正值ΔXr的计算处理。最后在步骤S5中通过算术平均计算沿水平扫描方向的校正值ΔX。
用图43的程序完成该沿水平扫描方向的校正值ΔX的计算。首先用作左侧标志列的是横向线标志列158-1、倾斜线标志列172-2、倾斜细线标志列162-1、相反倾斜的细线标志列164-1和横向细线标志列166-1。自然,由于累接39次横向细线标志列160-1因而使用的图像偏移是其平均值。结果,得到按各标志列信息块252、258、260、266和254形式的图像偏移A1l、A2l、A3l、A4l和A5l。首先利用信息块252和254的图像偏移A1l和A5l,计算沿垂直扫描方向的左侧图像偏移Bl作为信息块256。根据式(13)计算沿垂直扫描方向的该图像偏移Bl。然后利用信息块258和260的图像偏移A2l和A3l,由下式计算包括沿水平和垂直扫描方向的图像偏移的合成图像偏移Cl,其作为信息块262。
合成偏移量Cl=(A2l-A3l)/16×16的整数+A3l
=(A2l-A3l)的整数+A3l (17)
由下式,从这样获得的信息块262的合成图像偏移Cl中减去信息块256的沿垂直扫描方向的图像偏移Bl,可算出信息块264的沿水平扫描方向的图像偏移Dl。
沿水平扫描方向的图像偏移Dl=Cl-Bl (18)
另一方面,由下式利用信息块260和264的图像偏移A3l和A4l,计算沿水平扫描方向的图像偏移El,其作为信息块266。
沿水平扫描方向的偏移量El=(A3l-A4l)/2 (19)
应指出,在信息块264中获得的沿水平扫描方向的图像偏移量Dl具有低分辨率和大范围,而信息块266的沿水平扫描方向的图像偏移量El具有高分辨率和小范围。这样,在信息块268中,使两个范围匹配,以用下式根据左侧标志列计算沿水平扫描方向的校正值ΔXl。
沿水平扫描方向的校正值ΔXl={(Dl-El)/16}×16的整数+El
=(Dl-El)的整数+El (20)
在按这种方式完成左侧标志列的计算处理之后,利用在信息块270、276、278、284和272中获得的图像偏移A1r、A2r、A3r、A4r和A5r计算右侧标志列沿水平扫描方向的校正值ΔXr,该右侧标志列包括右侧横向线标志158-2、倾斜线标志列172-2、倾斜细线标志列162-2、相反倾斜的细线标志列164-2和横向细线标志列166-2。首先,根据信息块270和272的图像偏移A1r和A5r计算沿信息块274的垂直扫描方向的偏移Er。其计算公式与式(15)相同。然后利用信息块276和278的图像偏移A2r和A3r,由下式计算包括合成图像偏移Cr。
合成偏移量Cr=(A2r-A3r)/16×16的整数+A3r
=(A2r-A3r)的整数+A3r (21)
由下式,根据信息块274和280的图像偏移Ar和Cr计算信息块282的沿水平扫描方向的图像偏移Dr。
沿水平扫描方向的图像偏移Dr=Cr-Br (22)
并且,由下式利用信息块278和284的图像偏移A3r和A4r,计算信息块286的沿水平扫描方向的图像偏移Er。
沿水平扫描方向的偏移量Er=(A3r-A4r)/2 (23)
然后利用由信息块282和286的图像偏移Dr和Er配置的范围,用下式根据左侧标志列计算沿水平扫描方向的校正值ΔXr。
沿水平扫描方向的校正值ΔXr={(Dr-Er)/16}×16的整数+Er
=(Dr-Er)×16的整数+Er (24)
在以种方式获得在信息块268和288中的沿水平扫描方向的右和左校正值ΔXr和ΔXl之后,最后用下式通过这两个数据的算术平均,计算沿水平扫描方向的校正值ΔX,作为信息块290。
沿水平扫描方向的校正值ΔX={(ΔXl+ΔXr)/2}的整数(25)
图44A-44D展示基于在图7的校正值计算单元118中获得的ΔX、ΔY和ΔZ的图像偏移校正的原理。图10的目标打印线140的位置偏移检测结果被转换成沿水平和垂直两个扫描方向相隔一个象素节距的位映象存储器空间194中的位置偏移。由于在图44A的位映象存储器空间294中首先确定了理想的打印线148,因而相对于线148设置实际目标打印线140。亦即,利用已经获得的沿水平扫描方向的校正值ΔX、沿垂直扫描方向的校正值ΔY和沿斜方向的校正值ΔZ,可以在位映象存储器空间294中设置目标打印线140。该目标打印线140转换成图像数据,便产生如图44B所示的位置数据296-1至296-3。相对于图44B的位置数据296-1至296-3,通过使检测目标线140相对于理想打印线对称地到置于负侧,并使其朝向水平扫描方向的负侧(左侧)移位水平扫描方向校正值ΔX,可获得图44C中所示的校正数据298-1至298-3。当读出图44C中所示的校正数据298-1至298-3,使LED阵列发射江时,图44B的位置偏移被校正为图44D中那样,允许获得相应于图44A中的理想打印线148的打印结果300。
(多次抗蚀剂标志转印和测量)
图45是被转印在循环带上用于检测图像偏移校正值ΔX、ΔY和ΔZ的抗蚀剂标志的另一个实施例的说明图。在该实施例中,为防止位置偏移量计算结果的任何误差,该误差可由抗蚀剂标志被转印在损坏的表面上或有缺陷例如扭转的循环带上而引起,用于检测的抗蚀剂标志被多次转印在循环带上,以计算校正值ΔX、ΔY和ΔZ,这样,如果在其中有远离其它值的值,那么可取消它们,对其余的有效值进行平均,由此提高最后算出的位置偏移的精确度。
沿移动方向按两条线将三个不同的标志列累接三次转印于循环带12上,亦即转印在第一周期T1、第二周期T2和第三周期T3上。更具体地说,在第一周期T1期间的转印是K-C标志列150-11和150-21、K-M标志列152-11和152-21、以及K-Y标志列154-11和154-21。然后在第二周期T2期间的转印是K-C标志列150-12和150-22、K-M标志列152-12和152-22、以及K-Y标志列154-12和154-22。并且在第三周期T3期间的转印是K-C标志列150-13和150-23、K-M标志列152-13和152-23、以及K-Y标志列154-13和154-23。换言之,在图45的实施例情况下,沿带移动方向累接转印三次在图11的实施例中已转印于循环带12上的K-C标志列150-1和150-2、K-M标志列152-1和152-2、以及K-Y标志列154-1和154-2。并且,从第一周期T1到第三周期T3的三次累接的标志列按已转印于右侧上的抗蚀剂标志中所示的且将要由传感器30-2检测的节距P1、P2和P3和从最后的K-Y标志列154-13和154-23至横向细线标志列156-1和156-2的节距P4进行累接。在这种情况下,如果循环琏12的一圈长度P0=792mm,那么抗蚀剂标志的节距P1-P4例如为
