AU2003232382A1 - Standalone ignition subassembly for detonators - Google Patents
Standalone ignition subassembly for detonators Download PDFInfo
- Publication number
- AU2003232382A1 AU2003232382A1 AU2003232382A AU2003232382A AU2003232382A1 AU 2003232382 A1 AU2003232382 A1 AU 2003232382A1 AU 2003232382 A AU2003232382 A AU 2003232382A AU 2003232382 A AU2003232382 A AU 2003232382A AU 2003232382 A1 AU2003232382 A1 AU 2003232382A1
- Authority
- AU
- Australia
- Prior art keywords
- subassembly
- ignition
- shell
- charge
- body portion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 claims description 10
- 239000003990 capacitor Substances 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 238000002788 crimping Methods 0.000 claims description 2
- 229920000642 polymer Polymers 0.000 claims 3
- 238000013016 damping Methods 0.000 claims 2
- 230000005540 biological transmission Effects 0.000 claims 1
- 238000005538 encapsulation Methods 0.000 description 11
- 239000000463 material Substances 0.000 description 7
- UQMRAFJOBWOFNS-UHFFFAOYSA-N butyl 2-(2,4-dichlorophenoxy)acetate Chemical compound CCCCOC(=O)COC1=CC=C(Cl)C=C1Cl UQMRAFJOBWOFNS-UHFFFAOYSA-N 0.000 description 4
- -1 polypropylene Polymers 0.000 description 4
- 239000012212 insulator Substances 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 238000005422 blasting Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000001934 delay Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000012943 hotmelt Substances 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- NOVLQCYVQBNEEU-UHFFFAOYSA-I [K+].[Zr+4].[O-][Cl](=O)(=O)=O.[O-][Cl](=O)(=O)=O.[O-][Cl](=O)(=O)=O.[O-][Cl](=O)(=O)=O.[O-][Cl](=O)(=O)=O Chemical compound [K+].[Zr+4].[O-][Cl](=O)(=O)=O.[O-][Cl](=O)(=O)=O.[O-][Cl](=O)(=O)=O.[O-][Cl](=O)(=O)=O.[O-][Cl](=O)(=O)=O NOVLQCYVQBNEEU-UHFFFAOYSA-I 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000000788 chromium alloy Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000005474 detonation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 235000012976 tarts Nutrition 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B3/00—Blasting cartridges, i.e. case and explosive
- F42B3/10—Initiators therefor
- F42B3/12—Bridge initiators
- F42B3/121—Initiators with incorporated integrated circuit
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Engineering & Computer Science (AREA)
- Air Bags (AREA)
Description
WO 03/100344 PCT/IB03/02057 SPECIFICATION STANDALONE IGNITION SUBASSEMBLY FOR DETONATORS BACKGROUND OF THE INVENTION [00-1] The present invention relates to pyrotechnic detonators, and more particularly, to a standalone ignition subassembly designed for incorporation into detonators. [0002] The efficient use of explosives in mining operations and the demolition of structures often requires that many charges be placed in a predetermined pattern and detonated in a timed sequence. In general, timed detonation can be accomplished by detonators that use pyrotechnic delays, sequential-type blasting machines, and electronically programmable detonators. Some examples of time-delayed detonators are described in U.S. Patent Nos. 6,173,651, 6,085,659, 6,079,332, 5,602,360, 5,460,093, 5,435,248, 4,869,170, 4,819,560, 4,730,558, and 4,712,477, the disclosures of which are hereby incorporated by reference herein. [0003] Such detonators are, however, generally tailored to a specific application, thus precluding the use of interchangeable detonators for a number of applications. Hitherto, it is believed that it has not been conceived to use an interchangeable, standalone ignition subassembly to initiate a variety of detonators. CONFIRMATION COPY WO 03/100344 PCT/IBO3/02057 SUMMARY OF THE INVENTION (000]41 An object of the present invention is to provide a standalone ignition subassembly that can be readily incorporated into a variety of detonator shells. (0005] A separate object of the present invention is to provide an ignition subassembly that is protected against vibration and the environment, so as to permit convenient handling and transportation of the subassembly. BRIEF DESCRIPTION OF THE FIGURES [0006] Fig. 1 is a side sectional view of an embodiment of the present invention. [0007] Fig. 2 is a top sectional view of an alternate embodiment of the present invention. (0008] Fig. 3 is an exploded side and sectional view showing how an embodiment of the present invention such as that shown in Figs. 1 or 2 fits into a loaded detonator shell. [0009] Fig. 4 is a side view of an alternate embodiment of the present invention having an alternate outer surface to that of the embodiment shown in Fig. 3. [0010] Fig. 5 is a side sectional view of an alternate embodiment of the present invention incorporating an off-the shelf capacitor, with this embodiment inserted in a loaded shell and crimped in place with a plug. 2 WO 03/100344 PCT/IB03/02057 [0011] Fig. 6 is a side sectional view of another alternate embodiment similar to