AT1191U1 - Schleifkorn - Google Patents
Schleifkorn Download PDFInfo
- Publication number
- AT1191U1 AT1191U1 AT0068895U AT68895U AT1191U1 AT 1191 U1 AT1191 U1 AT 1191U1 AT 0068895 U AT0068895 U AT 0068895U AT 68895 U AT68895 U AT 68895U AT 1191 U1 AT1191 U1 AT 1191U1
- Authority
- AT
- Austria
- Prior art keywords
- sep
- elements
- abrasive grain
- lanthanide series
- grain according
- Prior art date
Links
- 238000000227 grinding Methods 0.000 title description 19
- 239000000725 suspension Substances 0.000 claims description 29
- 239000006061 abrasive grain Substances 0.000 claims description 22
- 239000000463 material Substances 0.000 claims description 12
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 12
- 229910052782 aluminium Inorganic materials 0.000 claims description 11
- 150000001875 compounds Chemical class 0.000 claims description 11
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 239000000843 powder Substances 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 10
- 238000005245 sintering Methods 0.000 claims description 8
- 229910052580 B4C Inorganic materials 0.000 claims description 5
- -1 carbosilanes Chemical class 0.000 claims description 5
- 239000002243 precursor Substances 0.000 claims description 5
- 238000012360 testing method Methods 0.000 claims description 5
- 239000003082 abrasive agent Substances 0.000 claims description 4
- 239000000919 ceramic Substances 0.000 claims description 4
- 238000005520 cutting process Methods 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052718 tin Inorganic materials 0.000 claims description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 3
- 229910052796 boron Inorganic materials 0.000 claims description 3
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 claims description 3
- 239000002131 composite material Substances 0.000 claims description 3
- 238000007493 shaping process Methods 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims 12
- 229910052719 titanium Inorganic materials 0.000 claims 12
- 229910052720 vanadium Inorganic materials 0.000 claims 12
- 229910052747 lanthanoid Inorganic materials 0.000 claims 10
- 150000002602 lanthanoids Chemical class 0.000 claims 10
- 229910052758 niobium Inorganic materials 0.000 claims 10
- 229910052721 tungsten Inorganic materials 0.000 claims 10
- 229910052726 zirconium Inorganic materials 0.000 claims 10
- 229910052710 silicon Inorganic materials 0.000 claims 9
- 229910052735 hafnium Inorganic materials 0.000 claims 8
- 229910052750 molybdenum Inorganic materials 0.000 claims 8
- 229910052715 tantalum Inorganic materials 0.000 claims 8
- 229910052749 magnesium Inorganic materials 0.000 claims 4
- 229910052709 silver Inorganic materials 0.000 claims 3
- 239000000243 solution Substances 0.000 claims 3
- 229910019142 PO4 Inorganic materials 0.000 claims 2
- 150000004703 alkoxides Chemical class 0.000 claims 2
- 125000000217 alkyl group Chemical group 0.000 claims 2
- 229910052790 beryllium Inorganic materials 0.000 claims 2
- UORVGPXVDQYIDP-UHFFFAOYSA-N borane Chemical class B UORVGPXVDQYIDP-UHFFFAOYSA-N 0.000 claims 2
- 229910000085 borane Inorganic materials 0.000 claims 2
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical class OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 claims 2
- 150000001720 carbohydrates Chemical class 0.000 claims 2
- 235000014633 carbohydrates Nutrition 0.000 claims 2
- 229910052802 copper Inorganic materials 0.000 claims 2
- 229910052742 iron Inorganic materials 0.000 claims 2
- 229910052751 metal Inorganic materials 0.000 claims 2
- 239000002184 metal Substances 0.000 claims 2
