[go: up one dir, main page]

AT139391B - Arrangement for measuring the direct current flowing in a high voltage system. - Google Patents

Arrangement for measuring the direct current flowing in a high voltage system.

Info

Publication number
AT139391B
AT139391B AT139391DA AT139391B AT 139391 B AT139391 B AT 139391B AT 139391D A AT139391D A AT 139391DA AT 139391 B AT139391 B AT 139391B
Authority
AT
Austria
Prior art keywords
measuring instrument
current
measuring
arrangement
high voltage
Prior art date
Application number
Other languages
German (de)
Inventor
Friedrich Wilhelm Dip Claassen
Original Assignee
Siemens Reiniger Werke Ag
Filing date
Publication date
Application filed by Siemens Reiniger Werke Ag filed Critical Siemens Reiniger Werke Ag
Application granted granted Critical
Publication of AT139391B publication Critical patent/AT139391B/en

Links

Landscapes

  • X-Ray Techniques (AREA)

Description

  

   <Desc/Clms Page number 1> 
 



  Anordnung zum Messen des in einer Hoehspannungsanlage fliessenden Gleichstromes. 



   Bei Röntgenapparaten in   Verdreifachungsschaltung     (Witka-Schvltung)   ist bereits vorgeschlagen worden, den durch die Röntgenröhre fliessenden Strom an einer Erdpotential führenden Stelle des Hochspannungssystems, insbesondere im Mittelpunkt der Sekundärwicklung des Hoehspannungstransformators, zu messen. 



   Wie sich aus der Fig. 1, in der die Schaltungsanordnung eines Röntgenapparates in Verdreifachungsschaltung schematisch dargestellt ist, ergibt, werden bei einem derartigen Apparat in der einen Halbperiode vom Hochspannungstransformator a aus über die Ventilröhren bund c die Kondensatoren d und e in Parallelschaltung aufgeladen.

   Ausser dem Ladestrom für die Kondensatoren fliesst während der Ladehalbperiode auch ein Strom über die   Ventilröhren   bund c und die   Röntgenröhre t.   Während der Entladehalbperoide werden die beiden Kondensatoren d und e in Reihe über die   Röntgenröhre t entladen.   In den Mittelpunkt der Sekundärwicklung des Hochspannungstransformators   a   ist ein Gleichstrom-   messinstrument g derart   mittels zweier   Ventilehund t eingeschaltet, dass der Ladestrom   für die Kondensatoren über das Ventil   h am   Messinstrument g vorbeigeleitet wird, während der Entladestrom über das Messinstrument g und das Ventil   i   fliesst. 



   Die im vorstehenden beschriebene Anordnung weist mehrere wesentliche Nachteile auf. Da der während der Ladehalbperiode durch die Röntgenröhre f fliessende Strom am Messinstrument g vorbeifliesst, wird von diesem nur der in der Entladehalbperiode durch die   Röntgenröhre/fliessende Strom,   also nicht der Gesamtröhrenstrom, gemessen. Das Messinstrument g muss deshalb besonders geeicht werden. Weiter kommt hinzu, dass wegen der auf der Sekundärseite des Hochspannungstransformators 
 EMI1.1 
 wicklung des Hoehspannungstransformators   a zusätzliche   kapazitive Wechselströme fliessen. Diese kapazitiven Ströme werden vor dem Messinstrument g durch die Ventile h und i gleichgerichtet, so dass durch die über das Messinstrument g fliessende eine Halbwelle dieser Ströme Fehlanzeigen des Messinstrumentes hervorgerufen werden. 



   Alle diese Nachteile lassen sieh gemäss der Erfindung dadurch vermeiden, dass die Ventile h und i weggelassen werden und, wie die Fig. 2 zeigt, das Drehspulmessinstrument g derart in den Wechselstromkreis der Anlage   (Sekundärwicklung   des Hoehspannungstransformators a) eingeschaltet wird, dass seine Polarität dem durch die   Röntgenröhre t fliessenden Entladestrom   der Kondensatoren entgegengesetzt ist. In diesem Falle zeigt das Messinstrument g den gesamten, durch die Röntgenröhre f flie ssenden Strom an. Dieses Resultat wird durch die folgende Überlegung   verständlich.   