that shown in Fig. 5, with the off-the shelf capacitor in a different configuration. DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT [00123 Referring to Figs. 1 and 2, an ignition subassembly 8 of an embodiment of the present invention, and an alternate embodiment 8', are shown. As shown in Fig. 3, such a subassembly is placed inside of a shell 40 that may contain a primary charge 36 and a base charge 38 loaded into its closed end. (A detonator shell is typically a metal cylinder 6 to 8 mm. in diameter and from 60-100 mm. in length). Subassembly 8 can then be secured in place in the shell 40, such as by placing an elastomeric plug or the like (see elastomeric plug 46 and crimp 47 in Figs. 5 and 6) in the open end of the shell and crimping the shell 40 to the plug, or other suitable method. Subassembly 8 may have a body portion 32 formed of an The present description incorporates by reference in full the disclosures of the following copending applications filed herewith: "DETONATOR UTILIZING FEATURES OF AUTOMOTIVE AIRBAG INITIATORS," by John J. Walsh, David M. Forman, Abrar A. Tirmizi, and Gloria Vawter (Express Mail No. EUl24494952US), "DETONATOR WITH AN IGNITION ELEMENT HAVING A TRANSISTOR-TYPE SEALED FEEDTHROUGH," by David M. Forman and John H. Oldham (Express Mail No. EUl24495272US), and "DETONATOR WITH ONBOARD ELECTRONICS MECHANICALLY CONNECTED TO IGUITION ELEMENT" (Express mail No. EUl24495683US), each of whiCh applications is assigned to the assignee of the present applications.
WO 03/100344 PCT/IBO3/02057 encapsulation 31 and may have ridges 57 protruding out from the outer surface of body portion 32, so as to snugly hold subassembly 8 within the shell 40. Such ridges 57 or other protuberances such as nubs 57' shown in Fig. 4 are preferably formed to dampen vibrations to which the detonator may be subjected, generally in accordance with the teachings of U.S. Patent No. 6,079,332. [0013] The material for encapsulation 31 is preferably chosen to afford economical material and manufacturing costs, desirable electrical isolation and vibration and environmental protection for the encapsulated circuitry (including desirable modulus of elasticity, et cetera, as generally taught in U.S. Patent No. 6,079,332), adequate physical integrity and holding and securing of the subassembly's components, and a lack of chemical volatility with other materials comprising the detonator. At least three processes may be used, including insert molding with thermoplastics, hot-melt molding (similar to glue-gun technology), and reactive injection molding (RIM, a 2-part mix and injection with low temperatures and pressures). Insert molding is a preferable technique, and preferred encapsulation materials for use in that technique are polypropylene, polyurethane, or polyethylene, although polystyrene, polyester, polvamide, and polyolefin carn also be considered depending on the applicaticn. The preferred encapsulation materials for use 4 WO 03/100344 PCT/IB03/02057 in the hotmelt technique are polyamides, but polypropylene, polyurethane, polyester, polyolefin, EVA, acrylic, and silicone can also be considered depending on the application. The preferred encapsulation materials for use in the RIM technique are poyurethane-based materials. Some relevant teachings regarding encapsulation are also set forth in U.S. Patent Nos. 6,079,332 and 4,869,170. [0014] Although a standalone ignition subassembly according to the present invention may include any kind of suitable ignition element (e.g., matchhead-type) as long as it is hermetically sealed and protected from the environment, a header-based, or automotive airbag initiator-style, ignition element 28 is employed in the preferred embodiments shown in the Figures. As will be appreciated, such an ignition element lends itself to hermetic sealing because it includes an integral, rigid charge can and header that hermetically seals the charge in an enclosure. U.S. Patent Nos. 6,274,252, 5,709,724, 5,639,986, 5,602,359, 5,596,163, 5,404,263, 5,140,906, and 3,971,320 are also hereby incorporated by reference herein for their disclosure concerning the construction of ignition elements based on a glass-to-metal sealed header feedthrough. [0015] As shown in Figs. 1 anrid 2, ignition element 28 (and 28') inc-ludes a header assembly ith a sealed electrical feedthrough, comprising an eyelec 10 (preferably stainless steel), insulator 5 WO 03/100344 PCT/IB03/02057 glass 14 (preferably a glass such as a sodasilicate, e.g., 9010, that is chosen to form a compression seal with the eyelet and center pin, or less preferably a matched seal), a center pin 18 (preferably an iron nickel alloy), a ground pin 20, and an igniter wire 12 (preferably a low energy igniter wire with a diameter of 10 to 20 microns). The ignition element 28 further preferably includes a charge can 26 that is preferably metallic and hermetically sealed to the eyelet at circumferential through-weld 16, with an ignition charge contained between the can 26 and upper surface of the header, in tight contact with igniter wire 12. An insulator cup 27 may preferably be attached around the can 26 so that, except for female connectors 52 that protrude from the input end of the subassembly, the entire outer surface of ignition subassembly 8 consists of insulating Material, thus providing electrical isolation and vibration and environmental protection to the components within. Pins are Inserted and crimped within female connectors 52. 