- 150000002739 metals Chemical class 0.000 claims 2
- 235000021317 phosphate Nutrition 0.000 claims 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 claims 2
- 150000003839 salts Chemical class 0.000 claims 2
- 150000004756 silanes Chemical class 0.000 claims 2
- 229910052725 zinc Inorganic materials 0.000 claims 2
- 229910052582 BN Inorganic materials 0.000 claims 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims 1
- 239000000969 carrier Substances 0.000 claims 1
- OSIVBHBGRFWHOS-UHFFFAOYSA-N dicarboxycarbamic acid Chemical compound OC(=O)N(C(O)=O)C(O)=O OSIVBHBGRFWHOS-UHFFFAOYSA-N 0.000 claims 1
- 238000005516 engineering process Methods 0.000 claims 1
- 229910000765 intermetallic Inorganic materials 0.000 claims 1
- 150000004767 nitrides Chemical class 0.000 claims 1
- 238000007639 printing Methods 0.000 claims 1
- 229910021332 silicide Inorganic materials 0.000 claims 1
- 239000006104 solid solution Substances 0.000 claims 1
- 238000001238 wet grinding Methods 0.000 claims 1
- 239000002245 particle Substances 0.000 description 17
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 12
- 239000011159 matrix material Substances 0.000 description 11
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 10
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 10
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 9
- 229910010271 silicon carbide Inorganic materials 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 229910052786 argon Inorganic materials 0.000 description 6
- 238000009826 distribution Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 229910021359 Chromium(II) silicide Inorganic materials 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- 229920001030 Polyethylene Glycol 4000 Polymers 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 3
- 229910052593 corundum Inorganic materials 0.000 description 3
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical class [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 238000003980 solgel method Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 229910001845 yogo sapphire Inorganic materials 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 229910021358 chromium disilicide Inorganic materials 0.000 description 2
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 230000008595 infiltration Effects 0.000 description 2
- 238000001764 infiltration Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Inorganic materials O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000001294 propane Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000013049 sediment Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- SBMYBOVJMOVVQW-UHFFFAOYSA-N 2-[3-[[4-(2,2-difluoroethyl)piperazin-1-yl]methyl]-4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]pyrazol-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound FC(CN1CCN(CC1)CC1=NN(C=C1C=1C=NC(=NC=1)NC1CC2=CC=CC=C2C1)CC(=O)N1CC2=C(CC1)NN=N2)F SBMYBOVJMOVVQW-UHFFFAOYSA-N 0.000 description 1
- 241000640882 Condea Species 0.000 description 1
- 229910020968 MoSi2 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 229910001315 Tool steel Inorganic materials 0.000 description 1
- 229910021541 Vanadium(III) oxide Inorganic materials 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical class [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- SMZOGRDCAXLAAR-UHFFFAOYSA-N aluminium isopropoxide Chemical compound [Al+3].CC(C)[O-].CC(C)[O-].CC(C)[O-] SMZOGRDCAXLAAR-UHFFFAOYSA-N 0.000 description 1
- VXAUWWUXCIMFIM-UHFFFAOYSA-M aluminum;oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Al+3] VXAUWWUXCIMFIM-UHFFFAOYSA-M 0.000 description 1
