CA2603802A1 - Improving renewable energy systems performance guarantees - Google Patents
Improving renewable energy systems performance guarantees Download PDFInfo
- Publication number
- CA2603802A1 CA2603802A1 CA002603802A CA2603802A CA2603802A1 CA 2603802 A1 CA2603802 A1 CA 2603802A1 CA 002603802 A CA002603802 A CA 002603802A CA 2603802 A CA2603802 A CA 2603802A CA 2603802 A1 CA2603802 A1 CA 2603802A1
- Authority
- CA
- Canada
- Prior art keywords
- energy
- data
- performance
- systems
- energy generation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/06—Energy or water supply
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0637—Strategic management or analysis, e.g. setting a goal or target of an organisation; Planning actions based on goals; Analysis or evaluation of effectiveness of goals
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0639—Performance analysis of employees; Performance analysis of enterprise or organisation operations
- G06Q10/06393—Score-carding, benchmarking or key performance indicator [KPI] analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/10—Office automation; Time management
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/20—Administration of product repair or maintenance
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/70—Smart grids as climate change mitigation technology in the energy generation sector
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/50—Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
Landscapes
- Business, Economics & Management (AREA)
- Human Resources & Organizations (AREA)
- Engineering & Computer Science (AREA)
- Strategic Management (AREA)
- Economics (AREA)
- Entrepreneurship & Innovation (AREA)
- Tourism & Hospitality (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Marketing (AREA)
- General Physics & Mathematics (AREA)
- General Business, Economics & Management (AREA)
- Quality & Reliability (AREA)
- Educational Administration (AREA)
- Operations Research (AREA)
- Development Economics (AREA)
- Game Theory and Decision Science (AREA)
- Health & Medical Sciences (AREA)
- Water Supply & Treatment (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Data Mining & Analysis (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Testing Or Calibration Of Command Recording Devices (AREA)
Abstract
Systems and method are provided for collecting, aggregating, and analyzing data associated with the installation and deployment of systems such as Energy system (300) comprising sensors (302); a network (303); a centralized database (304); and output devices for displaying the results (306-310). Services are provided that aid in the modeling and establishment of improved System Performance Guarantee commitments. Additionally, services are provided that improve the system performance, improve the installation, lower the cost, and provide monitoring and service to maintain improved performance.
Description
COMPUTER IMPLEMENTED SYSTEMS AND METHODS FOR IMPROVING
RENEWABLE ENERGY SYSTEMS PERFORMANCE GUARANTEES
[0001] FIELD OF THE INVENTION
RENEWABLE ENERGY SYSTEMS PERFORMANCE GUARANTEES
[0001] FIELD OF THE INVENTION
[0002] In general, the present invention relates to computer implemented systems and methods for providing services to a network of customers, more specifically to services enabled by methods comprising the collection, aggregation, and analysis of data in a central database from a plurality of systems that are not otherwise associated with one another to provide performance metrics and most particularly to the establishment and improvement of various performance metrics related to the execution of customer activities and the initiation of specific actions related to performance in comparison with such metrics. More specifically, the present invention relates to computer implemented services enabled by systems and methods comprising the collection, aggregation, and analysis of data related to the installation and operation of renewable energy systems comprising solar energy, wind turbine energy, tidal energy, geothermal energy, and the like, or to distributed energy generation systems comprising waste-to-energy generation systems, fuel cells, microturbines, diesel generators, and the like.
[0003] BACKGROUND OF THE INVENTION
[0004] There is increased interest in the development and deployment of renewable energy systems comprising solar energy, wind turbine energy, tidal energy, geothermal energy, and the like, or to distributed energy generation systems comprising waste-to-energy generation systems, fuel cells, microturbines, diesel generators, and the like. This interest is being driven by a number of factors including a limited supply of fossil fuels, increased pollution from the acquisition and use of fossil fuels, global warming considerations, rising costs of fossil fuels, the loss of natural lands due to the construction of fossil fuel power plants, continued utility grid degradation and blackouts, unpredictable energy prices, the need for local power generation in disaster recovery situations, the need to move away from centralized power plants to distributed energy systems for homeland security, and the like.
Advancements in the development of renewable energy and distributed energy generation technologies have overcome earlier impediments such as poor efficiency, installation difficulty, high cost, high maintenance, and the like and are presently offering increasingly attractive alternatives to fossil fuel power systems in the generation and delivery of electric power.
Advancements in the development of renewable energy and distributed energy generation technologies have overcome earlier impediments such as poor efficiency, installation difficulty, high cost, high maintenance, and the like and are presently offering increasingly attractive alternatives to fossil fuel power systems in the generation and delivery of electric power.
[0005] One of the issues faced by the renewable energy and distributed energy generation industries is that the adoption and deployment of such systems is often sporadic and not well coordinated. The decision to invest in and install a renewable energy or distributed energy generation system is typically made at the individual entity level rather than as a planned activity for an entire community. For economy of language, in this context, an "entity" may comprise an individual, a company, an office building, a shopping mall, a shopping center, a sports complex, or other such organization, business, or group investing collectively in a source of energy. Consequently, the renewable energy and distributed energy generation industries often lack the coordinated, integrated infrastructure that is typically common in other industries. The lack of infrastructure inhibits the adoption and installation of new renewable energy and distributed energy generation systems and does not allow these industries to gain advantages due to cooperation or economies of scale to lower costs, increase acceptance and deployment, and attract additional investment capital.
[0006] Accordingly, there is a need for further developments in methods and systems to facilitate the connection and cooperation of the wide variety of entities and individual implementations of renewable energy or distributed energy generation systems to improve efficiencies, lower costs, facilitate new services, facilitate management and improvement of the energy production and distribution system as a whole, facilitate and improve training and education, facilitate energy commerce, and the like. In particular, there is a need for improved systems and methods to improve the guarantees made to End Users or other Customers based on aggregated data from a plurality of previously installed systems.
[ 0 0 0 7] BRIEF SZTM?AARY OF THE INVENTION
[0008] Advancements in the development of renewable energy and distributed energy generation systems have overcome, to a large extent, earlier impediments such as poor efficiency, installation difficulty, high cost, high maintenance, and the like. Specifically, advancements in the technology associated with the capture and conversion of solar energy into useable electricity has led to an increased adoption and deployment rate of solar energy generation systems.
However, the infrastructure associated with collecting and analyzing data associated with the distribution infrastructure, system performance, system response, system efficiency, costs, savings associated with the system, and the like has not grown at the same pace as the implementation of solar energy generation systems.
Systems and methods for the collection, aggregation, and analyzing of this data and providing services based on the results of the analysis have been developed as part of some embodiments of the present invention.
[0009] In some embodiments of the present invention, the data collection systems and methods cited above may use a local communications device installed at the site of the renewable energy generation or distributed energy generation system to collect data on the system comprising system ID, location, performance, calibration, ambient conditions, efficiency, temperature, wind speed, wind direction, solar irradiance, energy generation, device status flags, and the like. Typical data collection systems comprise embedded sensors, external sensors, embedded computers, and the like. Typical local communications devices comprise modems, routers, switches, embedded computers, wireless transmitters, and the like. The data may be 5 transmitted via a wireless or hardwired network or other communication means to a secure, central database where the data is aggregated with data from other systems and analyzed to provide value added services to the members of the renewable energy or distributed energy generation supply chain. Examples of suitable networks comprise the Internet, a Local Area Network (LAN), a Wide Area Network (WAN), a wireless network, cellular networks (e.g., GSM, GPRS, etc.), combinations thereof, and the like. Various embodiments of the present invention include security features such that proprietary or business-sensitive data is not accessible among different business entities, thereby providing all entities access to aggregated information while compromising the security of none.
[00101 Various embodiments of the present invention relate generally to systems and methods that utilize the secure, centrally collected, aggregated, and analyzed data to provide a number of beneficial services. The services may be desirable and useful to ,many "Supply Chain Entities" within the renewable energy or distributed energy generation system supply chain. For economy of language, we use the term, Supply Chain Entity or Entities to refer to one or more of the "Installation Technician", the "Value Added Reseller (VAR)", the "System Integrator", the "Original Equipment Manufacturer (OEM)" component supplier, the "local energy utility", various local government agencies, the Project Financier or Investor, the Distributed Utility provider, among others. These labels have been used for convenience in the context of the present teaching. It will be clear to those skilled in the art that those entities or parties that provide similar functions and services within the supply chain may use a wide variety of names and labels. These labels do not limit the scope of the present invention in any way.
[0011] In some embodiments of the present invention, the aggregated data may be used to offer services to the System Integrators that improve 1oe offer of System Performance Guarantee commitments. The services may utilize a model of benchmark system performance established by the System Integrators or established from aggregated data based on system configuration details comprising OEM sub-modules, installation region, system orientation, system tilt angle, expected shading, system tracking features, system tracking capabilities, date, historical data, and the like.