00 6] In the depicted embodiment, a circuit board 24 and electronic components 25 may be provided within ignition 5ubassembly 8, to provide a means of triggering ignition of the .gnition element based on the processing of an electrical gnition signal received by connectors 52, which are electrically connected mo a blasting machine or the like that ;ow.-ers the diertonator. Such electronic components are well-known 6 WO 03/100344 PCT/IBO3/02057 and preferably include means for imparting a programmable period of delay to the ignition, means for ESD and RF protection, et cetera. Circuit board 24 and electronic components 25 are preferably encapsulated together in encapsulation 31, and connected to pins 18 and 20 at contacts 22 through soldering or other suitable connection. Referring to Fig. 2, as is well known in encapsulated automotive airbag initiators, retention of the ignition element 28 to the encapsulation 31 may be enhanced by providing a lip 17 at the bottom of the eyelet 10'. The insulator cup 27' may also be held within the encapsulation 31 to facilitate its retention as well, and the can may also have a lip (not shown) as another retention feature. [0017) Figs. 5 and 6 illustrate two alternate configurations for the electronics encapsulated within the alternate ignition subassemblies 8a and 8b. In these configurations, an off-the shelf cylindrical capacitor 42 is contained within the encapsulation 31, either between the input leads 48 and circuit board 24a as shown in Fig. 5, or between the circuit board 24a and the ignition element 28 as shown in Fig. 6. As shown in Fig. 5, in order to accommodate the capacitor 42 within the diameter of the encapsulation 31 (which is determined by the inner diameter of the type of detonator shell with which the ignition subassembly is to be compatible), thin, flat flexible jumpers 44 can be provided, and the axis of the capacitor 42 7 WO 03/100344 PCT/IB03/02057 slightly offset from the a:<is of the subassembly 8a. Similarl' as shown in Fig. 6, flexible jumper 60 can traverse the length of capacitor 42, and the leads to capacitor 42 can be soldered Lo the circuit board 24 at through-mounts (as can one or both o the ends of flexible jumper 60). [ 00183 By way of example, in an embodiment like that shown in E'igs. I and 2, it has been found that a nickel/chromium alloy, 13 micron diameter, 0.7mm long igniter wire, and a 50 mg ignition charge of zirconium potassium perchlorate having a neight of 1.0mm and a diameter of 4.8mm, is capable of reliably detonating all commonly used primary charges. Preferably, a minimum suitable charge is approximately 30 mg for a configuration of this size, as a smaller charge may result in an insufficient charge thickness. A preferred all-fire voltage is 6 volts, and in this embodiment, may be delivered with a 100 nicrofarad capacitor included in the electronic components 25. [0019] It should be noted that although the EFigures depict embodiments including electronic components that receive, process, and deliver an ignition signal, such an ignition signal may alternately be received, processed, and delivered by a number of other well-known non-electronic or partly-electronic means, such as through the use of a shock tube to deliver an ignition signal to a piezoelectric device, column fuse delays, et cetera. IT is noted that this dezailed description of 8 WO 03/100344 PCT/IB03/02057 certain embodiments herein does not imply that such alternate embodiments are not within the scope of the invention. OOz20] A preferred embodiment of a standalone ignition subassembly designed for ready incorporation into pyrotechnic detonators, and many of its attendant advantages, has thus been disclosed. it will be apparent, however, that various changes may be made in the form, construction, and arrangement of the tarts without departing from the spirit and scope of the Ln~ention, the form hereinbefore described being merely a referred or exemplary embodiment thereof. Therefore, the invention is not to be restricted or limited except in accordance with the following claims. 9
Claims (9)
- 4. The subassembly of claim 3, wherein said ignition element includes a glass-to-metal header having a sealed feedthrough, and further includes a metallic can around said ignition charge. s. The subassembly of claim 1, wherein said body portion includes a polymer encapsulating at least a portion of said trigger means.