P1=P2=360.68mm
P3=324.73mm
P4=503.90mm
由于从最前的K-C标志列150-11和150-21至最后的横向细线标志列152-1和152-2的距离是3317.44mm,而循环带移动一圈的距离是792mm,因而循环带12移动一圈的量变为
3317.44mm/792mm=约4.2圈
结果,循环带12要旋转四圈才能完成从的转印。并且因在周期T1到T3中抗蚀剂标志的节距P1、P2和P3之间的尺寸关系,因而在周期T1到T3中抗蚀剂标志的位置被转印在带上的不同位置上。在图45中的抗蚀剂标志的细节和基于抗蚀剂标志检测结果的位置偏移量的计算与图12-43的实施例中的情况相同,只是要三次循环地累接进行基于抗蚀剂标志转印的检测处理和计算处理。
图46A和46B是在图45的实施例中进行校正值计算处理的流程图,其中在三个同期上将抗蚀剂标志转印在循环带12上。该校正值计算处理基本上与图40A和40B的校正值计算处理相同,图40A和40B的校正值计算处理相应于图45的一个周期。首先在步骤S1中,根据第一周期抗蚀剂标志的检测结果,计算沿垂直扫描方向的左偏移量Bl。然后在步骤S2中,计算沿垂直扫描方向的右偏移量Br。并且在步骤S3中,计算沿水平扫描方向的左偏移量ΔXl。接着在步骤S4中,计算沿水平扫描方向的右偏移量ΔXr。在完成步骤S1-S4的计算处理之后,在步骤S5中进行检验,看计算是否已完成三次。因第一周期,程序返回到步骤S1。根据传感器输出的在第二周期中抗蚀剂标志的转印结果,按与步骤S1-S4相同的方式计算偏移量Bl、Br、ΔXl、ΔXr,并在步骤S5中累接到第三周期。在完成从步骤S1至S5三次循环处理、计算偏移量Bl、Br、ΔXl、ΔXr之后,在步骤S6之前对各偏移量进行计算结果误差判断。为进行该误差判断,在三个计算值的最大值与其它值之间进行比较,如果差不低于2点,亦即不低于85.7μm,那么判断最大值包含由于例如循环带损环或扭转之类的缺陷引起的误差,于是从计算值中排除最大值。同时,在三个计算值的最小值与其它值之间进行比较,如果差等于或大于2点,那么判断发生了因例如循环带损环或扭转之类的缺陷引起的误差,于是从计算结果中排除最小值。在步骤S4中完成计算结果误差判断之后,程序进入步骤S7,看相对于计算偏移量Bl、Br、ΔXl、ΔXr,是否存在两个或更多个有效值。如果有两个或更多个有效值,那么程序进入步骤S8,计算有效值的平均值。根据该平均值,在步骤S9中计算图像偏移校正值ΔX、ΔY和ΔZ。相反,如果在步骤S7中的误差判断结果中仅获得一个有效值,,那么经过三个同期获得的这三个值离散并且不可靠,因而在步骤S10中进行误差登记,允许校正值计算处理非正常地终止。在异常终止的情况下,重新激活进行基于抗蚀剂标志转印的位置偏移量检测处理。
按照本发明,正如其上的说明,两个不同颜色的标志按偏移方式相互叠加,获得用于图像偏移校正的标志,该标志被转印于带上,从而由传感器读出其亮度图形,获得图像偏移校正值。因此,即使作为受用光敏磁鼓进行的两种颜色的转印位置之间带传送速度偏移影响的结果,发生图像偏移,可归因于传送速度偏移的标志图像偏移实际上并不影响从混色标志列读出的亮度图形的相位,同时也不受带传送速度偏移的影响,于是确保图像偏移校正值的精确检测。并且,由于使用以重叠方式转印两种颜色获得的混色列来检测图像偏移校正值,因而可以更接近实际打印结果的形式实现图像偏移校正值的检测。此外,传感器检测通过以重叠方式转印两种颜色获得的混色标志列的亮度,因而使用具有低光学精度的简单传感器,例如具有大聚焦点的色料粘附传感器,而不必使用具有非常小的束直径的高精度激光束的传感器,就可精确地检测亮度图形。
尽管在上述实施例中,其它颜色标志列,例如C标志列具有与K标志列节距P1不同的节距P2,以便通过无任何图像偏移地叠加允许标志列的亮度图形描绘成正弦曲线,例如如图18的横向线标志列那样,但确定两个节距P1和P2的方式并不限于此,只要一个相对于另一个位移和只要在为标志起点和标志端点的±π范围内获得仅有一个对于相位转换检测来说作为奇数的最小值或最大值的亮度图形,那么就可以是任意形式的标志列阵列,。例如,可任意或根据在±π范围内可限定单个最小值或最大值的亮度图形的适当函数来确定K标志列和C标志列的节距。
在上述实施例中,因两个颜色混合的亮度图形描绘成了正弦曲线,为了提高计算精度,因而使用非连续傅里叶变换计算相位Φ。
另一方面,由于在例如相应于图18D的散射光电平的亮度图形的最小值Lmin的标志被识别时,可明确判断图像偏移,因而可根据亮度图形电平直接计算图像偏移。
此外,尽管以与使用的字处理器或个人计算机相连的激光打印机为例说明了上述实施例,但本发明可直接应用于任何设备,只要该设备是多色记录设备,其中通过前后布置的静电记录单元将多个色料转印在纸上即可。
显然,本发明并不限于在实施例中所示的那些值,可对本发明进行变动,而不会影响其目的和优点。
Claims (43)
1、一种用于在记录纸上形成图像的设备,包括:
按某一速度传送且具有粘附在其上的记录纸的移动部件;
沿记录纸传送方向排列的多个图像承载单元,用于通过在光敏磁鼓上光扫描而形成与图像数据相一致的潜象,利用不同显影容器使它们显影,并且将它们转印在位于所述移动部件上的记录纸上;
校正标志形成单元,借助所述多个图像承载单元将混色标志列转印在所述移动部件上,所述混色标志列用作校正在彩色图像之间的图像偏移的标志,每个所述混色标志列由多个以偏移方式相互叠加的标志构成;
校正值计算单元,用于检测转印在所述移动部件上的所述混色标志的亮度图形,以根据所述亮度图形的相位计算在彩色图像之间图像偏移的校正值;和
校正单元,用于根据所述校正值自动地校正在彩色图像之间的偏移,
其中所述校正标志形成单元形成作为所述混色标志列的混色横向线标志列和混色倾斜线标志列,所述混色横向线标志列由大体垂直于所述移动部件移动的方向的多个横向线标志构成,所述混色倾斜线标志列由与所述移动部件移动方向大体成对角相交的多个倾斜线标志构成。
2、如权利要求1所述的设备,其中通过在其之间有偏移地相互叠加两种颜色之一的第一横向线与所述两个颜色中的另一种颜色的第二横向线,使这些横向线在所述移动方向上具有相同线宽L、并且在所述移动方向上具有各个不同的节距P1和P2,所述校正标志形成单元形成所述混色横向线标志列。