Typically, the System Integrators may select a coefficient between 0 and 1.to serve as a safety factor and calculates the System Performance Guarantee commitment as the multiplication of the model result and the coefficient. New system performance data may be collected and aggregated into the database and the System Performance Guarantee commitment may continue to improve over time as the benchmark system performance improves. The System Integrators may enjoy the benefits of improved performance guarantee accuracy,
[ 0 0 0 7] BRIEF SZTM?AARY OF THE INVENTION
[0008] Advancements in the development of renewable energy and distributed energy generation systems have overcome, to a large extent, earlier impediments such as poor efficiency, installation difficulty, high cost, high maintenance, and the like. Specifically, advancements in the technology associated with the capture and conversion of solar energy into useable electricity has led to an increased adoption and deployment rate of solar energy generation systems.
However, the infrastructure associated with collecting and analyzing data associated with the distribution infrastructure, system performance, system response, system efficiency, costs, savings associated with the system, and the like has not grown at the same pace as the implementation of solar energy generation systems.
Systems and methods for the collection, aggregation, and analyzing of this data and providing services based on the results of the analysis have been developed as part of some embodiments of the present invention.
[0009] In some embodiments of the present invention, the data collection systems and methods cited above may use a local communications device installed at the site of the renewable energy generation or distributed energy generation system to collect data on the system comprising system ID, location, performance, calibration, ambient conditions, efficiency, temperature, wind speed, wind direction, solar irradiance, energy generation, device status flags, and the like. Typical data collection systems comprise embedded sensors, external sensors, embedded computers, and the like. Typical local communications devices comprise modems, routers, switches, embedded computers, wireless transmitters, and the like. The data may be 5 transmitted via a wireless or hardwired network or other communication means to a secure, central database where the data is aggregated with data from other systems and analyzed to provide value added services to the members of the renewable energy or distributed energy generation supply chain. Examples of suitable networks comprise the Internet, a Local Area Network (LAN), a Wide Area Network (WAN), a wireless network, cellular networks (e.g., GSM, GPRS, etc.), combinations thereof, and the like. Various embodiments of the present invention include security features such that proprietary or business-sensitive data is not accessible among different business entities, thereby providing all entities access to aggregated information while compromising the security of none.
[00101 Various embodiments of the present invention relate generally to systems and methods that utilize the secure, centrally collected, aggregated, and analyzed data to provide a number of beneficial services. The services may be desirable and useful to ,many "Supply Chain Entities" within the renewable energy or distributed energy generation system supply chain. For economy of language, we use the term, Supply Chain Entity or Entities to refer to one or more of the "Installation Technician", the "Value Added Reseller (VAR)", the "System Integrator", the "Original Equipment Manufacturer (OEM)" component supplier, the "local energy utility", various local government agencies, the Project Financier or Investor, the Distributed Utility provider, among others. These labels have been used for convenience in the context of the present teaching. It will be clear to those skilled in the art that those entities or parties that provide similar functions and services within the supply chain may use a wide variety of names and labels. These labels do not limit the scope of the present invention in any way.
[0011] In some embodiments of the present invention, the aggregated data may be used to offer services to the System Integrators that improve 1oe offer of System Performance Guarantee commitments. The services may utilize a model of benchmark system performance established by the System Integrators or established from aggregated data based on system configuration details comprising OEM sub-modules, installation region, system orientation, system tilt angle, expected shading, system tracking features, system tracking capabilities, date, historical data, and the like.
Typically, the System Integrators may select a coefficient between 0 and 1.to serve as a safety factor and calculates the System Performance Guarantee commitment as the multiplication of the model result and the coefficient. New system performance data may be collected and aggregated into the database and the System Performance Guarantee commitment may continue to improve over time as the benchmark system performance improves. The System Integrators may enjoy the benefits of improved performance guarantee accuracy,
7 competitive differentiation by offering a higher performance guarantee, increased market share, increased End User satisfaction, and the like.
[0012] In some embodiments of the present invention, the aggregated data may be used to offer services to the other Supply Chain Entities that improve the offer of other kinds of System Performance Guarantee commitments. Examples of other kinds of System Performance Guarantee commitments comprise system installation costs, service warranties, OEM
manufacturer parts warranties, and the like. The services may utilize a model of benchmark system performance established by the Supply Chain Entities or established from aggregated data based on system configuration details comprising OEM sub-modules, installation region, system orientation, system tilt angle, expected shading, system tracking features, system tracking capabilities, date, historical data, and the like. Typically, the Supply Chain Entities may select a coefficient between 0 and 1 to serve as a safety factor and calculates the System Performance Guarantee commitment as the multiplication of the model result and the coefficient. New system performance data may be collected and aggregated into the database and the System Performance Guarantee commitment may continue to improve over time as the benchmark system performance improves. The Supply Chain Entities may enjoy the benefits of improved performance guarantee accuracy, competitive differentiation by offering a higher performance guarantee, increased market share, increased End User satisfaction, and the like.
[0012] In some embodiments of the present invention, the aggregated data may be used to offer services to the other Supply Chain Entities that improve the offer of other kinds of System Performance Guarantee commitments. Examples of other kinds of System Performance Guarantee commitments comprise system installation costs, service warranties, OEM
manufacturer parts warranties, and the like. The services may utilize a model of benchmark system performance established by the Supply Chain Entities or established from aggregated data based on system configuration details comprising OEM sub-modules, installation region, system orientation, system tilt angle, expected shading, system tracking features, system tracking capabilities, date, historical data, and the like. Typically, the Supply Chain Entities may select a coefficient between 0 and 1 to serve as a safety factor and calculates the System Performance Guarantee commitment as the multiplication of the model result and the coefficient. New system performance data may be collected and aggregated into the database and the System Performance Guarantee commitment may continue to improve over time as the benchmark system performance improves. The Supply Chain Entities may enjoy the benefits of improved performance guarantee accuracy, competitive differentiation by offering a higher performance guarantee, increased market share, increased End User satisfaction, and the like.
8 [0013] The methods of some embodiments of the present invention may be implemented on a plurality of systems. The systems may comprise one or more energy systems, sensors contained within the energy systems to monitor various settings and performance attributes of the energy systems, sensors associated with the energy systems to measure various environmental conditions, a communications device for managing two-way communications between the sensors, the energy systems, and a network, a network for transmitting the data to a centralized database, a centralized database for receiving and storing data from a plurality of systems, user interfaces for interacting with the centralized database, procedures for acting upon the data, and a plurality of output means for displaying the results of the procedure treatments.
[0014] BRIEF DESCRIPTION OF THE DRAWINGS
[0015] Other aspects, embodiments and advantages of the invention may become apparent upon reading of the detailed description of the invention and the appended claims provided below, and upon reference to the drawings in which:
[0016] FIG. 1 is a schematic representation of a portion of a typical renewable energy or distributed energy generation system supply chain.
[0017] FIG. 2 is a flow chart of steps in some embodiments of the present invention.
[0014] BRIEF DESCRIPTION OF THE DRAWINGS
[0015] Other aspects, embodiments and advantages of the invention may become apparent upon reading of the detailed description of the invention and the appended claims provided below, and upon reference to the drawings in which:
[0016] FIG. 1 is a schematic representation of a portion of a typical renewable energy or distributed energy generation system supply chain.
[0017] FIG. 2 is a flow chart of steps in some embodiments of the present invention.
9 [0018] FIG. 3 is a schematic representation of a system pertaining to some embodiments of the present invention.
[0019] FIG. 4 depicts an illustrative computer system pertaining to various embodiments of the present invention.
[0020] DETAILED DESCRIPTION OF THE INVENTION
[0021] In general, various embodiments of the present invention relate to systems and methods that utilize secure, centrally collected, aggregated, and analyzed data to provide a number of beneficial services. The services may be desirable and useful to many Supply Chain Entities within the renewable energy or distributed energy generation system supply chain.
[0022] In some embodiments of the present invention, the systems and methods provide services to the various Supply Chain Entities in the renewable energy or distributed energy generation system supply chain. As an illustration, consider the supply chain structure illustrated in FIG. 1 wherein, large national Systems Integrators, 101, market and sell the renewable energy or distributed energy generation systems to End Users, 104. Typically, the System Integrators may design and oversee the installation and commissioning of the renewable energy or distributed energy generation systems. The System Integrators may contract with VARs, 102, who are local to the End Users and who may perform services comprising installation, service, upgrades, retrofits, and the like on behalf of the System Integrators. Furthermore, the VARs may employ a plurality of Installation Technicians, 103, who may perform services comprising installation, 5 service, upgrades, retrofits, and the like on behalf of the VARs. OEM component suppliers, 100, may supply components to the System Integrators, 101, or the VAR.s, 102. These labels have been used for convenience in the context of the present teaching. It will be
[0019] FIG. 4 depicts an illustrative computer system pertaining to various embodiments of the present invention.
[0020] DETAILED DESCRIPTION OF THE INVENTION
[0021] In general, various embodiments of the present invention relate to systems and methods that utilize secure, centrally collected, aggregated, and analyzed data to provide a number of beneficial services. The services may be desirable and useful to many Supply Chain Entities within the renewable energy or distributed energy generation system supply chain.