- YXTPWUNVHCYOSP-UHFFFAOYSA-N bis($l^{2}-silanylidene)molybdenum Chemical compound [Si]=[Mo]=[Si] YXTPWUNVHCYOSP-UHFFFAOYSA-N 0.000 description 1
- 229910001593 boehmite Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- UOUJSJZBMCDAEU-UHFFFAOYSA-N chromium(3+);oxygen(2-) Chemical class [O-2].[O-2].[O-2].[Cr+3].[Cr+3] UOUJSJZBMCDAEU-UHFFFAOYSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000009837 dry grinding Methods 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910021343 molybdenum disilicide Inorganic materials 0.000 description 1
- 229910000484 niobium oxide Inorganic materials 0.000 description 1
- 239000002667 nucleating agent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical class [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000002459 porosimetry Methods 0.000 description 1
- 238000001272 pressureless sintering Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Description
<Desc/Clms Page number 1> Schleifkorn aus Verbundwerkstoff auf Basis Al203. Matrix mit Fremdphasen gemäss dem Oberbegriff des Anspruches 1. Die Verwendung von Alpha-A1203 als Schleifkorn ist wegen seiner hohen Härte seit vielen Jahrzenten bekannt. Üblicherweise wird dazu ein Al-hältiger Rohstoff im Lichtbogenofen geschmolzen, die erstarrte Schmelze zerkleinert und als Schleifkorn verwendet. Die Eigenschaften dieses Schmelzkorunds sind in einigen Anwendungen anderen Schleifmittel wie CBN oder Diamant im Preisleistungsverhältnis unterlegen. Neue Schleifkörner, die meist durch einen Sinterprozess an geformten Pulvern hergestellt werden, haben Schleif-Eigenschaften und Herstellkosten, die zwischen den beiden Extremen Schmelzkorund-CBN liegen. Für viele Anwendungen ergibt sich ein günstiges Preisleistungsverhältnis. Die US 3 909 991 A (Coes), US 3 093 498 A (Whittemore) und die EP-152768 B1 beschreiben poly- kristallines Aluminiumoxid-Sinterschleifkorn mit submikrokristallinem Gefüge, das durch den Sol-Gel-Formgebungsprozess unter Zusatz von Kristallisationskeimen hergestellt werden kann. EMI1.1 Die EP 491184 A setzt Hartstoff körner zu, die wesentlich grösser ( > 1, um) sind als die A1203- Kristallite 1 m), und regt dadurch die Bildung neuer Schneid-Kanten während des Schleifprozesses (Selbstschärfeffekt) an. Bei den bekannten Schleifkörnern ergibt sich der Nachteil einer aufwendigen und komplizierten Herstellung und einer oft nicht ausreichenden Schleifleistung. Ziel der Erfindung ist es, diese Nachteile zu vermeiden und ein Schleifkorn der eingangs erwähnten Art vorzuschlagen, das sich durch eine hohe Schleifleistung und eine relativ einfache Herstellung auszeichnet. Erfindungsgemäss wird dies bei einem Schleifkorn der eingangs erwähnten Art durch die kennzeichnenden Merkmale des Anspruches 1 erreicht. Durch die vorgeschlagenen Massnahmen ergibt sich eine Mikrostruktur die eine hohe Schleifleistung er- EMI1.2 des Schleifvorganges, Werkstoff des bearbeiteten Gegenstands u. dgl., wobei die mittlere Grösse der Matrixkristallite mindestens das Zehnfache der mittleren Grösse der Partikel der eingelagerten zweiten Phase betragen muss. Die eingelagerten Partikel können sich entweder an den Kristallitgrenzen der Matrix befinden, oder im Inneren der grossen Matrixkristallite. Vorzugsweise enthält das erfindungsgemässe Material beide Arten der Einlagerung, d. h. es befinden sich sowohl an Kristallitgrenzen als auch im Inneren der Matrixkristallite Partikel der zweiten Phase. Vorzugsweise werden die im Anspruch 2 angeführten Verbindungen als zusätzliche Phasen verwendet. Dabei sind auch Kombinationen mehrerer Verbindungen nebeneinander möglich. <Desc/Clms Page number 2> Ohne dass ein