3、如权利要求2所述的设备,其中所述校正标志形成单元按这样的方式,即对应于由所述校正值计算单元所计算的图像偏移校正值的检测范围,来确定所述第一横向线和所述第二横向线的线宽L,并且所述校正标志形成单元按这样的方式,即对应于所述检测范围中的校正值的分辨率,来确定所述第一横向线和所述第二横向线的节距P1与P2之间的差值ΔP。
4、如权利要求3所述的设备,其中所述校正标志形成单元形成多个混色横向线标志列,在所述移动部件移动的方向上,所述混色横向线标志列具有对应于所述检测范围的不同线宽L并具有对应于所述分辨率的不同节距差值ΔP。
5、如权利要求4所述的设备,其中在所述移动部件移动的方向上,所述校正标志形成单元重复地形成所述混色横向线标志列。
6、如权利要求3所述的设备,其中当所述第二横向线标志列的节距P2大于所述第一横向线标志列的节距P1时,所述校正标志形成单元确定所述第二横向线标志列的标志数N2为:
N2=(线宽L)/(节距差ΔP)×2+1;
所述校正标志形成单元限定所述第一横向线标志列的标志数N1为:
N1=N2+1。
7、如权利要求1所述的设备,其中通过在其之间有偏移地相互叠加两种颜色之一的第一倾斜线与所述两个颜色中的另一种颜色的第二横向线,使所述横向线在所述移动方向上具有相同线宽L、并且在所述移动方向上具有分别不同的节距P1和P2,所述校正标志形成单元形成所述混色倾斜线标志列。
8、如权利要求7所述的设备,其中所述校正标志形成单元按这样的方式,即对应于由所述校正值计算单元所计算的图像偏移校正值的检测范围,来确定所述第一横向线标志和所述第二横向线标志的线宽L,并且所述校正标志形成单元按这样的方式,即对应于所述检测范围中的校正值的分辨率,来确定所述第一倾斜线标志和所述第二倾斜线标志的节距P1与P2之间的差值ΔP。
9、如权利要求8所述的设备,其中所述校正标志形成单元形成多个混色倾斜线标志列,在所述移动部件移动的方向上,所述混色倾斜线标志列具有对应于所述检测范围的不同线宽L,并且具有对应于所述分辨率的不同节距差值ΔP。
10、如权利要求8所述的设备,其中当所述第二倾斜线标志列的节距P2大于所述第一倾斜线标志列的节距P1时,所述校正标志形成单元限定所述第二倾斜线标志列的标志数N2为:
N2=(线宽L)/(节距差ΔP)×2+1;
所述校正标志形成单元确定所述第一倾斜线标志列的标志数N1为:
N1=N2+1。
11、如权利要求1所述的设备,其中所述校正标志形成单元形成作为所述混色倾斜线标志列的第一混色倾斜线标志列和第二混色倾斜线标志列,其中所述第一混色倾斜线标志列由与所述移动部件移动方向大体成对角相交的多个倾斜线标志构成,所述第二混色倾斜线标志列由与所述第一混色倾斜线标志列的所述标志的对角相交相反的对角相交的多个倾斜线标志构成,所述第一和第二混色倾斜线标志列在与所述移动部件的移动方向上并置。
12、如权利要求1所述的设备,其中所述校正标志形成单元形成作为所述混色倾斜线标志列的第一混色倾斜线标志列和第二混色倾斜线标志列,其中所述第一混色倾斜线标志列由与所述移动部件移动方向大体成对角相交的多个倾斜线标志构成,所述第二混色倾斜线标志列由与所述第一混色倾斜线标志列的所述标志的对角相交相反的对角相交的多个倾斜线标志构成,所述第一和第二混色倾斜线标志列在大体垂直于所述移动部件移动方向的方向上并置。
13、如权利要求1所述的设备,其中所述移动部件为循环带形式,其中所述校正标志形成单元在大体为所述循环带周边长度的整数倍的长度上形成所述混色倾斜线标志列。
14、如权利要求1所述的设备,其中所述校正值计算单元计算沿与所述移动部件移动方向一致的垂直扫描方向的图像偏移的校正值ΔY,作为在彩色图像之间图像偏移的校正值。
15、如权利要求14所述的设备,其中所述校正值计算单元根据右和左混色横向线标志列之一的亮度图形的相位,计算沿所述垂直扫描方向的图像偏移的校正值ΔY。
16、如权利要求1所述的设备,其中所述校正值计算单元计算沿大体垂直于所述移动部件移动方向的水平扫描方向的图像偏移的校正值ΔX,作为彩色图像之间的图像偏移的校正值。
17、如权利要求16所述的设备,其中根据所述混色横向线标志列和所述混色倾斜线标志列的亮度图形的相位,所述校正值计算单元计算沿所述水平扫描方向的图像偏移的校正值ΔX。
18、如权利要求17所述的设备,其中所述校正值计算单元进行下列计算以求出沿所述扫描方向的图像偏移的校正值ΔX:
从根据具有大和小节距的所述混色横向线标志列的亮度图形相位而获得的沿水平和垂直扫描方向的合成图像偏移Ad中,减去根据具有所述大和小节距的所述混色横向线标志列的亮度图形相位而获所得的沿所述垂直扫描方向的图像偏移Ab,并且所述校正值计算单元在所得到的差值上再加上根据具有不同斜度和小节距的所述混色倾斜线标志列而获得的沿所述水平扫描方向的图像偏移Ae。
19、如权利要求17所述的设备,其中对于所述左和右混色标志列,所述校正值计算单元进行下列计算:
从根据具有大和小节距的所述混色横向线标志列的亮度图形相位而获得的沿水平和垂直扫描方向的合成图像偏移Ad中,减去根据具有所述大和小节距的所述混色横向线标志列的亮度图形相位而获得的沿所述垂直扫描方向的图像偏移Ab,并且所述校正值计算单元在所得到的差值上再加上根据具有不同斜度和小节距的所述混色倾斜线标志列而获得的沿所述水平扫描方向的图像偏移Ae,求出沿所述扫描方向的左和右图像偏移的校正值ΔXl和ΔXr,然后所述校正值计算单元根据所述右和左列的水平扫描方向的图像偏移的平均值来计算沿所述水平扫描方向的校正值ΔX。
20、如权利要求1所述的设备,其中所述校正值计算单元计算沿相对于大体垂直于所述移动部件移动方向的水平扫描方向而倾斜的斜方向的图像偏移的校正值ΔZ,作为彩色图像之间的图像偏移的校正值。
21、如权利要求20所述的设备,其中所述校正值计算单元根据所述左和右混色横向线标志列的亮度图形的相位,计算沿所述斜方向的图像偏移的校正值ΔZ。
22、如权利要求20所述的设备,其中所述校正值计算单元根据所述混色横向线标志列的亮度图形的相位,寻找沿所述垂直扫描方向的所述左和右列的图像偏移,所述校正值计算单元根据所述左和右图像偏移之间的差来计算沿所述斜方向的图像偏移的校正值ΔZ。
23、如权利要求1所述的设备,其中所述校正标志形成单元将黑和蓝绿色、黑和深红色、以及黑和黄色的各相应混色标志列转印在所述移动部件上,以及
所述校正值计算单元检测所述黑和蓝绿色、黑和深红色、以及黑和黄色的各混色标志列的亮度图形,以根据各相应亮度图形的相位分别计算蓝绿色、深红色和黄色图像相对于黑色图像的各图像偏移的相应校正值。
24、如权利要求1所述的设备,其中
