[go: up one dir, main page]

CA2310588A1 - Transformation methods for optimizing elliptic curve cryptographic computations - Google Patents

Transformation methods for optimizing elliptic curve cryptographic computations Download PDF

Info

Publication number
CA2310588A1
CA2310588A1 CA002310588A CA2310588A CA2310588A1 CA 2310588 A1 CA2310588 A1 CA 2310588A1 CA 002310588 A CA002310588 A CA 002310588A CA 2310588 A CA2310588 A CA 2310588A CA 2310588 A1 CA2310588 A1 CA 2310588A1
Authority
CA
Canada
Prior art keywords
point
expression
field
mapping
elliptic curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002310588A
Other languages
English (en)
French (fr)
Inventor
Behzad Sadeghi
John J. Beahan, Jr.
Cetin Kaya Koc
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RT TECHNOLOGIES Inc
Oregon State University
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2310588A1 publication Critical patent/CA2310588A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/60Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers
    • G06F7/72Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers using residue arithmetic
    • G06F7/724Finite field arithmetic
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/60Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers
    • G06F7/72Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers using residue arithmetic
    • G06F7/724Finite field arithmetic
    • G06F7/725Finite field arithmetic over elliptic curves
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/60Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers
    • G06F7/72Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers using residue arithmetic
    • G06F7/728Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers using residue arithmetic using Montgomery reduction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/30Public key, i.e. encryption algorithm being computationally infeasible to invert or user's encryption keys not requiring secrecy
    • H04L9/3066Public key, i.e. encryption algorithm being computationally infeasible to invert or user's encryption keys not requiring secrecy involving algebraic varieties, e.g. elliptic or hyper-elliptic curves
    • H04L9/3073Public key, i.e. encryption algorithm being computationally infeasible to invert or user's encryption keys not requiring secrecy involving algebraic varieties, e.g. elliptic or hyper-elliptic curves involving pairings, e.g. identity based encryption [IBE], bilinear mappings or bilinear pairings, e.g. Weil or Tate pairing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/20Information technology specific aspects, e.g. CAD, simulation, modelling, system security

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Algebra (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Complex Calculations (AREA)
CA002310588A 1997-12-05 1998-12-04 Transformation methods for optimizing elliptic curve cryptographic computations Abandoned CA2310588A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US6931497P 1997-12-05 1997-12-05
US60/069,314 1997-12-05
PCT/US1998/025824 WO1999030458A1 (en) 1997-12-05 1998-12-04 Transformation methods for optimizing elliptic curve cryptographic computations

Publications (1)

Publication Number Publication Date
CA2310588A1 true CA2310588A1 (en) 1999-06-17

Family

ID=22088145

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002310588A Abandoned CA2310588A1 (en) 1997-12-05 1998-12-04 Transformation methods for optimizing elliptic curve cryptographic computations

Country Status (7)