wissenschaftlicher Beweis dazu vorliegt, könnte folgender Sachverhalt für den vorteilhaften erfindungsgemässen Effekt verantwortlich sein : Härte und Festigkeit steigen mit fallender Kristallitgrösse an, wahrscheinlich durch die Verkleinerung der bruchauslösenden Fehistellen (nach Giffith). Die Kriechgeschwindigkeit nimmt dabei aber zu. Um dem entgegenzu- EMI2.1 alskleiner als die bruchauslösenden Fehler sind. Sie behindern das Abgleiten der Matrixkristallite, wenn sie an den Kristallit- grenzen sitzen, und die Bewegung von Versetzungen, wenn sie sich im Inneren der Matrixkristallite befinden und vermindern so das Abstumpfen der Schneidkanten. Zur Definition und Messung der mittleren Partikelgrössen : Die Ermittlung der mittleren Durchmesser erfolgt an Bildern, die entweder von polierten Schlifflächen mit REM oder von Dünnschliffen im TEM hergestellt werden. Gegebenenfalls sind die Schlifflächen zu ätzen, die Art der Ätzung hängt von der chem. Zusammensetzung ab. Die Messung der mittleren Durchmesser der Matrix und von annähernd runden Partikeln der diskontinuierlichen Gefügebestandteile erfolgt mittels Linienschnittverfahren, die zur Berechnung erforderlichen Formeln gibt für isometrische (equiaxed) Körner J. C. Wurst (J. Amer. Cer. Soc. (1972). p. 109) EMI2.2 Verteilung der Schnittflächen über den äquivalenten Kreisdurchmessern berechnet, was annähernd der Volumsverteilung entspricht. Für andere Kristallitformen z. B. Platelets oder Whisker wird die kleinste Abmessung, die am Bild sichtbar wird, gemessen. Die Grössenverteilung wird in solchen Fällen als Anzahlverteilung berechnet, der Mittelwert als arithmetischer Mittelwert aller gemessenen Platelets oder Whisker. Die Messung der Härte erfolgt nach der Vickers Indenter Methode mit einer Eindruckskraft von 4, 9 N. EMI2.3 cEinzelwerten angegeben. Die Kriechgeschwindigkeit wird im Druckversuch an Probekörpern 5x5x8 mm gemessen. Die Probe wird auf die Prüftemperatur aufgeheizt. Dann wird bei konstanter Temperatur eine Druckbelastung von 50 MPa aufgebracht. Die Verformung wird bis zum Erreichen der konstanten Verformungsgeschwindigkeit des sekundären Kriechbereiches verfolgt. Diese wird gemeinsam mit der Prüftemperatur angegeben. Die Herstellung der erfindungsgemässen Materialien kann nach allen bekannten keramischen Verfahren erfolgen, die es erlauben, die für Schleifkorn nötigen kantigen Stücke zu erzeugen. Die üblichen Verfahrensschritte umfassen : Verarbeitung der Pulver durch Mischen, Nass. oder Trockenmahlung, Formgebung, Trocknung, Calcinerung und Sintern, gegebenenfalls auch mit Zerkleinerung der geformten Stücke nach der Trocknung oder Sinterung. Für einige Verbindungen hat es sich bewährt, Vorstufen zu verwenden, die während des Calcinieren oder Sinterns durch Reaktionen miteinander, mit der Matrix oder mit der Gasatmosphäre des Ofens die erwünschten Verbindungen ergeben. In einigen Fällen hat sich für die Ausbildung eines homogenen, feinkörnigen Gefüges die Verwendung des Infiltrationsverfahrens bewährt, wie schon 1975 von Church (US 3873344 A) beschrieben wurde, bewährt. Die Porenstruktur des Grünkörpers variiert mit der Temperatur und Zeit der Glühbehandlung. Für die im Sol Gel-Verfahren hergestellten Grünkörper findet man beispielsweise mittlere Porengrössen (Hg-Druckporosimetrie) von etwa 5-500 nm, je <Desc/Clms Page number 3> nach Glühbehandlung zwischen 400 und 1200 C. Es ist also auch möglich, kolloidale Feststoffsuspensionen zur Infiltra. tion zu verwenden. Für hydrolyse- oder oxidationsempfindliche Vorläufer (z. B. AI, B oder deren Alkoholate) ist dabei die EMI3.1 Die makroskopische Verteilung der Zusatzphasen in