所述校正标志形成单元在多个周期上重复地将混色标志列转印在所述移动部件上,并且
所述校正值计算单元根据在多个周期上转印的混色标志计算图像偏移的校正值,所述校正值计算单元判断多个校正值中的有效值,根据有效值的平均值发现最后的校正值。
25、如权利要求24所述的设备,其中所述校正值标志形成单元形成作为混色标志列的混色横向线标志列和混色倾斜线标志列,其中所述混色横向线标志列由大体垂直于移动部件移动方向的多个横向线标志构成,所述混色倾斜线标志列由与移动部件移动方向大体成对角相交的多个倾斜线标志构成,所述校正标志形成单元在各周期位置偏移的多个周期上将两种中的所述混色横向线标志列转印在移动部件上。
26、一种用于在记录纸上形成图像的设备,包括:
按某一速度传送且具有粘附在其上的记录纸的移动部件;
沿记录纸传送方向排列的多个图像承载单元,用于通过在光敏磁鼓上光扫描形成与图像数据相一致的潜象,利用不同显影容器使它们显影,并且将它们转印在位于所述移动部件上的记录纸上;
校正标志形成单元,借助所述多个图像承载单元将混色标志列转印在所述移动部件上,所述混色标志列用作校正彩色图像之间的图像偏移的标志,每个所述混色标志列由多个以偏移方式相互叠加的标志构成,使得最前端的偏移量等于最后端的偏移量;
校正值计算单元,用于检测转印在所述移动部件上的所述混色标志的亮度图形,以根据所述亮度图形的相位计算彩色图像之间的图像偏移的校正值;和
校正单元,用于根据所述校正值自动地校正彩色图像之间的偏移。
27、如权利要求26所述的设备,其中
所述校正值计算单元通过使用傅利叶变换计算所述亮度图形的转印。
28、一种用于在记录纸上形成图像的设备,包括:
按某一速度传送且具有粘附在其上的记录纸的移动部件;
沿记录纸传送方向排列的多个图像承载单元,用于通过在光敏磁鼓上光扫描形成与图像数据相一致的潜象,利用不同显影容器使它们显影,并且将它们转印在位于所述移动部件上的记录纸上;
校正标志形成单元,借助所述多个图像承载单元将混色标志列转印在所述移动部件上,所述混色标志列用作校正彩色图像之间的图像偏移的标志,每个所述混色标志列由多个以偏移方式相互叠加的标志构成;
校正值计算单元,用于检测转印在所述移动部件上的所述混色标志的亮度图形,以根据所述亮度图形的相位计算彩色图像之间的图像偏移的校正值;和
校正单元,用于根据所述校正值自动地校正彩色图像之间的偏移,
其中所述校正值计算单元根据按照粗节距重叠的混色标志列的亮度图形与按照细节距重叠的混色标志列的亮度图形的组合,来计算图像偏移的校正值,其中所述混色标志列由所述校正标志形成单元所转印。
29、一种用于在记录纸上形成图像的设备,包括:
按某一速度传送且具有粘附在其上的记录纸的移动部件;
沿记录纸传送方向排列的多个图像承载单元,用于通过在光敏磁鼓上光扫描形成与图像数据相一致的潜象,利用不同显影容器使它们显影,并且将它们转印在位于所述移动部件上的记录纸上;
校正标志形成单元,借助所述多个图像承载单元将混色标志列转印在所述移动部件上,所述混色标志列用作校正彩色图像之间的图像偏移的标志,每个所述混色标志列由多个以偏移方式相互叠加的标志构成;
校正值计算单元,用于检测转印在所述移动部件上的所述混色标志的亮度图形,以根据所述亮度图形的相位计算彩色图像之间的图像偏移的校正值;和
校正单元,用于根据所述校正值自动地校正彩色图像之间的偏移;其中
所述校正值计算单元具有使用激光二极管作为光源并且将来自所述激光二极管的光线聚焦到小的光点的传感器,用以检测所述混色标志列。
30、一种用于在记录纸上形成图像的设备,包括:
按某一速度传送且具有粘附在其上的记录纸的移动部件;
沿记录纸传送方向排列的多个图像承载单元,用于通过在光敏磁鼓上光扫描形成与图像数据相一致的潜象,利用不同显影容器使它们显影和,并且它们转印在位于所述移动部件上的记录纸上;
校正标志形成单元,借助所述多个图像承载单元将混色倾斜线标志列转印在所述移动部件上,其中所述混色倾斜线标志列用作校正彩色图像之间的图像偏移的标志,每个所述混色倾斜线标志列由与所述移动部件移动方向大体成对角相交、且以偏移的方式相互重叠的多个倾斜线标志构成;
校正值计算单元,用于检测转印在所述移动部件上的所述混色标志的亮度图形,以根据所述亮度图形的相位计算彩色图像之间的图像偏移的校正值;和
校正单元,用于根据所述校正值自动地校正在彩色图像之间的偏移。
31、如权利要求30所述的设备,其中通过在其之间有偏移地相互叠加两种颜色之一的第一倾斜线与所述两个颜色中的另一种颜色的第二倾斜线,使这些倾斜线在所述移动方向上具有相同线宽L,且在所述移动方向上具有分别不同的节距P1和P2,所述校正标志形成单元形成所述混色倾斜线标志列。
32、如权利要求31所述的设备,其特征在于,所述校正标志形成单元按这样的方式,即对应于由所述校正值计算单元所计算的图像偏移校正值的检测范围,来确定所述第一倾斜线标志和所述第二倾斜线标志的线宽L,并且所述校正标志形成单元按这样的方式,即对应于所述检测范围中的校正值的分辨率,来确定所述第一倾斜线标志和所述第二倾斜线标志的节距P1与P2之间的差值ΔP。
33、如权利要求32所述的设备,其特征在于,所述校正标志形成单元形成多个混色倾斜线标志列,在所述移动部件移动的方向上,所述混色倾斜线标志列具有对应于所述检测范围的不同线宽L并且具有对应于所述分辨率的不同节距差ΔP。
34、如权利要求32所述的设备,其特征在于,当所述第二倾斜线标志列的节距P2大于所述第一倾斜线标志列的节距P1时,所述校正标志形成单元限定所述第二倾斜线标志列的标志数N2为:
N2=(线宽L)/(节距差ΔP)×2+1;
所述校正标志形成单元确定所述第一倾斜线标志列的标志数N1为:
N1=N2+1。
35、如权利要求30所述的设备,其特征在于,所述校正标志形成单元形成作为所述混色倾斜线标志列的第一混色倾斜线标志列和第二混色倾斜线标志列,其中所述第一混色倾斜线标志列由与所述移动部件移动方向大体成对角相交的多个倾斜线标志构成,所述第二混色倾斜线标志列由与所述第一混色倾斜线标志列的所述标志的对角相交相反的对角相交的多个倾斜线标志构成,所述第一和第二混色倾斜线标志列在所述移动部件的移动方向上并置。
36、如权利要求30所述的设备,其特征在于,所述校正标志形成单元形成作为所述混色倾斜线标志列的第一混色倾斜线标志列和第二混色倾斜线标志列,其中所述第一混色倾斜线标志列由与所述移动部件移动方向大体成对角相交的多个倾斜线标志构成,所述第二混色倾斜线标志列由与所述第一混色倾斜线标志列的所述标志的对角相交相反的对角相交的多个倾斜线标志构成,所述第一和第二混色倾斜线标志列在大体垂直于所述移动部件移动方向的方向上并置。