[0022] In some embodiments of the present invention, the systems and methods provide services to the various Supply Chain Entities in the renewable energy or distributed energy generation system supply chain. As an illustration, consider the supply chain structure illustrated in FIG. 1 wherein, large national Systems Integrators, 101, market and sell the renewable energy or distributed energy generation systems to End Users, 104. Typically, the System Integrators may design and oversee the installation and commissioning of the renewable energy or distributed energy generation systems. The System Integrators may contract with VARs, 102, who are local to the End Users and who may perform services comprising installation, service, upgrades, retrofits, and the like on behalf of the System Integrators. Furthermore, the VARs may employ a plurality of Installation Technicians, 103, who may perform services comprising installation, 5 service, upgrades, retrofits, and the like on behalf of the VARs. OEM component suppliers, 100, may supply components to the System Integrators, 101, or the VAR.s, 102. These labels have been used for convenience in the context of the present teaching. It will be
10 clear to those skilled in the art that those entities or parties that provide similar functions and services within the supply chain may use a wide variety of names and labels. These labels do not limit the scope of the present invention in any way.
[0023] In an exemplary embodiment of the present invention, the systems and methods may be applied to a solar energy generation system. However, the solar energy example does not limit the scope of the present invention in any way. The systems and methods described herein may be applied to any general system.
Specifically, the systems and methods described herein may be applied to any general energy system such as an energy consumption system, an energy generation system, an energy storage system, combinations thereof, and the like. More specifically, the systems and methods described herein may be applied to any renewable energy generation comprising solar energy, wind turbine energy, tidal energy, geothermal energy, and the like, or distributed energy generation technology comprising waste-to-energy generation technologies, fuel cells, microturbines, diesel generators, and the like or any
[0023] In an exemplary embodiment of the present invention, the systems and methods may be applied to a solar energy generation system. However, the solar energy example does not limit the scope of the present invention in any way. The systems and methods described herein may be applied to any general system.
Specifically, the systems and methods described herein may be applied to any general energy system such as an energy consumption system, an energy generation system, an energy storage system, combinations thereof, and the like. More specifically, the systems and methods described herein may be applied to any renewable energy generation comprising solar energy, wind turbine energy, tidal energy, geothermal energy, and the like, or distributed energy generation technology comprising waste-to-energy generation technologies, fuel cells, microturbines, diesel generators, and the like or any
11 combination thereof. In the context of the present teaching, a system comprising more than one type of system as listed above will be designated a "hybrid"
system.
[0024] Typically, the solar energy system may be installed by an Installation Technician following an established installation checklist. The system may be connected to a central database via a network.
Examples of suitable networks comprise the Internet, a Local Area Network (LAN), a Wide Area Network (WAN), a wireless network, cellular networks (e.g., GSM, GPRS, etc.), combinations thereof, and the like. In this exemplary embodiment, System Identification Data are collected at the point of sale by the System Integrator or the VAR, said System Identification Data comprising, End User identification, system warranty information, system performance guarantee commitment information, expected system power output, and the like. The System Identification Data are static in time meaning that they may not generally change once established. The System Identification Data may be entered into the central database and serve as a unique identifier for the system. System Configuration Data are collected during the manufacture and testing of the system, said System Configuration Data comprising, system configuration with OEM component identification, system wiring details, system tracking features, system tracking capabilities and the like. The System Configuration Data are generally static in time meaning that they may not generally change once established.
However, the System Configuration Data may change
system.
[0024] Typically, the solar energy system may be installed by an Installation Technician following an established installation checklist. The system may be connected to a central database via a network.
Examples of suitable networks comprise the Internet, a Local Area Network (LAN), a Wide Area Network (WAN), a wireless network, cellular networks (e.g., GSM, GPRS, etc.), combinations thereof, and the like. In this exemplary embodiment, System Identification Data are collected at the point of sale by the System Integrator or the VAR, said System Identification Data comprising, End User identification, system warranty information, system performance guarantee commitment information, expected system power output, and the like. The System Identification Data are static in time meaning that they may not generally change once established. The System Identification Data may be entered into the central database and serve as a unique identifier for the system. System Configuration Data are collected during the manufacture and testing of the system, said System Configuration Data comprising, system configuration with OEM component identification, system wiring details, system tracking features, system tracking capabilities and the like. The System Configuration Data are generally static in time meaning that they may not generally change once established.
However, the System Configuration Data may change
12 during periods of service, upgrades, or enhancements to the system. The System Configuration Data may be entered into the central database and associated with the unique System Identification Data previously entered. System Installation Data are collected at the time of installation, said System Installation Data comprising, VAR identity, Installation Technician identity, installation region, system orientation, system tilt angle, expected shading, time to complete the system installation, number of errors during the system installation, an End User satisfaction index (EUSI), firmware revision, system parameter settings, and the like. In the context of the present teaching, "expected shading" may be associated with the area and time that the system is covered by shadows due to neighboring trees, building, structures, etc. It may be expressed in units of % coverage per hour for each time period of interest comprising months, seasons, years, billing periods, and the like. This quantity may be useful in estimating the performance of the system. The System Installation Data are static in time meaning that they may not generally change once established. The System Installation Data may be entered into the central database and associated with the unique System Identification Data previously entered. System Performance Data and ambient condition data are collected and continuously at a predefined interval after start-up of the system, said System Performance Data comprising, system response, system performance, ambient temperature, solar irradiance, conversion efficiency, current tilt angle, system energy output, current firmware revision, current
13 system parameter settings, device fault and error codes, power, voltage, cumulative energy generated, and the like. The System Performance Data change with time and are entered into the central database as a time series with associated date and time stamps. The temporal System Performance Data are associated with the unique System Identification Data previously entered. The data correlated to the installation region may be aggregated to several levels of granularity, said levels comprising country, time zone, state or province, county, postal code, Global Positioning System (GPS) coordinates, and the like.
Additionally, System History Data may be associated with each unique System Identification Data record.
The System History Data captures changes in the System Configuration Data over time. Examples of System History Data comprise time-to-first-service-call, details of the service calls, steps taken to resolve the issues in the service calls, upgrades to the system configuration, new firmware revisions, new parameter settings, and the like. Entries in the System History Data typically contain date and time stamps so that changes may be tracked over the life of the system.
[0025] In some embodiments of the present invention, the systems and methods may be applied to a solar energy generation system as an example. Services may be provided to the System Integrators to improve the offer of System Performance Guarantee commitments. The services may utilize a model of benchmark system performance established by the System Integrators. The System Integrators may typically have a model that has
Additionally, System History Data may be associated with each unique System Identification Data record.
The System History Data captures changes in the System Configuration Data over time. Examples of System History Data comprise time-to-first-service-call, details of the service calls, steps taken to resolve the issues in the service calls, upgrades to the system configuration, new firmware revisions, new parameter settings, and the like. Entries in the System History Data typically contain date and time stamps so that changes may be tracked over the life of the system.
[0025] In some embodiments of the present invention, the systems and methods may be applied to a solar energy generation system as an example. Services may be provided to the System Integrators to improve the offer of System Performance Guarantee commitments. The services may utilize a model of benchmark system performance established by the System Integrators. The System Integrators may typically have a model that has
14 been developed over time for use in their engineering design groups that they prefer. Alternatively, the services may utilize a model established from aggregated data from the centralized database based on system configuration details comprising OEM sub-modules installation region, system orientation, system tilt angle, system tracking features, system tracking capabilities, date, historical data, and the like. The services may use historical weather data from the centralized database as well as archived weather data to estimate the performance for the modeled system for all seasons of the year using Typical Meteorological Year (TMY) values for factors such as solar irradiance, number of rainy days, periods of low light, and the like. This a particularly advantageous aspect of some embodiments of the present invention because the system response and system performance may vary during the different seasons of the year due to differences in solar irradiance, temperature, number of cloudy days, typical cloud cover types and the like. The services allow the System Integrators to account for this variation in determining the System Performance Guarantee commitments.
[0026] Typically, the System Integrators may select a safety factor comprising a coefficient between 0 and 1. The System Performance Guarantee commitment to the End User for system response and system performance may be calculated by the multiplication of the result of the model and the coefficient. After the system is installed, calibrated, and begins operation, the system performance may be compared to the modeled performance to verify conformance. As mentioned previously, the variations due to weather and the different seasons may be included. The services may aggregate and normalize the system performance data for a plurality of systems.
5 If the performance of the aggregation is consistently better than the model, the model may be enhanced or coefficient increased so that the System Integrators may improve their System Performance Guarantee commitments with confidence and achieve greater market 10 share.
[0027] In some embodiments of the present invention, the aggregated data may be used to offer services to the other Supply Chain Entities that improve the offer
[0026] Typically, the System Integrators may select a safety factor comprising a coefficient between 0 and 1. The System Performance Guarantee commitment to the End User for system response and system performance may be calculated by the multiplication of the result of the model and the coefficient. After the system is installed, calibrated, and begins operation, the system performance may be compared to the modeled performance to verify conformance. As mentioned previously, the variations due to weather and the different seasons may be included. The services may aggregate and normalize the system performance data for a plurality of systems.