den Schleifkörnern kann durch geeignete Führung der Trocknung nach dem Infiltrieren oder durch Zusatz von Polymeren, wie z. B. Polyacrylaten, Polyestern von mehrwer- EMI3.2 völlig gleichmässig gehalten werden. Als Rohstoffe kommen alle Al-hältigen Verbindungen in Frage, hauptsächlich alpha-und gamma-AI203, weiters auch der Pseudoböhmit des aus der EP 024099 B1 bekannten Sol Gel-Verfahrens. Je nach der für die Anwendung vorteilhaften Kristallitgrösse der Atpha-AtOo-Matrix werden verschiedene Sinterverfahren wie Heisspressen, Gasdrucksintern oder druckloses Sintern verwendet. Zur Herstellung besonders feinkörniger Gefüge ist das Sol-Gel-Verfahren, gegebenenfalls unter Zusatz diverser Keimbilder, vorteilhaft. Als Peptisator im Sol. Gel. Verfahren können alle einwertigen Säuren, wie Salpetersäure, Salzsäure, EMI3.3 und Formgebung nützlich. Zur Steuerung des Kristallwachstums können alle dafür bekannten Zusätze wie Alpha-Aluminiumoxid, Magnesiumoxid, Siliziumoxid, Chromoxide, Titanoxide, Nioboxide, Vanadinoxide oder deren Vorstufen oder Verbindungen in Mengen bis zu 5 Gew%. berechnet als Oxid bezogen auf Art203 im Endprodukt zugesetzt werden. Dadurch kann eine für die Schleifeigenschaften günstige Kombination von hoher Festigkeit und Härte mit niedriger Kriechgeschwindigkeit bei hohen Temperaturen erzielt werden. Gegenstand dieser Erfindung ist auch die Verwendung der beschriebenen Materialien als Schleifkorn zur Herstellung von Schleifmittel oder Schleifwerkzeugen. Im folgenden wird die Erfindung an Beispielen näher erläutert. Beispiele 1 bis 11 EMI3.4 eingestellt, wobei etwa 30 g 65%ige Salpetersäure nötig waren. Diese Suspension wurde ca. 30 min evakuiert, um eventuell eingeschlossene Luft zu entfernen. Danach wurden verschiedene Zusätze eingerührt, wie im folgenden angegeben ist : Beispiel 1 In die Suspension wurden 7, 7 g Siliziumcarbid mit einer mittleren Partikelgrösse von 30 nm eingerührt. Die Suspension wurde in einer Rührwerkskugelmühle mit Aluminiumoxidkugeln (85% A1203) im Durchlauf (Verweilzeit 2 <Desc/Clms Page number 4> EMI4.1 überschuss ca 5%). Die Porosität betrug 4 Vol%. Beispiel 2 In die Suspension wurden 23, 1 g Siliziumcarbid mit einer mittleren Partikelgrösse von 200 nm und 2, 4 g EMI4.2 mm,Korngrösse 0, 5-2 mm zerkleinert, gesiebt und bei 1300 C in einem elektrisch beheizten Kammerofen 4 Stunden lang gesintert. Die Porosität betrug 3 Vol%. Beispiel 3 In die Suspension wurden 7, 7 g Siliziumcarbid mit einer mittleren Partikelgrösse von ca 30 nm, 0, 77 g EMI4.3 und bei 800 C im Kammerofen 4 Stunden lang unter strömendem Argon geglüht. Anschliessend wurden die Körner bei 1300 C 2 Stunden lang unter strömendem Stickstoff gesintert. Die Porosität betrug 2 Vol%. Beispiel 4 In die Suspension wurden 7, 7 g Titannitrid TiN mit einer mittleren Partikelgrösse von ca 50 nm und 80 mg Vanadiumpentoxid V205 eingerührt. Die Suspension wurde in einer Rührwerkskugelmühle mit Aluminiumoxidkugeln gemahlen und anschliessend in Polypropylenschalen bei 110 C getrocknet. Die dabei entstehenden spröden Stücke wurden auf die Korngrösse 0, 5-2 mm zerkleinert, gesiebt und bei 1600 C im elektrisch beheizten Kammerofen 4 Stunden lang unter strömendem Stickstoff geglüht. Die Porosität betrug 2 Vol%. Beispiel 5 In die Suspension wurden 7, 7 g Siliziumcarbid mit einer mittleren Partikelgrösse von ca 200 nm und 7, 7 g Molybdändisilizid mit einer mittleren Partikelgrösse von ca 150 nm eingerührt. Die Suspension wurde in einer Rühr- EMI4.4 Die dabei entstehenden spröden Stücke wurden auf die Korngrösse 0, 5.2 mm zerkleinert, gesiebt und bei 800 C im Kammerofen unter strömendem Argon 4 Stunden