37、如权利要求30所述的设备,其特征在于,所述移动部件为循环带形式,其中所述校正标志形成单元在大体为所述循环带周边长度的整数倍的长度上形成所述混色倾斜线标志列。
38.如权利要求30所述的设备,其特征在于,所述校正值计算单元计算沿大体垂直于所述移动部件移动方向的水平扫描方向的图像偏移的校正值ΔX,作为彩色图像之间图像偏移的校正值。
39.如权利要求30所述的设备,其特征在于,所述校正标志形成单元将黑和蓝绿色、黑和深红色、以及黑和黄色的各相应混色标志列转印在所述移动部件上,并且所述校正值计算单元检测所述黑和蓝绿色、黑和深红色、以及黑和黄色的各混色标志列的亮度图形,以根据各相应亮度图形的相位分别计算蓝绿色、深红色和黄色图像相对于黑色图像的各图像偏移的相应校正值。
40、一种用于在记录纸上形成图像的设备,包括:
按某一速度传送且具有粘附在其上的记录纸的移动部件;
沿记录纸传送方向排列的多个图像承载单元,用于通过在光敏磁鼓上光扫描形成与图像数据相一致的潜象,利用不同显影容器使它们显影,并且将它们转印在位于所述移动部件上的记录纸上;
校正标志形成单元,借助所述多个图像承载单元将混色横向线标志列转印在所述移动部件上,所述混色横向线标志列用作校正彩色图像之间的图像偏移的标志,每个所述混色横向线标志列由多个横向线标志构成,所述横向线标志大体垂直于所述移动部件移动的方向并且以偏移的方式相互重叠;
校正值计算单元,用于检测转印在所述移动部件上的所述混色横向线标志的亮度图形,以根据所述亮度图形的相位计算彩色图像之间图像偏移的校正值;和
校正单元,用于根据所述校正值自动地校正彩色图像之间的偏移,
其中通过相互叠加两种颜色之一的第一横向线与所述两个颜色中的另一种颜色的第二横向线,使这些横向线在所述移动方向上具有相同线宽L,并且在所述移动方向上具有各个不同的节距P1和P2,所述校正标志形成单元形成所述混色横向线标志列。
41、一种用于在记录纸上形成图像的设备,包括:
按某一速度传送且具有粘附在其上的记录纸的移动部件;
沿记录纸传送方向排列的多个图像承载单元,用于通过在光敏磁鼓上光扫描形成与图像数据相一致的潜象,利用不同显影容器使它们显影,并且将它们转印在位于所述移动部件上的记录纸上;
校正标志形成单元,借助所述多个图像承载单元将混色横向线标志列转印在所述移动部件上,所述混色横向线标志列用作校正在彩色图像之间的图像偏移的标志,每个所述混色横向线标志列由多个由大体垂直于所述移动部件移动的方向、且以偏移的方式相互重叠的多个横向线标志构成;
校正值计算单元,用于检测转印在所述移动部件上的所述混色横向线标志的亮度图形,以根据所述亮度图形的相位计算在彩色图像之间图像偏移的校正值;和
校正单元,用于根据所述校正值自动地校正彩色图像之间的偏移,
其中所述移动部件为循环带形式,其中所述校正标志形成单元在大体为所述循环带周边长度的整数倍的长度上形成所述混色标志列。
42、如权利要求41所述的设备,其特征在于,所述校正值计算单元计算沿与所述移动部件移动方向一致的垂直扫描方向的图像偏移的校正值ΔY,作为彩色图像之间图像偏移的校正值。
43、一种用于在记录纸上形成图像的设备,包括:
按某一速度传送且具有粘附在其上的记录纸的移动部件;
沿记录纸传送方向排列的多个图像承载单元,用于通过在光敏磁鼓上光扫描形成与图像数据相一致的潜象,利用不同显影容器使它们显影,并且将它们转印在位于所述移动部件上的记录纸上;
校正标志形成单元,借助所述多个图像承载单元将混色横向线标志列转印在所述移动部件上,所述混色横向线标志列用作校正在彩色图像之间的图像偏移的标志,每个所述混色横向线标志列由多个由大体垂直于所述移动部件移动的方向、且以偏移的方式相互重叠的多个横向线标志构成;
校正值计算单元,用于检测转印在所述移动部件上的所述混色横向线标志的亮度图形,以根据所述亮度图形的相位计算彩色图像之间图像偏移的校正值;和
校正单元,用于根据所述校正值自动地校正彩色图像之间的偏移,
其中所述校正值计算单元计算沿相对于大体垂直于所述移动部件移动方向的水平扫描方向而倾斜的斜方向的图像偏移的校正值ΔZ,作为彩色图像之间的图像偏移的校正值。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07208998A JP3266849B2 (ja) | 1998-03-20 | 1998-03-20 | 画像形成装置 |
JP072089/98 | 1998-03-20 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1235284A CN1235284A (zh) | 1999-11-17 |
CN100344147C true CN100344147C (zh) | 2007-10-17 |
Family
ID=13479342
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB991041232A Expired - Fee Related CN100344147C (zh) | 1998-03-20 | 1999-03-18 | 在记录纸上形成图像的设备 |
Country Status (5)
Country | Link |
---|---|
US (1) | US6198896B1 (zh) |
EP (1) | EP0944242B1 (zh) |
JP (1) | JP3266849B2 (zh) |
CN (1) | CN100344147C (zh) |
DE (1) | DE69941314D1 (zh) |
Families Citing this family (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2784617B1 (fr) * | 1998-10-16 | 2000-12-29 | Sagem | Dispositif d'impression laser polychrome reglable |
JP3744241B2 (ja) * | 1999-01-20 | 2006-02-08 | コニカミノルタビジネステクノロジーズ株式会社 | 画像読取装置および画像読取方法 |