5 If the performance of the aggregation is consistently better than the model, the model may be enhanced or coefficient increased so that the System Integrators may improve their System Performance Guarantee commitments with confidence and achieve greater market 10 share.
[0027] In some embodiments of the present invention, the aggregated data may be used to offer services to the other Supply Chain Entities that improve the offer
15 of other kinds System Performance Guarantee commitments. Examples of other kinds of System Performance Guarantee commitments comprise system installation costs, service warranties, OEM
manufacturer parts warranties, and the like. The services may utilize a model of benchmark system performance established by the Supply Chain Entities or established from aggregated data based on system configuration details comprising OEM sub-modules, installation region, system orientation, system tilt angle, expected shading, system tracking features, system tracking capabilities, date, historical data, and the like. Typically, the Supply Chain Entities may select a coefficient between 0 and 1 to serve as a safety factor and calculates the System Performance Guarantee commitment as the multiplication of the model result and the coefficient. The Supply Chain Entities may now accomplish this with confidence since the
manufacturer parts warranties, and the like. The services may utilize a model of benchmark system performance established by the Supply Chain Entities or established from aggregated data based on system configuration details comprising OEM sub-modules, installation region, system orientation, system tilt angle, expected shading, system tracking features, system tracking capabilities, date, historical data, and the like. Typically, the Supply Chain Entities may select a coefficient between 0 and 1 to serve as a safety factor and calculates the System Performance Guarantee commitment as the multiplication of the model result and the coefficient. The Supply Chain Entities may now accomplish this with confidence since the
16 benchmarks may be established from a large database of actual values. New system performance data may be collected and aggregated into the database and the System Performance Guarantee commitment may continue to improve over time as the benchmark system performance improves. The Supply Chain Entities may enjoy the benefits of improved performance guarantee accuracy, competitive differentiation by offering a higher performance guarantee, increased market share, increased End User satisfaction, and the like.
[0028] In some embodiments of the present invention, the methods and procedures for using a model of benchmark system response and system performance to generate an expected result of system performance, selecting a coefficient between 0 and 1, calculating a guarantee by multiplying the model result by the coefficient, and monitoring the system performance and comparing it to the guarantee may follow the steps, 200-206, as outlined in FIG. 2. These exemplary steps are not meant to limit the scope of the present invention.
[0029] Through the services provided, the data may be manipulated and parsed by the various System Integrators subject to various security measures as discussed below. A plurality of standard procedures exists to aid in the manipulation of the data.
Examples of suitable procedures comprise methods for calculating typical statistical values such as mean, median, average, standard deviation, maximum value, minimum value, variance, and the like. These
[0028] In some embodiments of the present invention, the methods and procedures for using a model of benchmark system response and system performance to generate an expected result of system performance, selecting a coefficient between 0 and 1, calculating a guarantee by multiplying the model result by the coefficient, and monitoring the system performance and comparing it to the guarantee may follow the steps, 200-206, as outlined in FIG. 2. These exemplary steps are not meant to limit the scope of the present invention.
[0029] Through the services provided, the data may be manipulated and parsed by the various System Integrators subject to various security measures as discussed below. A plurality of standard procedures exists to aid in the manipulation of the data.
Examples of suitable procedures comprise methods for calculating typical statistical values such as mean, median, average, standard deviation, maximum value, minimum value, variance, and the like. These
17 procedures are listed as illustrations only and do not limit the scope of the present invention in any way.
Alternatively, the System Integrators may develop and generate a custom procedure to extract and manipulate the data for their specific purpose.
[0030] The systems and methods may include a number of security measures to protect the intellectual property and confidential information for the various Supply Chain Entities of the renewable energy system supply chain. The security measures comprise software passwords, tokens, smart cards, biometric identification means, and the like. The security measures ensure that any specific System Integrator, VAR, or OEM manufacturer is only allowed access to the detailed data generated by systems under their specific responsibility. However, the System Integrators, VARs, or OEM manufacturers may request results based on the analysis of the aggregated data across the database so that they may compare their data to the larger population of systems.
[0031] The database may contain data from systems installed worldwide by a large number of Supply Chain Entities. The different pattern fill of the circles representing systems, 300, illustrated in FIG. 3 is meant to convey that these systems are associated with different Supply Chain Entities. Comparisons and analyses may be completed by aggregating data from systems with similar features comprising System Integrator ID, VAR ID, Installation Technician ID, expected system power output, system configuration with
Alternatively, the System Integrators may develop and generate a custom procedure to extract and manipulate the data for their specific purpose.
[0030] The systems and methods may include a number of security measures to protect the intellectual property and confidential information for the various Supply Chain Entities of the renewable energy system supply chain. The security measures comprise software passwords, tokens, smart cards, biometric identification means, and the like. The security measures ensure that any specific System Integrator, VAR, or OEM manufacturer is only allowed access to the detailed data generated by systems under their specific responsibility. However, the System Integrators, VARs, or OEM manufacturers may request results based on the analysis of the aggregated data across the database so that they may compare their data to the larger population of systems.
[0031] The database may contain data from systems installed worldwide by a large number of Supply Chain Entities. The different pattern fill of the circles representing systems, 300, illustrated in FIG. 3 is meant to convey that these systems are associated with different Supply Chain Entities. Comparisons and analyses may be completed by aggregating data from systems with similar features comprising System Integrator ID, VAR ID, Installation Technician ID, expected system power output, system configuration with
18 OEM component identification, system wiring details, system tracking features, system tracking capabilities, expected shading, installation region, system orientation, system tilt angle, firmware revision, system parameter settings, system response, system performance, ambient temperature, solar irradiance, conversion efficiency, current tilt angle, system energy output, device fault and error codes, power, voltage, cumulative energy generated, and the like.
Advantageously, the database enables the Supply Chain Entities to compare detailed data across systems under their responsibility or to compare their data to benchmark or aggregated data across the entire database. For example, a System Integrator may compare detailed data for his systems installed across a large region such as North America. Alternatively, the same System Integrator may compare data for one or more of his systems with benchmark or aggregated data for systems installed in a completely different region such as Europe.
[0032] Referring now to FIG. 3, the methods of some embodiments of the present invention may be implemented on a plurality of systems. The systems may comprise one or more energy systems, 300, sensors contained within the energy system to monitor various settings and performance attributes of the energy system, sensors associated with the energy system to measure various environmental conditions, 302, a local communications device for managing two-way communications between the sensors, the energy systems, and a network, 303, a network for transmitting the data
Advantageously, the database enables the Supply Chain Entities to compare detailed data across systems under their responsibility or to compare their data to benchmark or aggregated data across the entire database. For example, a System Integrator may compare detailed data for his systems installed across a large region such as North America. Alternatively, the same System Integrator may compare data for one or more of his systems with benchmark or aggregated data for systems installed in a completely different region such as Europe.
[0032] Referring now to FIG. 3, the methods of some embodiments of the present invention may be implemented on a plurality of systems. The systems may comprise one or more energy systems, 300, sensors contained within the energy system to monitor various settings and performance attributes of the energy system, sensors associated with the energy system to measure various environmental conditions, 302, a local communications device for managing two-way communications between the sensors, the energy systems, and a network, 303, a network for transmitting the data
19 to a centralized database, 304, a centralized database for receiving and storing data from the plurality of systems, 305, user interfaces for interacting with the centralized database, 306-309, procedures for acting upon the data, and a plurality of output devices for displaying the results of the procedure action, 306-310.
[0033] Continuing to refer to FIG. 3, in some exemplary embodiments comprising solar energy generation systems, the sensors contained within the system may monitor various settings and performance attributes comprising, system response, system performance, conversion efficiency, current tilt angle, system energy output, current firmware revision, current system parameter settings, device fault and error codes, power, voltage, cumulative energy generated, and the like. Sensors associated with the system, 302, may measure various environmental conditions comprising ambient temperature, solar irradiance, and the like. The data may be communicated onto a network, 304, by a local communications device, 303. Examples of suitable networks comprise the Internet, a Local Area Network (LAN), a Wide Area Network (WAN), a wireless network, cellular networks (e.g., GSM, GPRS, etc.), combinations thereof, and the like. The data may be received and stored on a centralized database, 305. The data in the centralized database may be accessed by a plurality of user interfaces comprising computer terminals, 307, personal computers (PCs), 306, personal digital assistants (PDAs), 308, cellular phones, 309, interactive displays, and the like. This allows the user to be located remotely from the centralized database. As mentioned previously, the centralized database contains a variety of security features to prevent sensitive 5 detailed data from being viewed or accessed by users without the proper security clearance. Procedures may be used to act on the data to generate results of various inquires. The procedures may be part of a standard set of calculations or may be developed and 10 generated by the user. The results of the action by the procedures may be displayed to the user on a number of output means. Examples of suitable output means comprise computer terminals, 307, personal computers (PCs), 306, printers, 310, LED displays, personal 15 digital assistants (PDAs), 308, cellular phones, 309, interactive displays, and the like.
