Verfahren zur Herstellung von therapeutisch wirksamen Chinolizin-Derivaten Die Erfinclung bezieht sich auf ein Verfahren zu@ Herstellung therapeutisch wirksamer Chinolizin-Deri- vate.
Nach der Erfindung werden Stoffe der Formel :
EMI1.1
in der Ri Wasserstoff, eine gegebenenfalls halogen substituierte Alkylgruppe, einen unsubstituierten oder substituierten aromatischen oder araliphatischen Kohlen- wasserstoffrest, R2 Wasserstoff oder eine Alkylgruppe bedeuten und Ro einen zoveiwertigen Rest bedeutet, der zusammen mit den benachbarten Kohlenstoffatomen des Chinolizin-Restes einen substituierten oder unsubsti- tuierten Benzolring oder einen substituierten oder unsubstituierten Indol-Rest bildet, hergestellt.
Es sind bereits verschiedene Benzochinolizine und Indolochinolizine bekannt. Als Vertreter der ersten Gruppe seien die Verbindungen gemäss dem österrei- chischen Patent Nr. 195 928 erwähnt, die die folgende Strukturformel aufweisen :
EMI1.2
in der Rt'und Rs'Wasserstoff, Hydroxyl-oder Alkoxy Gruppen oder zusammen einen Alkylendioxy-Rest bedeuten uRd R3'Alkyl-, Cycloalkyl-, Alkenyl-oder Aralkyl-Reste sein können.
Bezug genommen wird auf die belgische Patentschrift Nr. 554 816, die Verbindungen der folgenden Formel beschreibt :
EMI1.3
in der R'und R'2 die gleichen Bedeutungen wie in der vorangegangenen Formel besitzen und R4'eine Alkyl-, Alkenyl-oder Axalkyl-Gruppe ist.
Ist R4' eine Alkyl-Gruppe, so kann die Kohlenwasserstoffkette durch ein Sauerstoffatom unterbrochen sein ErwÏhnt seien ferner die Verbindungen gemϯ der belgischen Patentschrift Nr. 565 824, die der folgenden Formel entsprechen :
EMI1.4
in der R4, R und R6 Wasserstoff, eine Alkoxy-Gruppe oder eine Alkylendioxy-Gruppe aus zweien dieser Reste zusammen, R7 ein Wasserstoffatom oder einen in , 6-Stellung ungesättigten Kohlenwasserstoffrest und R8 Wasserstoff oder eine Carbalkoxy-Gruppe bedeuten.
Die Verbindungen gemäss der belgischen Patentschrift Nr. 554 816 weisen eine sehr nahe Verwandtschaft zu denen der österreichischen Patentschrift Nummer 206441 auf, die ein von dem der belgischen Patentschrift verschiedenes Verfahren beschreibt.
Zu Stoffen der Formel :
EMI2.1
in der R4 und Ra Wasserstoff oder eine Alkoxy-Gruppe oder zusammen eine Alkylendioxy-Gruppe, Rg einen Alkyl-, Alkoxyalkyl-, Alkenyl-oder Aralkyl-Rest, Rio eine Athinyliden-, Athenyliden-oder Athylen-Gruppe und Ru Wasserstoff, eine Alkoxy-, Alkyl-oder Aryl Gruppe bedeuten, gehören die Verbindungen gemäss der Französischen Patentschrift Nr. 1210144.
Endlich beschreibt die französische Patentschrift Nr. 1221027 Verbindungen der Formel :
EMI2.2
in der R6'bzw. R5'eine Alkyl-oder Aryl-Gruppe und ein Wasserstoffatom oder eine Alkyl-Gruppe bedeuten.
Ist R5 Wasserstoff, so kann RE'ebenfalls Wasserstoff sein. Der Benzolring kann auch Substituenten tragen.
Eine Reihe der oben beschriebenen Verbindungen sind als Zwischenprodukte für die Herstellung von Emetin und ähnlichen Verbindungen gedacht, in anderen Fällen werden den Verbindungen selbst therapeutische Eigenschaften zugesprochen.
Das Struktur-Prinzip der Indolochinolizine erscheint in vielen Alkaloid-Arten ; insbesondere bildet es einen Teil des Yohimban-Skeletts ; auch Corynanthein und seine Derivate gehören zu den Indolochinolizinen.
Aus den sich mit Yohimbin und verwandten Alkaloiden beschäftigenden Veröffentlichungen seien erwähnt die Arbeiten von K. B. Prasad und G. A. Swan (J. Chem.
Soc. [1958], 2024-2051), während eine Vbersicht über Corynantheine von J. E. Saxton in die Reihe The Alkaloidsp, Band VII, S. 37-52, Academic Press, New York/London ; 1960 aufgenommen wurde.
Hingewiesen sei ferner auf eine Mitteilung von M. F. Bartlett und W. I. Taylor, J. A. Chem. Soc. 82, 5941-6 (1960), die die Verbindung 1, l-Diäthyl- 1, 2, 3, 6, 7, 12, 12b-octahydroindolo- [2, 3-a]-chinolizin der Formel :
EMI2.3
zur Charakterisierung einer von ihnen aus Eburnamin hergestellten Verbindung synthetisierten.
Zweck dieser Veröffentlichungen ist in erster Linie die Klarstellung und der Beweis der chemischen Struktur von isolierten und/oder synthetisierten Verbindungen ; auf die Bestimmung einer etwaigen therapeutischen Wirkung wurde keine Mühe verwandt.
Die Herstellung der Verbindungen gemäss der Erfindung geschieht durch Reduktion von Verbindungen der Formel :
EMI2.4
Vorzugsweise wird die Reduktion mittels Lithiumaluminiumhydrid durchgeführt.
Die gemäss dem Verfahren der Erfindung erhaltenen iProdukte weisen interessante pharmakologische Wirksamkeiten auf. An erster Stelle sei die adrenolytische Wirksamkeit erwähnt. Zusätzlich können sie ausgesprochene sedative Eigenschaften besitzen, während eine grosse Anzahl dieser Stoffe eine vasodilatorische Wirkung besitzt. Manche der Verbindungen erniedrigen die Körpertemperatur der Versuchstiere beträchtlich. Die Toxizität ist gering.