US6408156B1 (en) * | 1999-08-20 | 2002-06-18 | Oki Data Corporation | Image recording apparatus in which a plurality of images of different colors are printed in registration |
JP2001205903A (ja) * | 2000-01-26 | 2001-07-31 | Fujitsu Ltd | 画像形成装置,テストパターン画像形成用プログラムを格納したコンピュータ読取可能な記録媒体,テストパターン画像形成方法及びスキュー量算出方法 |
JP3487255B2 (ja) * | 2000-03-23 | 2004-01-13 | 日本電気株式会社 | カラー印刷装置及びそのビデオデータ出力方法 |
JP4659182B2 (ja) * | 2000-07-13 | 2011-03-30 | キヤノン株式会社 | 画像形成装置 |
JP2002072603A (ja) * | 2000-09-05 | 2002-03-12 | Fujitsu Ltd | 電子写真記録装置 |
US6300968B1 (en) * | 2000-11-02 | 2001-10-09 | Xerox Corporation | Color printing process direction color registration system with expanded chevrons |
US6532029B1 (en) * | 2000-11-21 | 2003-03-11 | Aetas Technology Incorporated | Imaging-offset compensation methods and systems |
US6478401B1 (en) | 2001-07-06 | 2002-11-12 | Lexmark International, Inc. | Method for determining vertical misalignment between printer print heads |
US6684773B2 (en) | 2002-03-21 | 2004-02-03 | Lexmark International, Inc. | Target and algorithm for color laser printhead alignment |
JP4179588B2 (ja) * | 2002-04-22 | 2008-11-12 | 株式会社リコー | 画像位置ずれ検出方法,装置およびカラー画像形成装置 |
KR100860981B1 (ko) * | 2002-05-22 | 2008-09-30 | 삼성전자주식회사 | 칼라 동기화 방법 및 칼라 레이저 프린터 |
JP2004287080A (ja) * | 2003-03-20 | 2004-10-14 | Ricoh Co Ltd | 画像形成装置 |
JP2005070117A (ja) * | 2003-08-26 | 2005-03-17 | Sharp Corp | 画像形成装置、および、画像形成装置の色ずれ補正方法 |
US7193640B2 (en) | 2003-10-31 | 2007-03-20 | Polaroid Corporation | Printer color registration correction |
JP2005234366A (ja) | 2004-02-20 | 2005-09-02 | Ricoh Co Ltd | 位置ずれ量検出方法及び画像形成装置 |
KR100607991B1 (ko) * | 2004-07-07 | 2006-08-02 | 삼성전자주식회사 | 화상제어장치용 광센서의 광량편차보정방법 및 인쇄기의화상제어장치 |
KR20060005757A (ko) * | 2004-07-14 | 2006-01-18 | 삼성전자주식회사 | 포토 프린터의 인쇄 미디어 및 포토 프린터 |
JP2007008143A (ja) * | 2004-08-18 | 2007-01-18 | Ricoh Printing Systems Ltd | タンデム連続紙プリンタ |
US7358980B2 (en) * | 2005-01-24 | 2008-04-15 | Hewlett-Packard Development Company, L.P. | Imaging device and methods |
JP2006231862A (ja) * | 2005-02-28 | 2006-09-07 | Brother Ind Ltd | 画像形成装置 |
US7390073B2 (en) * | 2005-07-29 | 2008-06-24 | Lexmark International, Inc. | Method and apparatus for performing alignment for printing with a printhead |
JP4861662B2 (ja) * | 2005-09-06 | 2012-01-25 | キヤノン株式会社 | 画像形成装置 |
JP2007112087A (ja) * | 2005-10-24 | 2007-05-10 | Noritsu Koki Co Ltd | レーザ露光装置および露光制御調整プログラム |
JP4948042B2 (ja) * | 2005-10-31 | 2012-06-06 | 株式会社リコー | 色ずれ補正方法および画像形成装置 |
JP4778807B2 (ja) | 2006-02-17 | 2011-09-21 | 株式会社リコー | 画像形成装置 |
JP4808059B2 (ja) * | 2006-03-22 | 2011-11-02 | 株式会社沖データ | 画像記録装置 |
JP4760476B2 (ja) * | 2006-03-28 | 2011-08-31 | ブラザー工業株式会社 | 画像形成装置及びずれ量検出方法 |
JP4218698B2 (ja) * | 2006-06-08 | 2009-02-04 | コニカミノルタビジネステクノロジーズ株式会社 | 画像形成装置および画像形成方法 |