[0034] FIG. 4 depicts an illustrative computer system pertaining to various embodiments of the present
[0033] Continuing to refer to FIG. 3, in some exemplary embodiments comprising solar energy generation systems, the sensors contained within the system may monitor various settings and performance attributes comprising, system response, system performance, conversion efficiency, current tilt angle, system energy output, current firmware revision, current system parameter settings, device fault and error codes, power, voltage, cumulative energy generated, and the like. Sensors associated with the system, 302, may measure various environmental conditions comprising ambient temperature, solar irradiance, and the like. The data may be communicated onto a network, 304, by a local communications device, 303. Examples of suitable networks comprise the Internet, a Local Area Network (LAN), a Wide Area Network (WAN), a wireless network, cellular networks (e.g., GSM, GPRS, etc.), combinations thereof, and the like. The data may be received and stored on a centralized database, 305. The data in the centralized database may be accessed by a plurality of user interfaces comprising computer terminals, 307, personal computers (PCs), 306, personal digital assistants (PDAs), 308, cellular phones, 309, interactive displays, and the like. This allows the user to be located remotely from the centralized database. As mentioned previously, the centralized database contains a variety of security features to prevent sensitive 5 detailed data from being viewed or accessed by users without the proper security clearance. Procedures may be used to act on the data to generate results of various inquires. The procedures may be part of a standard set of calculations or may be developed and 10 generated by the user. The results of the action by the procedures may be displayed to the user on a number of output means. Examples of suitable output means comprise computer terminals, 307, personal computers (PCs), 306, printers, 310, LED displays, personal 15 digital assistants (PDAs), 308, cellular phones, 309, interactive displays, and the like.
[0034] FIG. 4 depicts an illustrative computer system pertaining to various embodiments of the present
20 invention. In some embodiments, the computer system comprises a server 401, display, 402, one or more input interfaces, 403, communications interface, 406, and one or more output interfaces, 404, all conventionally coupled by one or more buses, 405. The server, 401, comprises one or more processors (not shown) and one or more memory modules, 412. The input interfaces, 403, may comprise a keyboard, 408, and a mouse, 409. The output interface, 404, may comprise a printer, 410.
The communications interface, 406, is a network interface that allows the computer system to communicate via a wireless or hardwired network, 407, as previously described. The communications
The communications interface, 406, is a network interface that allows the computer system to communicate via a wireless or hardwired network, 407, as previously described. The communications
21 interface, 407, may be coupled to a transmission medium, 411, such as a network transmission line, for example, twisted pair, coaxial cable, fiber optic cable, and the like. In another embodiment, the communications interface, 411, provides a wireless interface, that is, the communication interface, 411 uses a wireless transmission medium. Examples of other devices that may be used to access the computer system via communications interface, 406, comprise cell phones, PDAs, personal computers, and the like (not shown).
[0035] The memory modules, 412, generally comprises different modalities, illustratively semiconductor memory, such as random access memory (RAM), and disk drives as well as others. In various embodiments, the memory modules, 412, store an operating system, 413, collected and aggregated data, 414, instructions, 415, applications, 416, and procedures, 417.
[0036] In various embodiments, the specific software instructions, data structures and data that implement various embodiments of the present invention are typically incorporated in the server, 401. Generally, an embodiment of the present invention is tangibly embodied in a computer readable medium, for example, the memory and is comprised of instructions, applications, and procedures which, when executed by the processor, causes the computer system to utilize the present invention, for example, the collection, aggregation, and analysis of data, using the aggregated data to improve committed guarantees, displaying the
[0035] The memory modules, 412, generally comprises different modalities, illustratively semiconductor memory, such as random access memory (RAM), and disk drives as well as others. In various embodiments, the memory modules, 412, store an operating system, 413, collected and aggregated data, 414, instructions, 415, applications, 416, and procedures, 417.
[0036] In various embodiments, the specific software instructions, data structures and data that implement various embodiments of the present invention are typically incorporated in the server, 401. Generally, an embodiment of the present invention is tangibly embodied in a computer readable medium, for example, the memory and is comprised of instructions, applications, and procedures which, when executed by the processor, causes the computer system to utilize the present invention, for example, the collection, aggregation, and analysis of data, using the aggregated data to improve committed guarantees, displaying the
22 results of the analyses,: and the like. The memory may store the software instructions, data structures, and data for any of the operating system, the data collection application, the data aggregation application, the data analysis procedures, and the like in semiconductor memory, in disk memory, or a combination thereof.
[0037] The operating system may be implemented by any conventional operating system comprising Windows (Registered trademark of Microsoft Corporation), Unix (Registered trademark of the Open Group in the United States and other countries), Mac OS (Registered trademark of Apple Computer, Inc.), Linux (Registered trademark of Linus Torvalds), as well as others not explicitly listed herein.
[0038] In various embodiments, the present invention may be implemented as a method, system, or article of manufacture using standard programming and/or engineering techniques to produce software, firmware, hardware, or any combination thereof. The term "article of manufacture" (or alternatively, "computer program product") as used herein is intended to encompass a computer program accessible from any computer-readable device, carrier or media. In addition, the software in which various embodiments are implemented may be accessible through the transmission medium, for example, from a server over the network.
The article of manufacture in which the code is implemented also encompasses transmission media, such as the network transmission line and wireless
[0037] The operating system may be implemented by any conventional operating system comprising Windows (Registered trademark of Microsoft Corporation), Unix (Registered trademark of the Open Group in the United States and other countries), Mac OS (Registered trademark of Apple Computer, Inc.), Linux (Registered trademark of Linus Torvalds), as well as others not explicitly listed herein.
[0038] In various embodiments, the present invention may be implemented as a method, system, or article of manufacture using standard programming and/or engineering techniques to produce software, firmware, hardware, or any combination thereof. The term "article of manufacture" (or alternatively, "computer program product") as used herein is intended to encompass a computer program accessible from any computer-readable device, carrier or media. In addition, the software in which various embodiments are implemented may be accessible through the transmission medium, for example, from a server over the network.
The article of manufacture in which the code is implemented also encompasses transmission media, such as the network transmission line and wireless
23 transmission media. Thus the article of manufacture also comprises the medium in which the code is embedded. Those skilled in the art will recognize that many modifications may be made to this configuration without departing from the scope of the present invention.
[0039] The exemplary computer system illustrated in FIG. 4 is not intended to limit the present invention.
Other alternative hardware environments may be used without departing from the scope of the present invention.
[0040] The foregoing descriptions of exemplary embodiments of the present invention have been presented for the purpose of illustration and description. They are not intended to be exhaustive or to limit the present invention to the precise forms disclosed, and obviously many modifications, embodiments, and variations are possible in light of the above teaching.
[0039] The exemplary computer system illustrated in FIG. 4 is not intended to limit the present invention.
Other alternative hardware environments may be used without departing from the scope of the present invention.
[0040] The foregoing descriptions of exemplary embodiments of the present invention have been presented for the purpose of illustration and description. They are not intended to be exhaustive or to limit the present invention to the precise forms disclosed, and obviously many modifications, embodiments, and variations are possible in light of the above teaching.
Claims (10)
1. A computer implemented method for improving a System Performance Guarantee commitment, comprising:
using a model of benchmark system response and system performance to generate an expected result of system performance based on said model (200);
selecting a coefficient ranging between 0 and 1 (201);
calculating the System Performance Guarantee commitment by multiplying said expected result from said model by said coefficient (202);
monitoring the system performance and comparing said system performance to the System Performance Guarantee commitment (204-206).
using a model of benchmark system response and system performance to generate an expected result of system performance based on said model (200);
selecting a coefficient ranging between 0 and 1 (201);
calculating the System Performance Guarantee commitment by multiplying said expected result from said model by said coefficient (202);
monitoring the system performance and comparing said system performance to the System Performance Guarantee commitment (204-206).
2. The method of claim 1 wherein said system comprises an energy system.
3. The method of claim 2 wherein said system comprises an energy usage system an energy storage system, an energy management system, or an energy generation system.
4. The method of claim 3 wherein said energy generation system comprises a renewable energy generation system.
5. The method of claim 4 wherein said renewable energy generation system comprises a solar energy generation system, a wind turbine energy generation system, a tidal energy generation system, a geothermal energy generation system, or a waste-to-energy system.