Es wurde ferner festgestellt, dass der sterische Aufbau der erfindungsgemäss hergestellten Verbindungen in gewissem Masse mitverantwortlich bzw. mitentscheidend ist für den Grad der therapeutischen Wirksamkeit.
Die Verbindungen besitzen zwei asymmetrische Kohlenstoffatome und treten also in verschiedenen isomeren Formen auf. Durch Verwendung spezieller hier nicht beschriebener Methoden für die Herstellung ist die Vorbestimmung des erzeugten Isomeren möglich.
Durch Vergleich einer auf diese Weise hergestellten Verbindung mit Verbindungen, die mittels anderer Methoden synthetisiert worden sind, kann festgestellt werden, ob die Gründe für die Zuteilung einer bestimmten Molekular-Formel fundiert sind und ob die Vermutung bezüglich des sterischen Aufbaues des Moleküls zutrifft. Auf diese Weise wurde mit Hilfe von Infrarot Spektren gefunden, dass Y. Tomimatsu (J. Pharm. Soc., Japan, 77, 7 [1957]) nicht die Verbindung
EMI3.1
in reiner Form herstellte. Im übrigen ist dieser Ver öffentlichung keine Untersuchung bezüglich etwaiger therapeutischer Eigenschaften der Verbindung enthalten.
Von besonderer Bedeutung sind die Eigenschaften der Verbindungen
9, 10-Dimethoxy-2-phenyl-1, 3, 4, 6, 7, 1 lb-hexahydro-
2H-benzo- [a]-chinolizin und 2, Methyl-1, 2, 3, 4, 6, 7, 12, 12b-octahydro indolo- [2, 3-a]-chinolizin ; die erste der beiden Verbindungen hat einen stark sedativen Effekt, die zweite besitzt dämpfende Eigenschaften (Tranquillizer-Eigenschaften), die Regsamkeit wird bei Verabreichung von Dosen vermindert, die die normale Beweglichkeit nicht stören.
Die letzterwähnte Verbindung hat die Wirkung, in hohem Masse den Serotonin-Gehalt des Gehirns zu erhöhen ; eine Eigenschaft, die sie mit zahlreichen erfindungsgemäss hergestellten Verbindungen, insbesondere den Indolochinolizinen, teilt ; dagegen vermindern Verbindungen von mehr oder weniger verwandter Struktur, wie Reserpin und Tetrabenazin (3-Isobutyl-1, 3, 4, 6, 7, 1 lb-hexahydro-9, 10 dimethoxy-2-oxobenzo- [a]-chinolizin), den Serotonin-Gehalt.
Beispiel A. Herstellung von in 3-Stellung substituierten Glutarsäureanhydriden.
Das Verfahren ist hauptsächlich das von W. F.
Smith c. s., J. Am. Chem. Soc. 72, 1877 (1950) beschriebene.
120 g (1 Mol) p-Methylbenzaldehyd,
260 g (2 Mol) Athylacetoacetat,
50 cm3 Athanol und 20 cm3 Piperidin werden gemischt.
Nach mehreren Stunden kristallisieren 112 g Diäthyl-2, 4-diacetyl-3- (4-methyl-phenyl)-glutarat vom Schmelzpunkt : 133-133, 5 C aus. Lässt man das Gemisch mehrere Wochen stehen, so kann ein zweiter Anteil des gleichen Esters erhalten werden.
112 g dieses Esters, gelöst in 1, 5 Liter Athanol, werden unter Rückflusssieden während einer Stunde mit 1, 8 kg einer 50% igen Natronlauge behandelt. Nach Entfernen des Alkohols durch Destillation und Ansäuern wird durch Filtrieren kristalline 3- (4-Methyl- phenyl)-glutarsäure erhalten. Die Extraktion der Mutter- lauge mit Ather liefert eine weitere Menge des Produktes.
Die Ausbeute beträgt 56 g (82%) ; der Schmelzpunkt ist : 164/165 C.
Durch Rückflusserhitzen der Säure mit der doppelten Menge Essigsäureanhydrid kann das Anhydrid erhalten werden. Gewünschtenfalls kann Essigsäure als Lösungsmittel verwendet werden. Die folgende Tabelle bringt Daten der Anhydride. Meist ist es kaum not wendig, die oben erwähnten Zwischenprodukte zu reini gen, so dass die Synthese unmittelbar fortgeführt werden kann.
Tabelle 1 ¯-substituierte Glutarsäureanhydride der Formel
EMI3.2
substituiert in-Stellung
Schmelzpunkt Siedepunkt Literatur
Ri R. oc o C/mm Quecksilber L Phenyl H 105 217/15 Beilstein 17, 495 4¯Methoxyphenyl H 155-157 USA-Patent Nr. 2 792 418 3, 4-Methylendioxy- H 183-185 phenyl 4-Methylphenyl H 156-158, 5 Trifluormethyl H 90-91 n-Propyl H 180/20 Beilstein 17, II, 437 Schmelzpunkt Siedepunkt
R1 R2 ¯C ¯C/mm Quecksilber Literatur
Benzyl H 85 Beilstein 17, 497
4-Chlorphenyl H 131-133 USA-Patent Nr. 2792418
Athyl Athyl 112-116/4-6
Methyl H 42-42, 5 J. Am. Chem. Soc. 78, 2489 (1956) B.
Reaktion von 3-substituierten Glutarsäureanhydriden mit primären Aminen.
Reaktionsschema I
EMI4.1
20, 4 g 2-(3, 4-Methylendioxyphenyl)-äthylamin in 50 cm3 Benzol wird langsam zu 23, 5 g 3-Phenylglutarsäureanhydrid in 250 cm. Benzol zugegeben.
Eine exotherme Reaktion findet statt, wonach das Amid bald zu kristallisieren beginnt.
Nach dem Kühlen des Reaktionsgemisches konnten 40, 7 g (92 ils) 3-Phenylglutar-homopiperonylamid iso siert werden.
Die Verbindung schmilzt nach mehrfachem Umkri stallisieren aus Aceton-Wasser bei 136, 5 bis 137, 5 C.
Die Tabelle II zeigt die Daten einer Anzahl ähn- licher Amide an ; diese Verbindungen wurden in der oben beschriebenen Weise hergestellt.