   Die während der Ladezeit der Kondensatoren d und e in diese hineinfliessende Elektrizitätsmenge fliesst während der Entladezeit der Kondensatoren über die Röntgenröhre f. Daraus ergibt sich, dass der auf eine volle Periode bezogene arithmetische Mittelwert des Ladestromes gleich dem arithmetischen Mittelwert des Entladestromes ist, obwohl die Entladezeit der Kondensatoren im allgemeinen ein Mehrfaches der Ladezeit beträgt.

   Ein Drehspulmessinstrument (das den arithmetischen Mittelwert des Stromes misst) wird somit den Lade-und Entladestrom der Kondensatoren als gleich starke Ströme anzeigen.   Bezeichnet man die Stärke des Lade-bzw. des Entladestromes der Kondensatoren mit 1"so fliesst in der Schaltung nach Fig. 2 über das Messinstrument g während der Ladezeit der Strom 2 1, da die beiden   

 <Desc/Clms Page number 2> 

 Kondensatoren d und e gleichzeitig aufgeladen werden.

   In der Entladezeit fliesst der Strom 11 in   ent-   gegengesetzter Richtung über das Messinstrument g, das somit den Strom 2   11-1i==/   anzeigt. Überdies fliesst aber auch während der Ladezeit der Kondensatoren ein Strom   12   über die   Röntgenröhre t und   das Messinstrument g, so dass dieses tatsächlich den Gesamtröhrenstrom 11+12 anzeigt. 



   Der zusätzliche kapazitive Wechselstrom fliesst zwar über das Messinstrument g, wird aber von dem Gleichstrommessinstrument g nicht angezeigt.



   <Desc / Clms Page number 1>
 



  Arrangement for measuring the direct current flowing in a high voltage system.



   It has already been proposed in X-ray apparatuses with a tripling circuit (Witka circuit) to measure the current flowing through the X-ray tube at a point in the high-voltage system carrying earth potential, in particular in the center of the secondary winding of the high-voltage transformer.



   As can be seen from Fig. 1, in which the circuit arrangement of an X-ray apparatus is shown schematically in a tripling circuit, in such an apparatus in the one half cycle from the high voltage transformer a through the valve tubes b and c the capacitors d and e are charged in parallel.

   In addition to the charging current for the capacitors, a current also flows through the valve tubes b and c and the x-ray tube t during the charging half-period. During the discharge half-periods, the two capacitors d and e are discharged in series via the X-ray tube t. In the center of the secondary winding of the high-voltage transformer a, a direct current measuring instrument g is switched on by means of two valves h and t in such a way that the charging current for the capacitors is routed past the measuring instrument g via the valve h, while the discharge current flows through the measuring instrument g and the valve i.



   The arrangement described above has several significant disadvantages. Since the current flowing through the X-ray tube f during the charging half-cycle flows past the measuring instrument g, only the current flowing through the X-ray tube / during the discharging half-cycle, i.e. not the total tube current, is measured by it. The measuring instrument g must therefore be specially calibrated. Furthermore, because of that on the secondary side of the high voltage transformer
 EMI1.1
 Winding of the high voltage transformer a additional capacitive alternating currents flow. These capacitive currents are rectified upstream of the measuring instrument g by the valves h and i, so that the measuring instrument's half-wave of these currents flowing through the measuring instrument g causes false readings.



   All these disadvantages can be avoided according to the invention in that the valves h and i are omitted and, as FIG. 2 shows, the moving-coil measuring instrument g is switched into the AC circuit of the system (secondary winding of the high voltage transformer a) in such a way that its polarity corresponds to through the X-ray tube t is opposite to the discharge current of the capacitors. In this case, the measuring instrument g shows the total current flowing through the X-ray tube. This result can be understood from the following consideration.



   The amount of electricity flowing into the capacitors d and e during the charging time flows through the X-ray tube f during the discharging time of the capacitors. This means that the arithmetic mean value of the charging current based on a full period is equal to the arithmetic mean value of the discharge current, although the discharge time of the capacitors is generally a multiple of the charging time.

   A moving-coil measuring instrument (which measures the arithmetic mean value of the current) will thus display the charging and discharging currents of the capacitors as currents of equal strength. One denotes the strength of the charging or. of the discharge current of the capacitors with 1 ″, so in the circuit according to FIG. 2 the current 2 1 flows via the measuring instrument g during the charging time, since the two

 <Desc / Clms Page number 2>

 Capacitors d and e are charged simultaneously.