6. A system for improving a System Performance Guarantee commitment, comprising:
one or more Energy Systems (300);
sensors contained within said Energy Systems to monitor said Energy Systems settings and performance attributes data;
sensors associated with said Energy Systems to measure environmental conditions data (302);
a local communications device for communicating said Energy Systems settings and performance attributes data and said environmental conditions data onto a network (303);
a network capable of transmitting said Energy Systems settings and performance attributes data and said environmental conditions data (304);
a centralized database capable of receiving and storing said Energy Systems settings and performance attributes data and said environmental conditions data (505);
a user interface for interacting with said centralized database (306-309, 403, 408, 409);
a computer readable medium containing procedures for acting upon said Energy Systems settings and performance attributes data and said environmental conditions data (412-417); and display output devices for displaying the results of said procedure action upon said Energy Systems settings and performance attributes data and said environmental conditions data (306-310, 404, 410).
one or more Energy Systems (300);
sensors contained within said Energy Systems to monitor said Energy Systems settings and performance attributes data;
sensors associated with said Energy Systems to measure environmental conditions data (302);
a local communications device for communicating said Energy Systems settings and performance attributes data and said environmental conditions data onto a network (303);
a network capable of transmitting said Energy Systems settings and performance attributes data and said environmental conditions data (304);
a centralized database capable of receiving and storing said Energy Systems settings and performance attributes data and said environmental conditions data (505);
a user interface for interacting with said centralized database (306-309, 403, 408, 409);
a computer readable medium containing procedures for acting upon said Energy Systems settings and performance attributes data and said environmental conditions data (412-417); and display output devices for displaying the results of said procedure action upon said Energy Systems settings and performance attributes data and said environmental conditions data (306-310, 404, 410).
7. The system of claim 6 wherein said one or more Energy Systems comprise at least one Energy System selected from the group consisting of an energy usage system, an energy storage system, an energy management system, and an energy generation system.
8. The system of claim 7 wherein said energy generation system comprises a renewable energy generation system.
9. The system of claim 8 wherein said renewable energy generation system comprises a solar energy generation system, a wind turbine energy generation system, a tidal energy generation system, a geothermal energy generation system, or a waste to energy system.
10. The system of claim 9 wherein said procedures comprise:
procedures for modeling benchmark system response and system performance to generate an expected result of system performance; and procedures for calculating the System Performance Guarantee commitment by multiplying said expected result from said model by a coefficient between 0 and 1.
procedures for modeling benchmark system response and system performance to generate an expected result of system performance; and procedures for calculating the System Performance Guarantee commitment by multiplying said expected result from said model by a coefficient between 0 and 1.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US67639005P | 2005-04-29 | 2005-04-29 | |
US60/676,390 | 2005-04-29 | ||
PCT/US2006/016279 WO2006119030A2 (en) | 2005-04-29 | 2006-04-28 | Improving renewable energy systems performance guarantees |
Publications (1)
Publication Number | Publication Date |
---|---|
CA2603802A1 true CA2603802A1 (en) | 2006-11-09 |
Family
ID=37308293
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA002603802A Abandoned CA2603802A1 (en) | 2005-04-29 | 2006-04-28 | Improving renewable energy systems performance guarantees |
CA002605555A Abandoned CA2605555A1 (en) | 2005-04-29 | 2006-04-28 | Computer implemented systems and methods for pre-emptive service and improved use of service resources |
CA2603803A Active CA2603803C (en) | 2005-04-29 | 2006-04-28 | Computer implemented systems and methods for start-up, calibration and troubleshooting of an installed renewable energy system |
CA2603804A Active CA2603804C (en) | 2005-04-29 | 2006-04-28 | Computer implemented systems and methods for improving performance metrics in renewable energy systems |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA002605555A Abandoned CA2605555A1 (en) | 2005-04-29 | 2006-04-28 | Computer implemented systems and methods for pre-emptive service and improved use of service resources |
CA2603803A Active CA2603803C (en) | 2005-04-29 | 2006-04-28 | Computer implemented systems and methods for start-up, calibration and troubleshooting of an installed renewable energy system |
CA2603804A Active CA2603804C (en) | 2005-04-29 | 2006-04-28 | Computer implemented systems and methods for improving performance metrics in renewable energy systems |
Country Status (6)
Country | Link |
---|---|
US (6) | US20090299536A1 (en) |
EP (4) | EP1877882A4 (en) |
CN (4) | CN101167030A (en) |
CA (4) | CA2603802A1 (en) |
TW (2) | TWI377518B (en) |
WO (6) | WO2006119113A2 (en) |
Families Citing this family (94)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7356548B1 (en) * | 2001-12-03 | 2008-04-08 | The Texas A&M University System | System and method for remote monitoring and controlling of facility energy consumption |
US20080040179A1 (en) * | 2006-08-14 | 2008-02-14 | Deutsche Boerse Ag | System and method for sharing information and causing an action based on that information |
WO2008095277A1 (en) * | 2007-02-07 | 2008-08-14 | Icp Global Technologies Inc. | Hybrid renewable power monitor and data logger |
US8725459B2 (en) | 2007-02-12 | 2014-05-13 | Locus Energy, Llc | Irradiance mapping leveraging a distributed network of solar photovoltaic systems |
US7742897B2 (en) | 2007-12-02 | 2010-06-22 | Michael Herzig | Systems and methods for monitoring and diagnosing the power generated by renewable power systems |
US9322951B2 (en) | 2007-02-12 | 2016-04-26 | Locus Energy, Inc. | Weather and satellite model for estimating solar irradiance |
KR101430279B1 (en) * | 2007-03-02 | 2014-08-14 | 파나소닉 주식회사 | Playback apparatus, system LSI, initialization method |
US8160752B2 (en) | 2008-09-30 | 2012-04-17 | Zome Networks, Inc. | Managing energy usage |
US8013738B2 (en) | 2007-10-04 | 2011-09-06 | Kd Secure, Llc | Hierarchical storage manager (HSM) for intelligent storage of large volumes of data |
US7382244B1 (en) | 2007-10-04 | 2008-06-03 | Kd Secure | Video surveillance, storage, and alerting system having network management, hierarchical data storage, video tip processing, and vehicle plate analysis |
US7706990B2 (en) | 2007-10-30 | 2010-04-27 | Michael Herzig | Systems and methods for measuring utilized generation of at-premise renewable power systems |
US7966318B2 (en) * | 2007-11-20 | 2011-06-21 | General Electric Company | Compressed data storage to provide recent and summary data |
EP2232664B1 (en) * | 2007-12-12 | 2019-10-09 | ABB Schweiz AG | Load restoration for feeder automation in electric power distribution systems |
US8249902B2 (en) * | 2008-02-29 | 2012-08-21 | Solarcity Corporation | Methods of processing information in solar energy system |
US7904382B2 (en) * | 2008-03-11 | 2011-03-08 | Solarcity Corporation | Methods for financing renewable energy systems |
US20090234685A1 (en) * | 2008-03-13 | 2009-09-17 | Ben Tarbell | Renewable energy system maintenance business model |
US7925552B2 (en) * | 2008-03-13 | 2011-04-12 | Solarcity Corporation | Renewable energy system monitor |
US20090313083A1 (en) * | 2008-06-13 | 2009-12-17 | Honeywell International Inc. | Renewable energy calculator |
US20090313093A1 (en) * | 2008-06-17 | 2009-12-17 | Ronald Patrick Doyle | Optimizing greenness |
US8600571B2 (en) * | 2008-06-19 | 2013-12-03 | Honeywell International Inc. | Energy optimization system |
US20100010939A1 (en) * | 2008-07-12 | 2010-01-14 | David Arfin | Renewable energy system business tuning |
US20100057480A1 (en) * | 2008-08-27 | 2010-03-04 | David Arfin | Energy Services |
US20100057544A1 (en) * | 2008-09-03 | 2010-03-04 | Ben Tarbell | Renewable energy employee and employer group discounting |
US20100131118A1 (en) | 2008-09-23 | 2010-05-27 | David Michael Jerome | Online systems and methods for measuring and controlling water, waste and energy usage |
US8407027B2 (en) * | 2008-10-21 | 2013-03-26 | Fuji Electric Systems Co., Ltd. | Online diagnostic method and online diagnostic system for geothermal generation facility |