Tabelle II HOOC-CH2CRiR2-CH2-CO-NH-CH2-CH2-R3
Ri Ra ru Schmelzpunkt in C Ausbeute
Phenyl H Ai 152-153, 5 60
Phenyl H A2 136, 5-137, 5 80
Phenyl H B 157-159, 5 70
4-Methylphenyl H A, 128, 5-130 75
4-Methoxyphenyl H Ai 117, 5-120 90
3, 4-Methylen-H Ar 132-133 90 dioxyphenyl
Trifluormethyl H Ai 166-167 95
Athyl Athyl Ai 100 90
Athyl Athyl B 121-127 98 (Rohprodukt) n-Propyl H Ai 80-81 83 n-Propyl H B O1 70
Benzyl H Ai 132,
5-134 92
4-Chlorphenyl H Ai 124-125 96
Methyl H Ai 113-115 98
Methyl H B 61 60 Ai = R3 = 3, 4-Dimethoxyphenyl A2 = R3 = 3, 4-Methylendioxyphenyl B = R3 = 3-Indolyl C. Umwandlung der gemäss B erhaltenen Amide in Dihydropyridin-Derivate.
Reaktionsschema II
EMI5.1
Für diese Umsetzung kann die Bischler-Napieralski- Isochinolinsynthese (Org. Reactions VI 74-150) verwendet werden.
Der durch die Wirkung von frisch destilliertem POCl3 erfolgte Ringschluss folgt stets der Veresterung der freien Carboxylgruppe, z. B. mit Diazomethan.
Eine Lösung von Diazomethan in Äther wird langsam zu 19 g N-[2- (3, 4-Dimethoxyphenyl)-äther]-3- (4- methoxyphenyl)-glutaramidsäure in 50 cm3 Ather und 5 cm3 Methanol zugegeben.
Es entwickelt sich Stickstoff, und die gelbe Diazomethan-Farbe verschwindet, während der gebildete Ester sich in dem Reaktionsgemisch löst. Unter vermindertem Druck wird Ather entfernt ; der ölige Rückstand wird unter Rückfluss mit 50 cm3 frisch destilliertem POC13 und 50 cm3 wasserfreiem Benzol wahrend 45 Minuten erhitzt ; während des Verfahrens entwickelt sich HCI. Nach Entfernung des Benzols und des überschüssigen POCl3 durch Destillieren unter vermindertem Druck wird das restliche POC13 mit Methanol unter Kühlen zersetzt.
Das Reaktionsgemisch wird alkalisch gemacht und mehrere Male mit Ather extrahiert. Zu der getrockneten ätherischen Lösung werden 5 g Oxalsäure in ¯ther zugef gt. Die Ausbeute betrÏgt 17,1 g des Oxalates (73,2%) mit einem Schmelzpunkt von 132-134¯ C.
Tabelle III
Dihydropyridin-Derivate gemäss dem Reaktionsschema II
Ri R2 R3 Schmelzpunkt in C Ausbeute in % Salz mit Phenyl H Ai 125, 5-126, 5 80 Oxalsäure Phenyl H A2 159, 5-160 35 4-Methylphenyl H Ai 137-139, 5 3, 4-Methylen-H Àí 167-169 95 p dioxyphenyl Trifluormethyl H Ai 128,
5 81 Trifluormethyl H Ai 192 HC1 Athyl Athyl Ai 107-108 98 Oxalsäure n-Propyl H Ai 125-127 72 ¯ Benzyl H Ai 137-139 83 ¯ 4-Chlorphenyl H Ai 135-137 92 Methyl H Ai 136-138 90 ¯ 2-Chlorphenyl H Ai 135-136 4-Bromphenyl H Ai 106-115 4-Fluorphenyl H Ai 141, 5 3-Chlorphenyl H Ai 103, 5-106 ¯ Phenyl H B 150-151 70 ¯ Athyl Athyl B 163s.
Methyl H B 165-167 43 A1 = 3, 4-Dimethoxybenzo Az = 3, 4-Methylendioxybenzo B = Indolo D. Hydrierung der Dihydropyridin-Derivate zu Tetrahydropyridin-Derivaten.
Reaktionsschema III
EMI6.1
Das Hydrieren der Dihydropyridin-Derivate, bei dem sich Platin als geeigneter Katalysator erwiesen hat, geht für gewöhnlich leicht vor sich, wobei die theoretische Menge Wasserstoff absorbiert wird.
Das Resultat dieser Reaktion ist die Schaffung eines zweiten asymmetrischen Zentrums, so dass zwei Isomere erwartet werden können.
Oft ist es schwierig, die beiden Isomeren zu trennen ; dieses Problem wird noch erschwert, da die erhaltenen Amino-Ester zur spontanen Umwandlung in das entsprechende Lactam neigen.
Da diese Lactame, wenn sie nicht spontan gebildet werden, in der nächsten Stufe erhalten werden, so werden die Tetrahydropyridin-Derivate für gewöhnlich nicht isoliert, sondern als solche der nächsten Umsetzung unterworfen.
5, 5 g Methyl-4- (3, 4-dihydro-ss-carbolin-1-yl)-3- phenyl-butyrat als Salz der Oxalsäure, hergestellt gemäss Absatz C, wird in 150 cm3 Methanol mit etwas Wasser gelöst mit Wasserstoff in Gegenwart von 25 mg Platinoxyd (Adams Katalysator) geschüttelt ; während 2l/2 Stunden werden 335 cm3 Wasserstoff absorbiert.
Nach Entfernen des Katalysators durch Filtrieren wird die Lösung des Oxalats unter vermindertem Druck konzentriert.
Die Behandlung des sirupösen Rückstandes mit Aceton ergibt 2, 7 g des ss-Carbolin-Derivats als Oxalat vom Schmelzpunkt 172-172, 5 nach Kristallisieren aus Methanol-Aceton. Das Isomere wurde als a-Isomeres bezeichnet.
Nach Verdampfen und Behandeln mit Athylacetat können aus der Aceton-Mutterlauge 2, 2 g des kristallinen ss-Isomeren erhalten werden ; das Isomere hat einen Schmelzpunkt von 151-152 C.