- 6. The subassembly of claim 1, wherein said trigger means includes electronics for processing said ignition signal.
- 7. The subassembly of claim 6, wherein said electronics include a circuit board having electrical components.
- 8. The subassembly of claim 7, wherein said electronics further include an off-the-shelf cylindrical capacitor that is substantially aligned with said circuit board.
- 9. The subassembly of claim 6, wherein said body portion includes a polymer encapsulating said circuit board and electrical components.
- 10. The subassembly of claim 9, wherein said trigger means includes one or more electrical leads protruding out through said polymer at said trigger end. 11 WO 03/100344 PCT/IB03/02057
- 11. The subassembly of claim 1, wherein said detonator charge comprises a primary charge and a base charge.
- 12. The subassembly of claim 10, wherein said one or more electrical leads includes a female adapter formed to securely receive the end of a pin or straight wire.
- 13. The subassembly of claim 1, wherein said body portion includes a vibration damping feature to reduce the transmission of vibrations from said shell into said trigger means and ignition element when said standalone ignition subassembly is secured within the shell. .4. The subassembly of claim 13, wherein said vibration damping feature includes one or more protuberances made of a poylmer and formed in the shape of nubs or ridges distributed on the outer surface of said body portion. 5. The subassembly of claim 14, wherein said protuberances are distributed on the outer surface of said body portion in a circular, longitudinal, or spiral pattern. 6. A method of making a standalone ignition subassembly for use with a detonator shell having a standard inner shell diameter and a detonator charge within said shell, comprising the following steps: 12 WO 03/100344 PCT/IB03/02057 a) providing a hermecically sealed ignition element including a charge enclosure tha6t is hermetically sealed and substantially filled with an ignition charge; b) providing a substantially cylindrical body portion having first and second ends, and an outer diameter selected to closely match the detonator shell's standard inner shell diameter; -) attaching said ignition element to the first end of said Dody portion; and, d) providing a trigger means for causing said ignition element to ignite in response to an ignition signal, and locating at least a portion of said trigger means at said second end of said body portion. The method of claim 16, wherein step d) includes the step of providing electronics for processing said ignition signal. The method of claim 17, wherein step b) includes the step of encapsulating said electronics. A method of making a deconator, comprising the following a) selecting a standard dEtona r shell having a deconacor charge and a preciesecrrined inrner, diameter; 13 WO 03/100344 PCT/IB03/02057 b) providing a standalone ignition subassembly having a hermetically sealed ignition element and a cylindrical body portion with an outer diameter selected to closely match said predetermined inner diameter of said detonator shell; c) pushing said standalone ignition subassembly into said shell; and, d) securing said standalone ignition subassembly within said shell. D. The method of claim 19, wherein step d) includes the step of inserting a body plug into said shell and crimping said shell to said body plug. 14
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/158,529 | 2002-05-29 | ||
US10/158,529 US20030221577A1 (en) | 2002-05-29 | 2002-05-29 | Standalone ignition subassembly for detonators |
PCT/IB2003/002057 WO2003100344A1 (en) | 2002-05-29 | 2003-05-28 | Standalone ignition subassembly for detonators |
Publications (1)
Publication Number | Publication Date |
---|---|
AU2003232382A1 true AU2003232382A1 (en) | 2003-12-12 |
Family
ID=29582705
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2003232382A Abandoned AU2003232382A1 (en) | 2002-05-29 | 2003-05-28 | Standalone ignition subassembly for detonators |
Country Status (5)
Country | Link |
---|---|
US (1) | US20030221577A1 (en) |
EP (1) | EP1509743A1 (en) |
AU (1) | AU2003232382A1 (en) |
WO (1) | WO2003100344A1 (en) |