JP4058648B1 (ja) * | 2007-03-30 | 2008-03-12 | 富士ゼロックス株式会社 | カラー画像形成装置 |
US8150302B2 (en) | 2007-05-01 | 2012-04-03 | Ricoh Company, Limited | Image forming apparatus and image forming method that detects an amount of color misalignment using reflected light |
US7860439B2 (en) * | 2007-09-18 | 2010-12-28 | Seiko Epson Corporation | Image forming apparatus, an image forming method and an image detecting method |
JP5009140B2 (ja) | 2007-12-05 | 2012-08-22 | 株式会社リコー | 光量検出装置、色ずれ量検出装置、及び画像濃度検出装置 |
JP5339139B2 (ja) * | 2009-03-26 | 2013-11-13 | 富士ゼロックス株式会社 | 媒体搬送装置および画像形成装置 |
JP5164905B2 (ja) * | 2009-03-31 | 2013-03-21 | キヤノン株式会社 | 画像形成装置 |
JP2011170318A (ja) * | 2010-01-20 | 2011-09-01 | Canon Inc | 画像形成装置およびその制御方法 |
JP5776189B2 (ja) * | 2010-03-12 | 2015-09-09 | 株式会社リコー | 画像形成装置、画像形成方法およびプログラム |
JP5488450B2 (ja) * | 2010-12-24 | 2014-05-14 | ブラザー工業株式会社 | 画像形成装置 |
US9342019B2 (en) * | 2013-11-06 | 2016-05-17 | Ricoh Company, Ltd. | Image forming apparatus |
JP6836134B2 (ja) * | 2016-11-02 | 2021-02-24 | セイコーエプソン株式会社 | 印刷装置および印刷装置の調整方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4916547A (en) * | 1987-05-26 | 1990-04-10 | Ricoh Company, Ltd. | Color image forming apparatus |
US5523823A (en) * | 1993-03-29 | 1996-06-04 | Fuji Xerox Co., Ltd. | Method and apparatus for correcting a color registration error |
JPH08324028A (ja) * | 1995-05-26 | 1996-12-10 | Xerox Corp | 像の整合を校正する方法および装置 |
US5587771A (en) * | 1994-06-17 | 1996-12-24 | Fuji Xerox Co., Ltd. | Image sampling and color shift correction system in multiple image forming apparatus |
US5627649A (en) * | 1991-10-11 | 1997-05-06 | Ricoh Company, Ltd. | Method and device for correcting a position for writing an image |
CN1164676A (zh) * | 1996-03-21 | 1997-11-12 | 株式会社东芝 | 图像形成装置 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2603254B2 (ja) | 1987-04-28 | 1997-04-23 | キヤノン株式会社 | 画像形成装置 |
US4912491A (en) * | 1987-05-30 | 1990-03-27 | Canon Kabushiki Kaisha | Apparatus for forming superimposed images |
JPH05301384A (ja) * | 1992-04-28 | 1993-11-16 | Olympus Optical Co Ltd | 多色画像形成装置 |
JP3186255B2 (ja) * | 1992-09-28 | 2001-07-11 | 富士ゼロックス株式会社 | カラー画像形成装置 |
JP3234878B2 (ja) * | 1994-09-29 | 2001-12-04 | 株式会社東芝 | 画像形成装置 |
US5537190A (en) * | 1994-12-12 | 1996-07-16 | Xerox Corporation | Method and apparatus to improve registration in a black first printing machine |
JP3072018B2 (ja) * | 1995-03-24 | 2000-07-31 | 株式会社東芝 | 画像形成装置 |
JPH09146329A (ja) * | 1995-11-20 | 1997-06-06 | Fuji Xerox Co Ltd | 画像形成装置 |
JP3447907B2 (ja) * | 1996-02-07 | 2003-09-16 | 富士通株式会社 | 画像形成装置 |
US5875380A (en) * | 1997-02-18 | 1999-02-23 | Ricoh Company, Ltd. | Image forming apparatus eliminating influence of fluctuation in speed of a conveying belt to correction of offset in color registration |