Beim Bestimmen des Mischschmelzpunktes mit dem a-Isomeren wurde eine Schmelzpunkterniedrigung von 5 C festgestellt.
Anstelle der Ester können als Ausgangsprodukte für die Reduktion die entsprechenden Säuren verwendet werden. E. Ringschluss der Tetrahydropyridin-Derivate zu Chinolizinonen.
Reaktionsschema IV
EMI6.2
Der Ringschluss der Aminoester (Tetrahydropyridin Derivate) zu Lactamen (Chinolizinonen) geht manchmal weniger leicht vor sich, wenn Salze der Aminoester als Ausgangsmaterial verwendet werden. Anderseits bietet das Freisetzen des Aminoesters aus dem Salz in manchen Fällen Schwierigkeiten : infolgedessen ist es angebracht, in der Praxis festzustellen, welches Ausgangsprodukt für die betreffende Reaktion vorteilhaft ist.
Die Verbindung 1, 2, 3, 6, 7, 11b-Hexahydro-9, 10 methylendioxy-2-phenyl-2H-benzo- [a]-chinolizin-4-on kann ausgehend von Methyl-4- (1, 2, 3, 4-tetrahydro-6, 7 methylendioxy-isochino-1-yl)-3-phenylbutyrat folgendermassen hergestellt werden.
4, 5 g dieses Isochinolin-Derivats, in Form des Oxalats, wird während einer Stunde unter Rückfluss in Xylol erhitzt ; beim Abkühlen kristalliert Oxalsäure aus.
Das Xylol wird abgedampft und der Rückstand aus einem Methanol-Ather-Gemisch kristallisiert. Man erhält 1 g 1, 3, 4, 6, 7, llb-Hexahydro-9, 10-methylendioxy2-phenyl-2H-benzo- [a]-chinolizin-4-on mit einem Schmelzpunkt von 162-163 C, während 1, 5 g eines bei etwa 121-126 C schmelzenden Produktes erhalten wird. Das Produkt scheint ein Gemisch der beiden isomeren Lactame zu sein.
Der Ringschluss kann nicht nur mit den Aminoestern bewirkt werden, sondern auch mit den Aminosäuren.
Tabelle IV Substituierte Chinolizinone, hergestellt nach dem Reaktionsschema IV
Ri R2 R3 Schmelzpunkt in C
Phenyl H Ai 70-75
4-Methylphenyl H Ai 178-181
4-Methoxyphenyl H AI unscharf
3, 4-Methylen dioxyphenyl H Ai bl
Trifluormethyl H Ai 149 Äthyl Äthyl Ai 96 n-Propyl H Ai 94-95
Benzyl H Ai 154, 5-155, 4 (cis) 90-91 (trans)
4-Chlorphenyl H Ai 149-150
Methyl H Ai 01
2-Chlorphenyl H A1 nicht isoliert
4-Bromphenyl H Ai 167-170 (cis) 136-139 (trans) 4-Fluorphenyl H Ai 173-174 (cis) 130 (trans)
3-Chlorphenyl H Ai nicht isoliert
Phenyl H B 259-260 (cis) 272-273 (trans)
Athyl Athyl B 241-242
Methyl H B 195
Ai = 3, 4-Dimethoxybenzo
B = Indolo F. Reduktion von Chinolizinonen zu Chinolizinen.
Reaktionsschema V
EMI7.1
Die Reduktion des Lactams zu dem entsprechenden Amin kann mit Lithiumaluminiumhydrid durchgeführt werden, wobei mindestens 1/2 Mol Hydrid und oft ein tlberschuss pro Mol Lactam verwendet wird.
Als Lösungsmittel werden Äther oder Tetrahydrofuran verwendet.
Da die isomeren Lactame mitunter schwer zu trennen sind, so wird üblicherweise ein Gemisch der Lactame reduziert. Die gebildete Amin-Fraktion wird aus dem Reaktionsgemisch isoliert und der fraktionierten Kristallisation zur Erhaltung der Amine unterworfen.
Die Verbindung 1, 3, 4, 6, 7, 1 lb-Hexahydro-9, 10-di methoxy-2- (4 ^ methylphenyl)-2H-benzo-[a]-chinolizin kann folgendermassen hergestellt werden : 2, 1 g eines Ge misches von isomeren 1, 3, 4, 6, 7, 11b-Hexahydro-9, 10 dimethoxy-2- (4-methylphenyl)-2H-benzo- [a]-chinolizin-
4-on mit dem Schmelzbereich von 164-174 C, in der
Hauptsache bestehend aus dem Lactam mit dem
Schmelzbereich 178-181 C, wird in wasserfreiem
Tetrahydrofuran gelöst und zu 0, 4 g Lithiumalumi niumhydrid im 50 cm3 Tetrahydrofuran zugegeben ; das
Gemisch wird während 2 Stunden unter Rückfluss erhitzt. Danach wird der tSberschuss von LiAlH4 mit wenig Wasser zersetzt.
Das gebildete Aluminiumhydroxyd wird durch Filtrieren entfernt und mit Äther gewaschen. Das Tetrahydrofuran wird durch Destillie- ren entfernt ; der Rückstand wird mit Wasser und Ather aufgenommen. Die ätherische Lösung wird getrocknet und konzentriert.
Dabei kristallisiert die cis-Base (1, 2 g = 60%) in Form langer nadelförmiger Kristalle aus. Nach Kristallisieren aus Petroläther vom Siedebereich 60-80 C beträgt der Schmelzpunkt 117-118, 5 C.
Das Hydrochlorid der Base, im Äther hergestellt, wird beim Behandeln mit Aceton kristallin ; es schmilzt nach Kristallisieren aus einem Gemisch aus Alkohol und Athylacetat bei 245-247 C. Das Salz ist leichter zu reinigen als die freie Base.
Durch Zuführen einer ätherischen Salzsäurelösung zu der Mutterlauge der cis-Base kann das trans-Hydro chlorid isoliert werden (Ausbeute 40 %) ; dieses Salz kann aus Alkohol mit etwas Wasser kristallisiert werden ;
Schmelzpunkt : 264-266 C.
Die aus diesem Salz freigesetzte Base schmilzt nach
Kristallisieren aus Petroläther bei 65-66 C.