US20100111105A1 (en) * | 2008-10-30 | 2010-05-06 | Ken Hamilton | Data center and data center design |
US20100154173A1 (en) * | 2008-12-22 | 2010-06-24 | Whirlpool Corporation | Replacement handle with power supply |
US20100154172A1 (en) * | 2008-12-22 | 2010-06-24 | Whirlpool Corporation | Handle with docking station |
US20100274404A1 (en) * | 2009-04-28 | 2010-10-28 | Grid Mobility Llc | Process and methodology to collect, analyze, and signal real-time electron sources of an electrical grid |
US9671797B2 (en) | 2009-05-08 | 2017-06-06 | Gas Turbine Efficiency Sweden Ab | Optimization of gas turbine combustion systems low load performance on simple cycle and heat recovery steam generator applications |
US9267443B2 (en) | 2009-05-08 | 2016-02-23 | Gas Turbine Efficiency Sweden Ab | Automated tuning of gas turbine combustion systems |
US9354618B2 (en) | 2009-05-08 | 2016-05-31 | Gas Turbine Efficiency Sweden Ab | Automated tuning of multiple fuel gas turbine combustion systems |
US8437941B2 (en) | 2009-05-08 | 2013-05-07 | Gas Turbine Efficiency Sweden Ab | Automated tuning of gas turbine combustion systems |
DE102009037237A1 (en) * | 2009-08-12 | 2011-02-17 | Repower Systems Ag | Method and arrangement for automatic configuration parameter control in wind turbines |
EP2474734A4 (en) * | 2009-08-31 | 2014-07-16 | Mitsubishi Heavy Ind Ltd | Device and method for monitoring wind turbine, and program |
US8775125B1 (en) | 2009-09-10 | 2014-07-08 | Jpmorgan Chase Bank, N.A. | System and method for improved processing performance |
US20110077995A1 (en) * | 2009-09-25 | 2011-03-31 | Cbs Interactive | System and method for collecting and propagating computer benchmark data |
US20110106680A1 (en) * | 2009-10-30 | 2011-05-05 | General Electric Company | Turbine operation degradation determination system and method |
US8738190B2 (en) | 2010-01-08 | 2014-05-27 | Rockwell Automation Technologies, Inc. | Industrial control energy object |
US9274518B2 (en) * | 2010-01-08 | 2016-03-01 | Rockwell Automation Technologies, Inc. | Industrial control energy object |
US20110224839A1 (en) * | 2010-03-11 | 2011-09-15 | Christopher Thompson | Power Point Tracking |
US8306846B2 (en) | 2010-04-12 | 2012-11-06 | First Data Corporation | Transaction location analytics systems and methods |
US8781874B2 (en) | 2010-04-12 | 2014-07-15 | First Data Corporation | Network analytics systems and methods |
US8706543B2 (en) | 2010-04-12 | 2014-04-22 | First Data Corporation | Loyalty analytics systems and methods |
US8775242B2 (en) | 2010-04-12 | 2014-07-08 | First Data Corporation | Systems and methods for analyzing the effectiveness of a promotion |
US10332135B2 (en) | 2010-04-12 | 2019-06-25 | First Data Corporation | Financial data normalization systems and methods |
US8195500B2 (en) | 2010-04-12 | 2012-06-05 | First Data Corporation | Point-of-sale-based market tracking and reporting |
US20110251907A1 (en) * | 2010-04-12 | 2011-10-13 | First Data Corporation | Electronic market tracking and reporting systems and methods |
US20110138377A1 (en) * | 2010-05-04 | 2011-06-09 | Phat Energy Corporation | Renewable Energy Monitoring System & Method |
US9686122B2 (en) | 2010-05-10 | 2017-06-20 | Locus Energy, Inc. | Methods for orientation and tilt identification of photovoltaic systems and solar irradiance sensors |
US10564315B2 (en) | 2010-05-10 | 2020-02-18 | Locus Energy, Inc. | Methods for location identification of renewable energy systems |
CN106779804A (en) * | 2010-05-28 | 2017-05-31 | 吉奥斯特拉股份有限公司 | For the system and method for the mapping modeling of wide diversified resource base geographically |
CN101917137A (en) * | 2010-07-06 | 2010-12-15 | 上海淘科网络技术有限公司 | Network monitor and management platform of solar photovoltaic generation system |
US8466706B2 (en) | 2010-08-17 | 2013-06-18 | Schneider Electric USA, Inc. | Solar combiner with integrated string current monitoring |
US8547669B2 (en) | 2011-01-12 | 2013-10-01 | Schneider Electric USA, Inc. | Arc fault mitigation for photovoltaic systems |
CN103874999A (en) * | 2011-03-31 | 2014-06-18 | 艾斯兰股份有限公司 | Method, apparatus and computer program product for providing targeted fulfillment with respect to a wireless device protection program |
TW201249055A (en) * | 2011-05-27 | 2012-12-01 | Gcca Inc | Green data center and the method for achieving power usage efficiency less than 1 |
TWI446160B (en) | 2011-07-21 | 2014-07-21 | Silicon Motion Inc | Flash memory controller and data read method |
US20130060667A1 (en) * | 2011-09-01 | 2013-03-07 | Robert James Burke | Energy management modeling language |
US8819498B2 (en) * | 2011-09-09 | 2014-08-26 | Xerox Corporation | Fault-based unit replacement |
US8951356B2 (en) | 2011-12-20 | 2015-02-10 | Bryan Fisher | Photovoltaic array performance monitoring system |
US20130191076A1 (en) * | 2012-01-20 | 2013-07-25 | General Electric Company | System and method for monitoring, diagnostics, and prognostics |
US10002349B2 (en) | 2012-03-05 | 2018-06-19 | First Data Corporation | System and method for evaluating transaction patterns |
US9519874B2 (en) | 2012-08-30 | 2016-12-13 | Honeywell International Inc. | HVAC controller with regression model to help reduce energy consumption |
US20140074556A1 (en) * | 2012-09-13 | 2014-03-13 | James Louis Garner | Method for Financing and Operating Onsite Renewable Energy Systems with Aggregated Onsite Demand |
US10962576B2 (en) | 2012-12-28 | 2021-03-30 | Locus Energy, Inc. | Estimation of shading losses for photovoltaic systems from measured and modeled inputs |
US10956629B2 (en) | 2012-12-28 | 2021-03-23 | Locus Energy, Inc. | Estimation of soiling losses for photovoltaic systems from measured and modeled inputs |
US11143680B2 (en) | 2012-12-28 | 2021-10-12 | Locus Energy, Inc. | Estimation of energy losses due to partial equipment failure for photovoltaic systems from measured and modeled inputs |
US9250674B2 (en) * | 2013-01-18 | 2016-02-02 | General Electric Company | Methods and systems for restoring power based on forecasted loads |
US20140278241A1 (en) * | 2013-03-15 | 2014-09-18 | General Electric Company | Performance monitoring and analysis for power plants |
US9524505B2 (en) | 2013-04-01 | 2016-12-20 | International Business Machines Corporation | End-to-end effective citizen engagement via advanced analytics and sensor-based personal assistant capability (EECEASPA) |
US20160125557A1 (en) * | 2013-05-21 | 2016-05-05 | Yeloha Ltd. | System for Continuous Computation of Renewable Energy Power Production |
US9270164B2 (en) | 2013-06-19 | 2016-02-23 | Tmeic Corporation | Methods, systems, computer program products, and devices for renewable energy site power limit control |
US20160191359A1 (en) * | 2013-08-15 | 2016-06-30 | Hewlett Packard Enterprise Development Lp | Reactive diagnostics in storage area networks |
US20160205189A1 (en) * | 2013-08-15 | 2016-07-14 | Hewlett Packard Enterprise Development Lp | Proactive monitoring and diagnostics in storage area networks |
US9940599B2 (en) * | 2013-08-20 | 2018-04-10 | General Electric Company | Systems and methods for generating solution recommendations for power plant operation |
JP2015060413A (en) * | 2013-09-19 | 2015-03-30 | 三菱日立パワーシステムズ株式会社 | Turbine generator energy creation service providing method and turbine generator energy creation service providing apparatus |
US9728974B2 (en) | 2013-10-10 | 2017-08-08 | Tmeic Corporation | Renewable energy site reactive power control |
KR101475632B1 (en) * | 2013-12-20 | 2014-12-22 | 엘에스산전 주식회사 | Method for playing operating record data of ems |
CN103825531A (en) * | 2013-12-31 | 2014-05-28 | 深圳市国创新能源研究院 | Multi-energy complementation storage power generation system |
US20150206087A1 (en) * | 2014-01-17 | 2015-07-23 | VSK Ventures, LLC | Synchronous Location-Based Matching of Merchant Offers with High Propensity Consumers |
US10176488B2 (en) | 2014-02-19 | 2019-01-08 | International Business Machines Corporation | Perturbation, monitoring, and adjustment of an incentive amount using statistically valuable individual incentive sensitivity for improving survey participation rate |
US20160005125A1 (en) * | 2014-07-01 | 2016-01-07 | Crowdedbuildings, LLC | Systems and methods for soliciting financing for real estate projects |
EP3153968B1 (en) * | 2014-11-20 | 2022-03-16 | Yulong Computer Telecommunication Scientific (Shenzhen) Co., Ltd. | Multi-system terminal system updating method, updating device and terminal |
US10164852B2 (en) | 2015-12-31 | 2018-12-25 | Microsoft Technology Licensing, Llc | Infrastructure management system for hardware failure remediation |
US10508987B2 (en) | 2016-09-12 | 2019-12-17 | Also Energy, Inc. | System and method for remote calibration of irradiance sensors of a solar photovoltaic system |
CN107330243B (en) * | 2017-05-25 | 2020-07-17 | 国网浙江省电力公司电力科学研究院 | Overhead transmission line current-carrying capacity calculation method based on typical weather years |
CN108520473A (en) * | 2018-03-23 | 2018-09-11 | 华翔翔能电气股份有限公司 | The control method and system of complete buried prepackage type intelligent green substation |