ZA (1) | ZA200409576B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7107908B2 (en) * | 2003-07-15 | 2006-09-19 | Special Devices, Inc. | Firing-readiness diagnostic of a pyrotechnic device such as an electronic detonator |
WO2011160099A1 (en) * | 2010-06-18 | 2011-12-22 | Battelle Memorial Instiute | Non-energetics based detonator |
US12203350B2 (en) | 2013-07-18 | 2025-01-21 | DynaEnergetics Europe GmbH | Detonator positioning device |
CN110260729B (en) * | 2019-07-04 | 2024-04-19 | 广西金建华民用爆破器材有限公司 | Electronic detonator assembly production line |
CN111238318A (en) * | 2020-02-21 | 2020-06-05 | 北京凯米迈克科技有限公司 | Reinforced electronic ignition part and electronic detonator thereof |
CN113375612B (en) * | 2021-06-10 | 2022-06-10 | 南京理工大学 | Device and method for testing critical boost size of explosive based on 3D inkjet charge |
US12287182B2 (en) | 2022-12-12 | 2025-04-29 | DynaEnergetics Europe GmbH | Initiator head with circuit board |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3533389A1 (en) * | 1984-11-02 | 1986-06-05 | Dynamit Nobel Ag, 5210 Troisdorf | Electronic explosive time fuze |
CA1332960C (en) * | 1988-09-29 | 1994-11-08 | Kenichi Aiko | Electronic delayed detonator |
US5140906A (en) * | 1991-11-05 | 1992-08-25 | Ici Americas, Inc. | Airbag igniter having double glass seal |
US6274252B1 (en) * | 1994-08-04 | 2001-08-14 | Coors Ceramics Company | Hermetic glass-to-metal seal useful in headers for airbags |
WO1997021067A1 (en) * | 1995-12-06 | 1997-06-12 | Orica Trading Pty Ltd | Electronic explosives initiating device |
US5912428A (en) * | 1997-06-19 | 1999-06-15 | The Ensign-Bickford Company | Electronic circuitry for timing and delay circuits |
-
2002
- 2002-05-29 US US10/158,529 patent/US20030221577A1/en not_active Abandoned
-
2003
- 2003-05-28 AU AU2003232382A patent/AU2003232382A1/en not_active Abandoned
- 2003-05-28 WO PCT/IB2003/002057 patent/WO2003100344A1/en not_active Application Discontinuation
- 2003-05-28 EP EP03755251A patent/EP1509743A1/en not_active Withdrawn
-
2004
- 2004-11-26 ZA ZA200409576A patent/ZA200409576B/en unknown
Also Published As
Publication number | Publication date |
---|---|
US20030221577A1 (en) | 2003-12-04 |
WO2003100344A1 (en) | 2003-12-04 |
ZA200409576B (en) | 2005-10-12 |
EP1509743A1 (en) | 2005-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0974037B1 (en) | Initiator with loosely packed ignition charge | |
US5454320A (en) | Air bag initiator | |
EP1591747A2 (en) | Initiator with an internal sleeve retaining a pytotechnic charge and methods of making same | |
JP2541727B2 (en) | Electric delay detonator | |
US6311621B1 (en) | Shock-resistant electronic circuit assembly | |
US8726808B1 (en) | Initiator assembly having low-energy exploding foil initiator header and cover with axially threaded portion | |
US10557692B1 (en) | Vibration resistant initiator assembly having exploding foil initiator | |
US20030221577A1 (en) | Standalone ignition subassembly for detonators | |
US4402269A (en) | Electric delay detonator | |
AU2003228015A1 (en) | Detonator with onboard electronics mechanically connected to ignition element | |
US20030221575A1 (en) | Detonator utilizing features of automotive airbag initiators | |
US20030221576A1 (en) | Detonator with an ignition element having a transistor-type sealed feedthrough | |
ES2247925A1 (en) | INTEGRATED CONNECTOR FOR SHOCK WAVE PIPES. | |
US4951570A (en) | Electrically activated detonator with pyrotechnic device receiving terminals and method of making | |
CA1046812A (en) | Delay blasting assembly | |
CN107107858A (en) | Igniter assembly and use its gas generator | |
RU99125563A (en) | EXPLOSIVE SUBSTANCE CHARGE AND EXPLOSIVE METHOD | |
KR102790148B1 (en) | Class small electric detonator with a built-in Electro Magnetic Interference filter and Method for assembling the same | |
KR870002023B1 (en) | Fuse | |
AU752691B2 (en) | Shock-resistant electronic circuit assembly | |
AU2002300139B2 (en) | Shock-resistant Electronic Circuit Assembly | |
RU98118649A (en) | High explosive mine | |
JPH11223496A (en) | Electronic type delay electric detonator | |
JPS62158999A (en) | electrical delay detonator | |
JP2003344000A (en) | Electronic detonator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MK1 | Application lapsed section 142(2)(a) - no request for examination in relevant period |