Die obige relative Lage der Schmelzpunkte der erfindungsgemäss hergestellten Chinolizine ist eine
Regel.
Die freie cis-Base hat einen höheren Schmelzpunkt als die trans-Base, während es bei den Hydrochloriden umgekehrt liegt. Mitunter sind die bei den gereinigten
Verbindungen gefundenen Unterschiede so gering, dass nicht allzu viel Wert auf diese Regel zu legen ist, insbe sondere wenn es sich um ungenügend gereinigte Reak tionsprodukte handelt.
Das Infrarot-Spektrum gibt zuverlässige Anhalts punkte für den sterischen Aufbau des Molekiils ; die
Spektren der cis-und trans-Isomeren weichen hin reichend voneinander ab, um eine eindeutige Bestimmung der cis-oder trans-Form zu gestatten. Es wurden also Infrarot-Spektren aller Chinolizine festgestellt.
Aus der Arbeit von Bohlman, Ber. 91, S. 2157 (1958) ergibt sich, dass die cis-Verbindungen Absorp tions-Maxima bei etwa 2750 und 2805 cm-1 aufweisen, während die trans-Verbindungen diese Maxima nicht zeigen.
Die Tabelle V bringt die Daten einer Anzahl hergestellter Chinolizine ; soweit die Schmelzpunkte der Salze aufgeführt sind, sei bemerkt, dass die Salze unter Zersetzen schmelzen.
Tabelle V
Chinolizine gemäss Formel I
Trans Cis
Ri Ro R3 Salz mit Schmelzpunkt Salz mit Schmelzpunkt C C
Phenyl H Ai Ha 228-230
Oxalsäure 196-198
Fumarsäure 187-188 Fumarsäure 187-190 HePtCls 211-212 H2PtCls 210-212
Phenyl H A2 Oxalsäure 140-142 HCl 278-282
Base 126
4-Methylphenyl H Ai HCl 264-266 HCl 245-250
Base 65-66 Base 117-118, 5
4-Methoxyphenyl H Ai HCl 227-235 HCl 203-208
Base 92-94, 5 Base 123-128
3,
4-Methylen-H Al HCl 245-248 HCl 244-248 dioxyphenyl Base 102-103 Base 136-137
Trifluormethyl H Ai Pikrinsäure 204-205 Pikrinsäure 195-196 HCl 221, 5-222, 5 HCl 213-215
Athyl Athyl Ai Hui* 236-237* n-Propyl H Ai HCl 222-224 HCl 222-224
Base Öl Base 90, 5-91, 5
Benzyl H Ai HCl 224-228 HCl 72-74,
5
Base 206-208
4-Chlorphenyl H Ai HCl 264-266 HCl 254-256
Base 123-124 Base 127-130
Methyl H Ai HCl 212-213
2-Chlorphenyl H Ai HCl 238-240 Oxalsäure 193
4-Bromphenyl H Ai HCI 258-260 HCl 165-167
Base 130-132 4-Fluorphenyl H Ai HCl 256 HCl 259-260
3-Chlorphenyl H Ar HCl 247, 5-248 HCl 233-235
Phenyl H B Fumarsäure 244-247 HCl 345-347
Base 170-171
Athyl Athyl B HCl 290-295 (Symmetrische Verb.)
Base 132-133
N-Propyl H B HCl 279-281
Athyl H B Hd 278-282 Hd 315-320
Base 128-130 Base 163-164 * symmetrische Verbindung Ai = 3, 4-Dimethoxybenzo A2 = 3, 4-Methylendioxybenzo B = Indolo
Process for the preparation of therapeutically effective quinolizine derivatives The invention relates to a process for the preparation of therapeutically effective quinolizine derivatives.
According to the invention, substances of the formula:
EMI1.1
in which Ri is hydrogen, an optionally halogen-substituted alkyl group, an unsubstituted or substituted aromatic or araliphatic hydrocarbon radical, R2 is hydrogen or an alkyl group and Ro is a zoveiovalent radical which, together with the adjacent carbon atoms of the quinolizine radical, is a substituted or unsubstituted tuierten benzene ring or a substituted or unsubstituted indole radical is produced.
Various benzoquinolizines and indoloquinolizines are already known. The compounds according to Austrian Patent No. 195 928, which have the following structural formula, should be mentioned as representatives of the first group:
EMI1.2
in which Rt 'and Rs' are hydrogen, hydroxyl or alkoxy groups or together are an alkylenedioxy radical and Rd R3' can be alkyl, cycloalkyl, alkenyl or aralkyl radicals.
Reference is made to Belgian patent specification No. 554 816, which describes compounds of the following formula:
EMI1.3
in which R 'and R'2 have the same meanings as in the preceding formula and R4' is an alkyl, alkenyl or axalkyl group.
If R4 'is an alkyl group, the hydrocarbon chain can be interrupted by an oxygen atom. The compounds according to Belgian patent specification No. 565 824, which correspond to the following formula, are also mentioned:
EMI1.4
in which R4, R and R6 are hydrogen, an alkoxy group or an alkylenedioxy group composed of two of these radicals, R7 is a hydrogen atom or a 6-position unsaturated hydrocarbon radical and R8 is hydrogen or a carbalkoxy group.
The compounds according to the Belgian patent specification No. 554 816 are very closely related to those of the Austrian patent specification number 206441, which describes a process different from that of the Belgian patent specification.
To substances of the formula:
EMI2.1
in which R4 and Ra are hydrogen or an alkoxy group or together an alkylenedioxy group, Rg is an alkyl, alkoxyalkyl, alkenyl or aralkyl radical, Rio is an ethynylidene, athenylidene or ethylene group and Ru is hydrogen, an alkoxy -, alkyl or aryl group include the compounds according to French Patent No. 1210144.
Finally, French patent specification No. 1221027 describes compounds of the formula:
EMI2.2
in the R6 'or R5 'denotes an alkyl or aryl group and a hydrogen atom or an alkyl group.
If R5 is hydrogen, RE 'can also be hydrogen. The benzene ring can also carry substituents.
A number of the compounds described above are intended as intermediates for the manufacture of emetine and similar compounds, in other cases the compounds themselves are said to have therapeutic properties.