CN108846553B (en) * | 2018-05-23 | 2022-02-01 | 上海交通大学 | Transmission and distribution network coordination evaluation system and method based on typical grid structure |
CN109510241A (en) * | 2018-12-20 | 2019-03-22 | 中国电建集团河北省电力勘测设计研究院有限公司 | The grid-connect mode Optimizing Configuration System and method of the industrial park scene combustion energy storage energy |
CN113421164B (en) * | 2021-07-13 | 2024-10-18 | 北京电力交易中心有限公司 | Cooperative aggregation transaction method for absorbing clean energy by using demand side resources and shared energy storage |
CN113656207B (en) * | 2021-08-16 | 2023-11-03 | 北京百度网讯科技有限公司 | Fault processing method, device, electronic equipment and medium |
CN116504122B (en) * | 2023-06-29 | 2023-10-24 | 武汉理工大学 | Proton exchange membrane fuel cell teaching experiment platform based on metauniverse |
CN119171539A (en) * | 2024-11-12 | 2024-12-20 | 国网浙江省电力有限公司丽水供电公司 | Multi-distributed resource aggregation operation optimization method and system |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2116168A1 (en) * | 1993-03-02 | 1994-09-03 | Gregory Cmar | Process for identifying patterns of electric energy consumption and demand in a facility, predicting and verifying the effects of proposed changes, and implementing such changes in the facility to conserve energy |
US5758331A (en) * | 1994-08-15 | 1998-05-26 | Clear With Computers, Inc. | Computer-assisted sales system for utilities |
US5930773A (en) * | 1997-12-17 | 1999-07-27 | Avista Advantage, Inc. | Computerized resource accounting methods and systems, computerized utility management methods and systems, multi-user utility management methods and systems, and energy-consumption-based tracking methods and systems |
US7076400B2 (en) * | 2000-02-14 | 2006-07-11 | Nextnine Ltd. | Support network |
US6519730B1 (en) | 2000-03-16 | 2003-02-11 | Fujitsu Limited | Computer and error recovery method for the same |
US20020019802A1 (en) * | 2000-08-07 | 2002-02-14 | Ross Malme | System and methods for aggregation and liquidation of curtailment energy resources |
AU2001296336A1 (en) * | 2000-09-26 | 2002-04-08 | Daniel S. Gluck | Automated new energy technology consulting and demand aggregation system and method |
FR2814901B1 (en) * | 2000-10-04 | 2003-01-31 | Jean Patrick Azpitarte | SYSTEM FOR REMOTE MANAGEMENT OF THE MAINTENANCE OF A SET OF EQUIPMENT |
US20020084655A1 (en) * | 2000-12-29 | 2002-07-04 | Abb Research Ltd. | System, method and computer program product for enhancing commercial value of electrical power produced from a renewable energy power production facility |
US20030115251A1 (en) | 2001-02-23 | 2003-06-19 | Fredrickson Jason A. | Peer data protocol |
US7430534B2 (en) * | 2001-06-15 | 2008-09-30 | Abb Ab | System, method and computer program product for risk-minimization and mutual insurance relations in meteorology dependent activities |
US20040002988A1 (en) * | 2002-06-26 | 2004-01-01 | Praveen Seshadri | System and method for modeling subscriptions and subscribers as data |
US7177859B2 (en) * | 2002-06-26 | 2007-02-13 | Microsoft Corporation | Programming model for subscription services |
US20050044429A1 (en) * | 2003-08-22 | 2005-02-24 | Ip-First Llc | Resource utilization mechanism for microprocessor power management |
US20050034023A1 (en) * | 2002-12-16 | 2005-02-10 | Maturana Francisco P. | Energy management system |
US7295960B2 (en) * | 2003-01-22 | 2007-11-13 | Wireless Valley Communications, Inc. | System and method for automated placement or configuration of equipment for obtaining desired network performance objectives |
US7380167B2 (en) | 2003-02-13 | 2008-05-27 | Dell Products L.P. | Method and system for verifying information handling system hardware component failure diagnosis |
US20040205403A1 (en) | 2003-03-28 | 2004-10-14 | Mitchell Markow | Acoustic power spectra sensor for hard disk drive to provide early detection of drive failure and diagnostic capabilities |
US6978931B2 (en) | 2003-04-17 | 2005-12-27 | Brobeck William I | Energy credit card system |
US6925385B2 (en) * | 2003-05-16 | 2005-08-02 | Seawest Holdings, Inc. | Wind power management system and method |
US7107495B2 (en) * | 2003-06-19 | 2006-09-12 | International Business Machines Corporation | Method, system, and product for improving isolation of input/output errors in logically partitioned data processing systems |
US20050071348A1 (en) * | 2003-07-18 | 2005-03-31 | Karolin Laicher | Computing systems that capture cost information for total cost of ownership analyses |
US7233843B2 (en) * | 2003-08-08 | 2007-06-19 | Electric Power Group, Llc | Real-time performance monitoring and management system |
GB2405492B (en) * | 2003-08-30 | 2008-01-02 | Distant Control Ltd | Method and apparatus for remote control of power plants |
US7415634B2 (en) * | 2004-03-25 | 2008-08-19 | International Business Machines Corporation | Method for fast system recovery via degraded reboot |
US7288921B2 (en) * | 2004-06-25 | 2007-10-30 | Emerson Process Management Power & Water Solutions, Inc. | Method and apparatus for providing economic analysis of power generation and distribution |
-
2006
- 2006-04-28 TW TW095115166A patent/TWI377518B/en not_active IP Right Cessation
- 2006-04-28 TW TW095115165A patent/TWI397021B/en not_active IP Right Cessation
- 2006-04-28 US US11/919,044 patent/US20090299536A1/en not_active Abandoned
- 2006-04-28 EP EP06751909A patent/EP1877882A4/en not_active Withdrawn
- 2006-04-28 US US11/918,970 patent/US8029288B2/en not_active Expired - Fee Related
- 2006-04-28 CN CNA2006800145150A patent/CN101167030A/en active Pending
- 2006-04-28 US US11/919,016 patent/US20090132302A1/en not_active Abandoned
- 2006-04-28 US US11/919,042 patent/US7962247B2/en not_active Expired - Fee Related
- 2006-04-28 CN CNB2006800145146A patent/CN100549968C/en not_active Expired - Fee Related
- 2006-04-28 CN CNA2006800143988A patent/CN101167029A/en active Pending
- 2006-04-28 CA CA002603802A patent/CA2603802A1/en not_active Abandoned
- 2006-04-28 WO PCT/US2006/016451 patent/WO2006119113A2/en active Application Filing
- 2006-04-28 WO PCT/US2006/016279 patent/WO2006119030A2/en active Application Filing
- 2006-04-28 WO PCT/US2006/016442 patent/WO2006119108A2/en active Application Filing
- 2006-04-28 EP EP06751904A patent/EP1880292A4/en not_active Withdrawn
- 2006-04-28 CA CA002605555A patent/CA2605555A1/en not_active Abandoned
- 2006-04-28 EP EP06751908A patent/EP1877881A4/en not_active Withdrawn
- 2006-04-28 WO PCT/US2006/016449 patent/WO2006119111A2/en active Search and Examination
- 2006-04-28 CN CNA2006800143973A patent/CN101167028A/en active Pending
- 2006-04-28 US US11/919,041 patent/US7779290B2/en not_active Expired - Fee Related
- 2006-04-28 WO PCT/US2006/016280 patent/WO2006119031A2/en active Application Filing
- 2006-04-28 CA CA2603803A patent/CA2603803C/en active Active
- 2006-04-28 CA CA2603804A patent/CA2603804C/en active Active
- 2006-04-28 WO PCT/US2006/016450 patent/WO2006119112A1/en active Application Filing
- 2006-04-28 EP EP06751800A patent/EP1877880A4/en not_active Withdrawn
- 2006-04-28 US US11/919,043 patent/US7966100B2/en not_active Expired - Fee Related
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090132302A1 (en) | Computer implemented systems and methods for improving renewable energy systems performance guarantees | |
US11699198B2 (en) | Methods and systems for machine-learning for prediction of grid carbon emissions | |
US12068602B2 (en) | Advanced power distribution platform | |
US9286646B1 (en) | Method for managing centralized power generation with the aid of a digital computer | |
US20080228553A1 (en) | Method And System For Determination Of An Appropriate Strategy For Supply Of Renewal Energy Onto A Power Grid | |
Olsina et al. | Short-term optimal wind power generation capacity in liberalized electricity markets | |
Ani | Strategies for modeling and simulation of alternative energy systems for powering health facilities using HOMER application | |
Golmohamadi et al. | Application of robust optimization approach to determine optimal retail electricity price in presence of intermittent and conventional distributed generation considering demand response | |
Dragoon | Valuing wind generation on integrated power systems | |
Balducci et al. | Assessment of energy storage alternatives in the puget sound energy system | |
Wieringen | Transitioning to cost-optimal renewable energy systems under uncertainty | |
Nagarajan et al. | Preparing Distribution Utilities for the Future-Evolving Customer Consumption in Renewable Rich Grids: A Novel Analytical Framework | |
Shirmohammadi et al. | BEFORE THE PUBLIC UTILITIES COMMISSION OF THE STATE OF CALIFORNIA | |
Philipo et al. | Analyse und Nachfragesteuerung (Demand Side Management) Ostafrikanischer ländlicher Mikronetze: Modellierung und experimentelle Studie |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request | ||
FZDE | Discontinued |
Effective date: 20150728 |