JPH10333395A (ja) * | 1997-06-05 | 1998-12-18 | Fujitsu Ltd | 印刷装置 |
JP3426485B2 (ja) * | 1997-11-28 | 2003-07-14 | 富士通株式会社 | 印刷装置 |
-
1998
- 1998-03-20 JP JP07208998A patent/JP3266849B2/ja not_active Expired - Fee Related
-
1999
- 1999-01-15 EP EP99100684A patent/EP0944242B1/en not_active Expired - Lifetime
- 1999-01-15 DE DE69941314T patent/DE69941314D1/de not_active Expired - Fee Related
- 1999-01-21 US US09/234,455 patent/US6198896B1/en not_active Expired - Lifetime
- 1999-03-18 CN CNB991041232A patent/CN100344147C/zh not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4916547A (en) * | 1987-05-26 | 1990-04-10 | Ricoh Company, Ltd. | Color image forming apparatus |
US5627649A (en) * | 1991-10-11 | 1997-05-06 | Ricoh Company, Ltd. | Method and device for correcting a position for writing an image |
US5523823A (en) * | 1993-03-29 | 1996-06-04 | Fuji Xerox Co., Ltd. | Method and apparatus for correcting a color registration error |
US5587771A (en) * | 1994-06-17 | 1996-12-24 | Fuji Xerox Co., Ltd. | Image sampling and color shift correction system in multiple image forming apparatus |
JPH08324028A (ja) * | 1995-05-26 | 1996-12-10 | Xerox Corp | 像の整合を校正する方法および装置 |
CN1164676A (zh) * | 1996-03-21 | 1997-11-12 | 株式会社东芝 | 图像形成装置 |
Also Published As
Publication number | Publication date |
---|---|
US6198896B1 (en) | 2001-03-06 |
CN1235284A (zh) | 1999-11-17 |
EP0944242B1 (en) | 2009-08-26 |
EP0944242A2 (en) | 1999-09-22 |
JP3266849B2 (ja) | 2002-03-18 |
JPH11272037A (ja) | 1999-10-08 |
EP0944242A3 (en) | 2000-07-19 |
DE69941314D1 (de) | 2009-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100344147C (zh) | 在记录纸上形成图像的设备 | |
CN1287232C (zh) | 图像形成装置 | |
CN1282041C (zh) | 彩色定位偏移补正方法,光写入装置以及图像形成装置 | |
CN1303807C (zh) | 图像处理方法和图像处理装置 | |
CN1193270C (zh) | 图像形成装置及其调整方法 | |
CN1671178A (zh) | 图像形成装置、后处理装置、校正方法及其程序 | |
CN1670630A (zh) | 图像浓度校正方法和图像形成装置 | |
CN1782908A (zh) | 图像形成装置及其方法,及实行该方法的程序 | |
CN1120612C (zh) | 光写头驱动装置和光写头驱动方法 | |
CN1625222A (zh) | 图像形成装置、校正方法及执行程序 | |
CN1831519A (zh) | 光泽测量装置以及光泽测量方法 | |
CN1596377A (zh) | 光学扫描设备、图像位置的校正方法和图像显示设备 | |
CN1276286C (zh) | 光学扫描装置以及使用该装置的图像形成装置 | |
CN101063863A (zh) | 图像形成装置及其所用程序和图像形成方法 | |
CN1959549A (zh) | 图像形成设备及其控制方法 | |
CN1410841A (zh) | 彩色图像形成装置、彩色图像形成装置的控制方法 | |
CN1991617A (zh) | 激光扫描光学系统及图像形成装置 | |
JP6870297B2 (ja) | 画像形成装置、距離算出方法、およびプログラム | |
CN1637641A (zh) | 成像设备 | |
CN1684836A (zh) | 曝光装置和用于制造曝光装置的方法 | |
CN100351668C (zh) | 多光束光扫描设备、成像设备和彩色图像成像设备 | |
CN1241000C (zh) | 传感器输出的修正方法 | |
CN1401982A (zh) | 透镜检查装置及检查片 | |
CN1866072A (zh) | 光扫描装置以及图像形成装置 | |
CN1749020A (zh) | 用于校正成像设备图像对准的方法和装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C06 | Publication | ||
PB01 | Publication | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20071017 Termination date: 20100318 |