The structure principle of the indoloquinolizines appears in many types of alkaloid; in particular, it forms part of the yohimban skeleton; Corynanthein and its derivatives also belong to the indoloquinolizines.
From the publications dealing with yohimbine and related alkaloids the work of K. B. Prasad and G. A. Swan (J. Chem.
Soc. [1958], 2024-2051), while a review of Corynantheine by J. E. Saxton in the series The Alkaloidsp, Volume VII, pp. 37-52, Academic Press, New York / London; Was recorded in 1960.
Attention is also drawn to a communication by M. F. Bartlett and W. I. Taylor, J. A. Chem. Soc. 82, 5941-6 (1960), which the compound 1, l-diethyl-1, 2, 3, 6, 7, 12, 12b-octahydroindolo- [2, 3-a] -quinolizine of the formula:
EMI2.3
synthesized to characterize a compound made by them from eburnamine.
The primary purpose of these publications is to clarify and demonstrate the chemical structure of isolated and / or synthesized compounds; no effort was made to determine any therapeutic effect.
The compounds according to the invention are prepared by reducing compounds of the formula:
EMI2.4
The reduction is preferably carried out using lithium aluminum hydride.
The products obtained according to the process of the invention have interesting pharmacological activities. First of all, the adrenolytic effectiveness should be mentioned. In addition, they can have pronounced sedative properties, while a large number of these substances have a vasodilatory effect. Some of the compounds lower the body temperature of the test animals considerably. The toxicity is low.
It was also found that the steric structure of the compounds prepared according to the invention is to a certain extent jointly responsible or jointly decisive for the degree of therapeutic effectiveness.
The compounds have two asymmetric carbon atoms and so occur in different isomeric forms. By using special methods not described here for the preparation, the predetermination of the isomer produced is possible.
By comparing a compound prepared in this way with compounds that have been synthesized by other methods, it can be determined whether the reasons for the assignment of a particular molecular formula are sound and whether the assumption regarding the steric structure of the molecule is correct. In this way, it was found with the aid of infrared spectra that Y. Tomimatsu (J. Pharm. Soc., Japan, 77, 7 [1957]) did not use the compound
EMI3.1
produced in pure form. Moreover, this publication does not contain any investigation into any therapeutic properties of the compound.
The properties of the compounds are of particular importance
9, 10-dimethoxy-2-phenyl-1, 3, 4, 6, 7, 1 lb-hexahydro-
2H-benzo- [a] -quinolizine and 2, methyl-1, 2, 3, 4, 6, 7, 12, 12b-octahydro indolo- [2, 3-a] -quinolizine; the first of the two compounds has a strong sedative effect, the second has dampening properties (tranquillizer properties), and activity is reduced when doses are administered that do not interfere with normal mobility.
The latter compound acts to greatly increase the serotonin content of the brain; a property which it shares with numerous compounds prepared according to the invention, in particular the indoloquinolizines; on the other hand, compounds with a more or less related structure, such as reserpine and tetrabenazine (3-isobutyl-1, 3, 4, 6, 7, 1 lb-hexahydro-9, 10 dimethoxy-2-oxobenzo- [a] -quinolizine), the serotonin content.
Example A. Preparation of 3-substituted glutaric anhydrides.
The procedure is mainly that of W. F.
Smith c. s., J. Am. Chem. Soc. 72, 1877 (1950).
120 g (1 mol) p-methylbenzaldehyde,
260 g (2 mol) of ethyl acetoacetate,
50 cm3 of ethanol and 20 cm3 of piperidine are mixed.
After several hours, 112 g of diethyl 2,4-diacetyl-3- (4-methyl-phenyl) -glutarate with a melting point of 133-133.5 ° C. crystallize out. If the mixture is left to stand for several weeks, a second portion of the same ester can be obtained.
112 g of this ester, dissolved in 1.5 liters of ethanol, are treated with 1.8 kg of 50% sodium hydroxide solution under reflux for one hour. After removing the alcohol by distillation and acidification, crystalline 3- (4-methylphenyl) glutaric acid is obtained by filtration. Extraction of the mother liquor with ether provides a further amount of the product.
The yield is 56 g (82%); the melting point is: 164/165 C.
By refluxing the acid with twice the amount of acetic anhydride, the anhydride can be obtained. If desired, acetic acid can be used as a solvent. The following table gives data on the anhydrides. In most cases, it is hardly necessary to purify the above-mentioned intermediates so that the synthesis can be continued immediately.
Table 1 ¯-substituted glutaric anhydrides of the formula
EMI3.2
substituted in position
Melting point boiling point literature
Ri R. oc o C / mm Mercury L Phenyl H 105 217/15 Beilstein 17, 495 4¯Methoxyphenyl H 155-157 USA Patent No. 2,792,418 3, 4-Methylenedioxy-H 183-185 phenyl 4-methylphenyl H 156-158, 5 trifluoromethyl H 90-91 n-propyl H 180/20 Beilstein 17, II, 437 melting point boiling point
R1 R2 ¯C ¯C / mm mercury literature
Benzyl H 85 Beilstein 17, 497
4-Chlorophenyl H 131-133 U.S. Patent No. 2792418
Ethyl Athyl 112-116 / 4-6
Methyl H 42-42, 5 J. Am. Chem. Soc. 78, 2489 (1956) B.
Reaction of 3-substituted glutaric anhydrides with primary amines.
Reaction Scheme I.
EMI4.1
20.4 g of 2- (3, 4-methylenedioxyphenyl) ethylamine in 50 cm3 of benzene slowly becomes 23.5 g of 3-phenylglutaric anhydride in 250 cm. Benzene added.
An exothermic reaction takes place, after which the amide soon begins to crystallize.
After cooling the reaction mixture, 40.7 g (92 ils) of 3-phenylglutar-homopiperonylamide could be iso ized.
The compound melts after repeated Umkri installation from acetone-water at 136.5 to 137.5 C.
Table II gives the data for a number of similar amides; these compounds were prepared in the manner described above.