   During the discharge time, the current 11 flows in the opposite direction via the measuring instrument g, which thus displays the current 2 11-1i == /. In addition, a current 12 also flows through the X-ray tube t and the measuring instrument g during the charging time of the capacitors, so that this actually shows the total tube current 11 + 12.



   The additional capacitive alternating current flows through the measuring instrument g, but is not displayed by the direct current measuring instrument g.

 

Claims (1)

PATENT-ANSPRUCH : Anordnung zum Messen des in einer Hochspannungsanlage in Verdreifachungsschaltung zum Betrieb von Entladungsröhren, insbesondere Röntgenröhren, fliessenden Röhrengleichstromes mittels eines Drehspulmessinstrumentes, dadurch gekennzeichnet, dass das Messinstrument derart in den Wechselstromkreis der Anlage geschaltet ist, dass seine Polarität dem durch die Röhre fliessenden Entladestrom der Kondensatoren entgegengesetzt ist, EMI2.1 PATENT CLAIM: Arrangement for measuring the tube direct current flowing in a high-voltage system in a tripling circuit for operating discharge tubes, in particular X-ray tubes, by means of a moving-coil measuring instrument, characterized in that the measuring instrument is connected to the alternating current circuit of the system in such a way that its polarity is opposite to the discharge current of the capacitors flowing through the tube is EMI2.1
AT139391D 1934-02-01 Arrangement for measuring the direct current flowing in a high voltage system. AT139391B (en)

Publications (1)

Publication Number Publication Date
AT139391B true AT139391B (en) 1934-11-10

Family

ID=2485

Family Applications (1)

Application Number Title Priority Date Filing Date
AT139391D AT139391B (en) 1934-02-01 Arrangement for measuring the direct current flowing in a high voltage system.

Country Status (1)

Country Link
AT (1) AT139391B (en)

Similar Documents

Publication Publication Date Title
AT139391B (en) Arrangement for measuring the direct current flowing in a high voltage system.
DE650141C (en) Arrangement for measuring the direct current flowing in a high-voltage system for operating discharge tubes, in particular Roentgen tubes, by means of a moving-coil measuring instrument
DE518765C (en) Arrangement for influencing electrical switching, measuring or display devices
DE602991C (en) Arrangement for measuring the load current in X-ray systems
AT153753B (en) Circuit arrangement for determining the number of pulses from contacts.
AT113642B (en) Device for measuring alternating voltages.
DE710368C (en) Method and device for testing or calibrating three-phase current measuring devices, in particular three-phase current meters, using a single-phase test device, in particular calibrating devices
DE687261C (en) igen connection of a load with symmetrical voltages and currents and according to the two-watt meter
DE615898C (en) Device for measuring the anode current of glow cathode discharge tubes, in particular X-ray tubes
AT135410B (en) Device to ensure the correctness of the X-ray tube current measurement in X-ray systems in Villard&#39;s circuit
AT134719B (en) Arrangement for remote measurement, in particular total remote measurement.
DE893374C (en) Directly displaying frequency measuring device
DE530797C (en) Frequency meter with a device for changing the measuring range
AT95126B (en) Measuring device for determining the components of an alternating current running in different directions.
AT108618B (en) AC instrument independent of voltage fluctuations.
DE605435C (en) Procedure for monitoring and checking the correct coordination of earth fault extinguishing devices in high-voltage networks
DE495464C (en) Device for measuring alternating voltages or for monitoring alternating current systems by means of a voltage divider, rectifier and a direct current measuring instrument or direct current relay
DE411738C (en) Device for measuring the voltage on the Roentgen tube
DE403447C (en) Arrangement for determining the changing capacitance of a line network to earth
AT159777B (en) Arrangement for previewing the controllable secondary voltage of a high voltage transformer, especially in X-ray systems.
DE616284C (en) Measuring device for direct measurement of the average arc drop in metal vapor apparatus
DE365057C (en) Electric display or counter for flow meter
DE475071C (en) Method for the electrical summation of variable measured quantities
DE639826C (en) Device to ensure the correctness of the pipe current measurement in Roentgen systems with Villard switch arrangement
DE382306C (en) Device for monitoring the current strength and current distribution in alternating current circuits, to which the portions of the alternating current corresponding to the different current directions are fed