Country Link
EP (1) EP1038371A4 (zh)
JP (1) JP2001526416A (zh)
CN (1) CN1280726A (zh)
AU (1) AU758621B2 (zh)
BR (1) BR9815161A (zh)
CA (1) CA2310588A1 (zh)
WO (1) WO1999030458A1 (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6307935B1 (en) * 1991-09-17 2001-10-23 Apple Computer, Inc. Method and apparatus for fast elliptic encryption with direct embedding
US6343305B1 (en) 1999-09-14 2002-01-29 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Methods and apparatus for multiplication in a galois field GF (2m), encoders and decoders using same
FR2821945B1 (fr) * 2001-03-12 2003-05-30 Gemplus Card Int Procede de protection contre les attaques par mesure de courant ou de rayonnement electromagnetique
FR2821944B1 (fr) * 2001-03-12 2003-05-30 Gemplus Card Int Procede de protection contre les attaques par mesure de courant ou de rayonnement electromagnetique
FR2824210B1 (fr) * 2001-04-27 2003-05-30 Gemplus Card Int Procede de contre-mesure dans un composant electronique mettant en oeuvre un algorithme cryptographique du type a cle publique sur une courbe elliptique
FR2824653B1 (fr) * 2001-05-11 2003-08-08 Gemplus Card Int Dispositif destine a realiser des calculs d'exponentiation appliques a des points d'une courbe elliptique
US7209555B2 (en) * 2001-10-25 2007-04-24 Matsushita Electric Industrial Co., Ltd. Elliptic curve converting device, elliptic curve converting method, elliptic curve utilization device and elliptic curve generating device
CN100440776C (zh) * 2002-11-29 2008-12-03 北京华大信安科技有限公司 椭圆曲线签名和验证签名方法和装置
US7499544B2 (en) 2003-11-03 2009-03-03 Microsoft Corporation Use of isogenies for design of cryptosystems
US7664957B2 (en) 2004-05-20 2010-02-16 Ntt Docomo, Inc. Digital signatures including identity-based aggregate signatures
WO2006056234A1 (en) * 2004-11-24 2006-06-01 Hewlett-Packard Development Company, L.P. Smartcard with cryptographic functionality and method and system for using such cards
US7602907B2 (en) * 2005-07-01 2009-10-13 Microsoft Corporation Elliptic curve point multiplication
CN100414492C (zh) * 2005-11-04 2008-08-27 北京浦奥得数码技术有限公司 一种椭圆曲线密码系统及实现方法
US8311214B2 (en) * 2006-04-24 2012-11-13 Motorola Mobility Llc Method for elliptic curve public key cryptographic validation
CN101079701B (zh) * 2006-05-22 2011-02-02 北京华大信安科技有限公司 高安全性的椭圆曲线加解密方法和装置
US8548160B2 (en) * 2010-01-13 2013-10-01 Microsoft Corporation Determination of pairings on a curve using aggregated inversions
CN103078732B (zh) * 2013-01-08 2015-10-21 武汉大学 一种素域椭圆曲线加密的点乘加速电路
CN104601322A (zh) * 2013-10-31 2015-05-06 上海华虹集成电路有限责任公司 用于密码芯片中三元扩域的蒙哥马利阶梯算法
CN104267926B (zh) * 2014-09-29 2018-03-09 北京宏思电子技术有限责任公司 获取椭圆曲线密码数据的方法和装置
CN108337091A (zh) * 2018-03-22 2018-07-27 北京中电华大电子设计有限责任公司 一种SM9椭圆曲线扭曲线上特定点的p倍点计算方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5271061A (en) * 1991-09-17 1993-12-14 Next Computer, Inc. Method and apparatus for public key exchange in a cryptographic system
US5159632A (en) * 1991-09-17 1992-10-27 Next Computer, Inc. Method and apparatus for public key exchange in a cryptographic system
US5373560A (en) * 1991-12-06 1994-12-13 Schlafly; Roger Partial modular reduction method
US5442707A (en) * 1992-09-28 1995-08-15 Matsushita Electric Industrial Co., Ltd. Method for generating and verifying electronic signatures and privacy communication using elliptic curves
US5497423A (en) * 1993-06-18 1996-03-05 Matsushita Electric Industrial Co., Ltd. Method of implementing elliptic curve cryptosystems in digital signatures or verification and privacy communication
US5577124A (en) * 1995-03-09 1996-11-19 Arithmetica, Inc. Multi-purpose high speed cryptographically secure sequence generator based on zeta-one-way functions
US5854759A (en) * 1997-05-05 1998-12-29 Rsa Data Security, Inc. Methods and apparatus for efficient finite field basis conversion
CN100380860C (zh) * 1998-02-18 2008-04-09 因芬尼昻技术股份公司 用于在计算机上借助于椭圆曲线加密处理的方法和装置

Also Published As

Publication number Publication date
EP1038371A4 (en) 2002-01-30
CN1280726A (zh) 2001-01-17
WO1999030458A1 (en) 1999-06-17
AU758621B2 (en) 2003-03-27
JP2001526416A (ja) 2001-12-18
BR9815161A (pt) 2000-10-10
EP1038371A1 (en) 2000-09-27
AU2198399A (en) 1999-06-28

Similar Documents

Publication Publication Date Title
Blake et al. Elliptic curves in cryptography
EP1993086B1 (en) Elliptical curve encryption parameter generation device, elliptical curve encryption calculation device, elliptical curve encryption parameter generation program, and elliptical curve encryption calculation program
Galbraith Elliptic curve Paillier schemes
CA2310588A1 (en) Transformation methods for optimizing elliptic curve cryptographic computations
Gordon A survey of fast exponentiation methods
Khalique et al. Implementation of elliptic curve digital signature algorithm
US6252959B1 (en) Method and system for point multiplication in elliptic curve cryptosystem
US7961874B2 (en) XZ-elliptic curve cryptography with secret key embedding
US6202076B1 (en) Scheme for arithmetic operations in finite field and group operations over elliptic curves realizing improved computational speed
US7379546B2 (en) Method for XZ-elliptic curve cryptography
US20030059042A1 (en) Elliptic scalar multiplication system
Robshaw et al. Elliptic curve cryptosystems
Kobayashi et al. Fast elliptic curve algorithm combining Frobenius map and table reference to adapt to higher characteristic
US7483534B2 (en) Elliptic polynomial cryptography with multi y-coordinates embedding
US7483533B2 (en) Elliptic polynomial cryptography with multi x-coordinates embedding
US20030059043A1 (en) Elliptic curve signature verification method and apparatus and a storage medium for implementing the same
Vanstone et al. Elliptic curve cryptosystems using curves of smooth order over the ring Z/sub n
Granger et al. On the discrete logarithm problem on algebraic tori
Shankar et al. Cryptography with elliptic curves
Galbraith et al. Algebraic curves and cryptography
Brumley Efficient three-term simultaneous elliptic scalar multiplication with applications
Takashima A new type of fast endomorphisms on Jacobians of hyperelliptic curves and their cryptographic application
US20070121935A1 (en) Method for countermeasuring in an electronic component
KR100341507B1 (ko) 빠른 유한체 연산을 이용한 타원곡선 암호화 방법 및 전자서명 방법
Alphonse Security Enhancement through Efficient Arithmetic on Novel Curve Based Cryptography.

Legal Events

Date Code Title Description
EEER Examination request
FZDE Dead