Table II HOOC-CH2CRiR2-CH2-CO-NH-CH2-CH2-R3
Ri Ra ru melting point in C yield
Phenyl H Ai 152-153, 560
Phenyl H A2 136,5-137,580
Phenyl H B 157-159.570
4-methylphenyl H A, 128, 5-130 75
4-methoxyphenyl H Ai 117, 5-120 90
3, 4-methylene-H Ar 132-133 90 dioxyphenyl
Trifluoromethyl H Ai 166-167 95
Athyl Athyl Ai 100 90
Ethyl Athyl B 121-127 98 (crude product) n-Propyl H Ai 80-81 83 n-Propyl H B O1 70
Benzyl H Ai 132,
5-134 92
4-chlorophenyl H Ai 124-125 96
Methyl H Ai 113-115 98
Methyl H B 61 60 Ai = R3 = 3, 4-dimethoxyphenyl A2 = R3 = 3, 4-methylenedioxyphenyl B = R3 = 3-indolyl C. Conversion of the amides obtained according to B into dihydropyridine derivatives.
Reaction scheme II
EMI5.1
The Bischler-Napieralski isoquinoline synthesis (Org. Reactions VI 74-150) can be used for this reaction.
The ring closure effected by the action of freshly distilled POCl3 always follows the esterification of the free carboxyl group, e.g. B. with diazomethane.
A solution of diazomethane in ether is slowly added to 19 g of N- [2- (3, 4-dimethoxyphenyl) ether] -3- (4-methoxyphenyl) glutaramic acid in 50 cm3 of ether and 5 cm3 of methanol.
Nitrogen evolves and the yellow diazomethane color disappears as the ester formed dissolves in the reaction mixture. Ether is removed under reduced pressure; the oily residue is refluxed with 50 cm3 of freshly distilled POC13 and 50 cm3 of anhydrous benzene for 45 minutes; HCI develops during the procedure. After removing the benzene and the excess POCl3 by distillation under reduced pressure, the remaining POC13 is decomposed with methanol while cooling.
The reaction mixture is made alkaline and extracted several times with ether. 5 g of oxalic acid in ether are added to the dried ethereal solution. The yield is 17.1 g of the oxalate (73.2%) with a melting point of 132-134¯ C.
Table III
Dihydropyridine derivatives according to reaction scheme II
Ri R2 R3 melting point in C yield in% salt with phenyl H Ai 125, 5-126, 5 80 oxalic acid phenyl H A2 159, 5-160 35 4-methylphenyl H Ai 137-139, 5 3, 4-methylene-H Àí 167-169 95 p dioxyphenyl trifluoromethyl H Ai 128,
5 81 Trifluoromethyl H Ai 192 HCl Ethyl Ethyl Ai 107-108 98 Oxalic acid n-Propyl H Ai 125-127 72 ¯ Benzyl H Ai 137-139 83 ¯ 4-Chlorophenyl H Ai 135-137 92 Methyl H Ai 136-138 90 ¯ 2-chlorophenyl H Ai 135-136 4-bromophenyl H Ai 106-115 4-fluorophenyl H Ai 141,5 3-chlorophenyl H Ai 103, 5-106 ¯ phenyl HB 150-151 70 ¯ ethyl ethyl B 163s.
Methyl H B 165-167 43 A1 = 3, 4-dimethoxybenzo Az = 3, 4-methylenedioxybenzo B = indolo D. Hydrogenation of the dihydropyridine derivatives to tetrahydropyridine derivatives.
Reaction scheme III
EMI6.1
The hydrogenation of the dihydropyridine derivatives, in which platinum has been found to be a suitable catalyst, usually proceeds easily, with the theoretical amount of hydrogen being absorbed.
The result of this reaction is the creation of a second asymmetric center so that two isomers can be expected.
It is often difficult to separate the two isomers; this problem is made even more difficult since the amino-esters obtained tend to spontaneously convert into the corresponding lactam.
Since these lactams, if they are not formed spontaneously, are obtained in the next step, the tetrahydropyridine derivatives are usually not isolated, but rather are subjected to the next reaction as such.
5.5 g of methyl 4- (3, 4-dihydro-ss-carbolin-1-yl) -3-phenyl-butyrate as the salt of oxalic acid, prepared according to paragraph C, is dissolved in 150 cm3 of methanol with a little water and hydrogen shaken in the presence of 25 mg of platinum oxide (Adam's catalyst); 335 cm3 of hydrogen are absorbed in the course of 2 1/2 hours.
After removing the catalyst by filtration, the solution of the oxalate is concentrated under reduced pressure.
Treatment of the syrupy residue with acetone gives 2.7 g of the β-carboline derivative as an oxalate with a melting point of 172-172.5 after crystallization from methanol-acetone. The isomer has been referred to as the a-isomer.
After evaporation and treatment with ethyl acetate, 2.2 g of the crystalline β-isomer can be obtained from the acetone mother liquor; the isomer has a melting point of 151-152 C.
When the mixed melting point with the α-isomer was determined, a decrease in melting point of 5 ° C. was found.
Instead of the esters, the corresponding acids can be used as starting products for the reduction. E. Ring closure of the tetrahydropyridine derivatives to give quinolizinones.
Reaction Scheme IV
EMI6.2
The ring closure of the amino esters (tetrahydropyridine derivatives) to lactams (quinolizinones) is sometimes less easy when salts of the amino esters are used as starting material. On the other hand, the release of the amino ester from the salt presents difficulties in some cases: it is therefore advisable to determine in practice which starting product is advantageous for the reaction in question.
The compound 1, 2, 3, 6, 7, 11b-hexahydro-9, 10 methylenedioxy-2-phenyl-2H-benzo- [a] -quinolizin-4-one can be obtained starting from methyl-4- (1, 2, 3, 4-tetrahydro-6, 7 methylenedioxy-isochino-1-yl) -3-phenylbutyrate can be prepared as follows.
4.5 g of this isoquinoline derivative, in the form of the oxalate, is refluxed in xylene for one hour; on cooling, oxalic acid crystallizes out.
The xylene is evaporated and the residue is crystallized from a methanol-ether mixture. 1 g of 1, 3, 4, 6, 7, 11b-hexahydro-9, 10-methylenedioxy2-phenyl-2H-benzo- [a] -quinolizin-4-one with a melting point of 162-163 ° C. is obtained, during 1 , 5 g of a product melting at about 121-126 ° C. is obtained. The product appears to be a mixture of the two isomeric lactams.
The ring closure can be effected not only with the amino esters, but also with the amino acids.
Table IV Substituted quinolizinones prepared according to Reaction Scheme IV
Ri R2 R3 melting point in C
Phenyl H Ai 70-75
4-methylphenyl H Ai 178-181
4-methoxyphenyl H AI out of focus
3, 4-methylene dioxyphenyl H Ai bl
Trifluoromethyl H Ai 149 Ethyl Ethyl Ai 96 n-Propyl H Ai 94-95
Benzyl H Ai 154,5-155,4 (cis) 90-91 (trans)
4-chlorophenyl H Ai 149-150
Methyl H Ai 01
2-chlorophenyl H A1 not isolated
4-bromophenyl H Ai 167-170 (cis) 136-139 (trans) 4-fluorophenyl H Ai 173-174 (cis) 130 (trans)
3-chlorophenyl H Ai not isolated
Phenyl H B 259-260 (cis) 272-273 (trans)
Athyl Athyl B 241-242
Methyl H B 195
Ai = 3,4-dimethoxybenzo
B = indolo F. Reduction of quinolizines to quinolizines.
Reaction scheme V
EMI7.1
The reduction of the lactam to the corresponding amine can be carried out with lithium aluminum hydride using at least 1/2 mole of hydride and often an excess per mole of lactam.
Ether or tetrahydrofuran are used as solvents.
Since the isomeric lactams are sometimes difficult to separate, a mixture of the lactams is usually reduced. The amine fraction formed is isolated from the reaction mixture and subjected to fractional crystallization to obtain the amines.
The compound 1, 3, 4, 6, 7, 1 lb-hexahydro-9, 10-dimethoxy-2- (4 ^ methylphenyl) -2H-benzo [a] -quinolizine can be prepared as follows: 2.1 g a mixture of isomers 1, 3, 4, 6, 7, 11b-hexahydro-9, 10 dimethoxy-2- (4-methylphenyl) -2H-benzo- [a] -quinolizine-
4-one with the melting range of 164-174 C, in the
The main thing consists of the lactam with the
Melting range 178-181 C, is in anhydrous
Tetrahydrofuran dissolved and added to 0.4 g of lithium aluminum hydride in 50 cm3 of tetrahydrofuran; the
The mixture is refluxed for 2 hours. Then the excess LiAlH4 is decomposed with a little water.
The aluminum hydroxide formed is removed by filtration and washed with ether. The tetrahydrofuran is removed by distillation; the residue is taken up with water and ether. The ethereal solution is dried and concentrated.
The cis base (1.2 g = 60%) crystallizes out in the form of long needle-shaped crystals. After crystallization from petroleum ether with a boiling point of 60-80 C, the melting point is 117-118.5 C.
The hydrochloride of the base, produced in the ether, becomes crystalline on treatment with acetone; it melts after crystallization from a mixture of alcohol and ethyl acetate at 245-247 ° C. The salt is easier to purify than the free base.
The trans hydrochloride can be isolated by adding an ethereal hydrochloric acid solution to the mother liquor of the cis base (yield 40%); this salt can be crystallized from alcohol with a little water;
Melting point: 264-266 C.
The base released from this salt continues to melt
Crystallize from petroleum ether at 65-66 C.
The above relative position of the melting points of the quinolizines prepared according to the invention is one
Rule.
The free cis base has a higher melting point than the trans base, while the opposite is true for the hydrochlorides. Sometimes they are with the cleaned ones
Compounds found differences so small that not too much value should be attached to this rule, especially when it comes to insufficiently purified reaction products.
The infrared spectrum gives reliable clues for the steric structure of the molecule; the
Spectra of the cis and trans isomers deviate sufficiently from one another to allow an unambiguous determination of the cis or trans form. So infrared spectra of all quinolizines were found.
From the work of Bohlman, Ber. 91, p. 2157 (1958) shows that the cis compounds have absorption maxima at about 2750 and 2805 cm-1, while the trans compounds do not show these maxima.
Table V gives the data on a number of quinolizines made; Insofar as the melting points of the salts are listed, it should be noted that the salts melt with decomposition.
Table V
Quinolizines according to formula I.
Trans Cis
Ri Ro R3 Salt with melting point Salt with melting point C C
Phenyl H Ai Ha 228-230
Oxalic acid 196-198
Fumaric acid 187-188 fumaric acid 187-190 HePtCls 211-212 H2PtCls 210-212
Phenyl H A2 oxalic acid 140-142 HCl 278-282
Base 126
4-methylphenyl H Ai HCl 264-266 HCl 245-250
Base 65-66 base 117-118, 5
4-methoxyphenyl H Ai HCl 227-235 HCl 203-208
Base 92-94, 5 base 123-128
3,
4-methylene-H Al HCl 245-248 HCl 244-248 dioxyphenyl base 102-103 base 136-137
Trifluoromethyl H Ai picric acid 204-205 picric acid 195-196 HCl 221, 5-222, 5 HCl 213-215
Ethyl Athyl Ai Hui * 236-237 * n-Propyl H Ai HCl 222-224 HCl 222-224
Base Oil Base 90, 5-91, 5
Benzyl H Ai HCl 224-228 HCl 72-74,
5
Base 206-208
4-chlorophenyl H Ai HCl 264-266 HCl 254-256
Base 123-124 base 127-130
Methyl H Ai HCl 212-213
2-chlorophenyl H Ai HCl 238-240 oxalic acid 193
4-bromophenyl H Ai HCl 258-260 HCl 165-167
Base 130-132 4-fluorophenyl H Ai HCl 256 HCl 259-260
3-chlorophenyl H Ar HCl 247, 5-248 HCl 233-235
Phenyl H B fumaric acid 244-247 HCl 345-347
Base 170-171
Athyl Athyl B HCl 290-295 (Symmetrical Verb.)
Base 132-133
N-propyl H B HCl 279-281
Athyl H B Hd 278-282 Hd 315-320
Base 128-130 Base 163-164 * symmetrical compound Ai = 3, 4-dimethoxybenzo A2 = 3, 4-methylenedioxybenzo B = indolo