lang geglüht. Anschliessend wurden die Körner bei 1600 C in einem <Desc/Clms Page number 5> propangasbeheizten Kammerofen 4 Stunden lang unter reduzierenden Bedingungen gesintert (Gasüberschuss ca 5%). Die Porosität betrug 4 Vol%. Beispiel 6 In die Suspension wurden 1, 5 g Chromdisilizid CrSi2 mit einer mittleren Partikelgrösse von 150 nm und 0, 8 g Titanoxid P25 eingerührt. Die Suspension wurde in einer Rührwerkskugelmühle mit Aluminiumoxidkugeln (85% EMI5.1 2%3 Vol%. Beispiel 7 In die Suspension wurden 15, 4 g Borcarbid mit einer mittleren Partikelgrösse von 100 nm und 8 g Tonerde CS 4000 (Martinswerk) eingerührt. Die Suspension wurde in einer Rührwerkskugelmühle mit Aluminiumoxidkugeln EMI5.2 bezogen auf Disperal. Die Suspension wurde bei 1000. facher Erdbeschleunigung 15 min lang zentrifugiert und anschliessend in Polypropylenschalen bei 110 C getrocknet. Die dabei entstehenden spröden Stücke wurden auf die Korngrösse 0, 5-2 mm zerkleinert und gesiebt. Die Körner wurden bei 1600 C in einem propangasbeheizten Kammerofen 4 Stunden lang unter reduzierenden Bedingungen gesintert (Gasüberschuss ca 5%). Die Porosität betrug 2 Vol%. Beispiel 8 In die Suspension wurden 7, 7 g Borcarbid mit einer mittleren Partikelgrösse von 100 nm, 7 g Borpulver EMI5.3 <Desc/Clms Page number 6> im Durchlauf (Verweil zeitBeispiel 9 In die Suspension wurden 3, 5 g Borpulver mit einer mittleren Partikelgrösse von 100 nm, 1. 1 g Niob- pentoxid und 8 g Tonerde CS 4000 eingerührt. Die Suspension wurde in einer Rührwerkskugelmühle mit Aluminiumoxid- EMI6.1 gesintert. Die Porosität betrug 1 Vol%. Beispiel 10 In die Suspension wurden 38, 5 g Wolframcarbidpulver we mit einer mittleren Partikelgrösse von 200 nm, 2, 75 g Niobpentoxid und 8 g Tonerde CS 4000 eingerührt. Weiters wurden 100 g einer Suspension zugemischt, die EMI6.2 wurden die Körner im Kammerofen bei 1600 C 2 Stunden lang unter strömendem Argon gesintert. Die Porosität betrug 2 Vol%. Beispiel 11 In die Suspension wurden 80 mg g Vanadiumsesquioxid V203 eingerührt. Die Suspension wurde in einer Rührwerkskugelmühle mit Aluminiumoxidkugeln (85% A1203) im Durchlauf (Verweilzeit 2 min bei Drehzahl EMI6.3 dukt enthielt ca 0, 3 % C in Form von AOC mit einer mittleren Partikelgrösse von 500 nm. Beispiele 12 bis 13 3, kg Aluminium.triisopropoxid (Condea) wurden zerkleinert und auf kleiner 100/yam gesiebt. Durch dieses Pulver wurde Wasserdampf mit ca 100 C geleitet. Nach einer Reaktionszeit von 3 Stunden war die Hydrolyse <Desc/Clms Page number 7> EMI7.1 wurde100 pm gesiebt und wie folgt weiterverarbeitet : Beispiel 12 Das Pulver wurde im Kammerofen an Luft bei 950"C zu gamma Aluminiumoxid geglüht. Das geglühte EMI7.2 in einer Vibrationsschwingmühle le mit aluminiumoxidmahlkörpern trocken gemahlen. Die spezifische Oberfläche der Mischung (gemessen nach BET) war dann ca. 200 m2/g. Das Pulver wurde mit 1 Gew% Äthanol und 1 Gew% Polyäthy- lenglykol PEG 4000 (Hoechst) angefeuchtet und trocken isostatisch mit ca 3000 bar Druck gepresst. Die Formkörper (2 x EMI7.3 Körner im Kammerofen unter strömendem Argon geglüht, zuerst 1 Stunde bei 600 C, dann bei 1400 C 2 Stunden lang. Die Porosität betrug 2 Vol%. Beispiel 13 Das Pulver wurde im Kammerofen an Luft bei 1250 C zu alpha. Aluminiumoxid geglüht. Das geglühte EMI7.4 mischt und in einer Vibrationsschwingmühle mit Aluminiumoxidmahlkörpern trocken gemahlen. Die spezifische Oberfläche der Mischung (gemessen nach BET) war dann ca. 150 m2/g. Das Pulver wurde mit 1 Gew% Äthanol und 1 Gew% Poly- äthylenglykol PEG 4000 (Hoechst) angefeuchtet und trocken isostatisch mit ca 3000 bar Druck gepresst. Die Formkörper (2 x 2 x 2 cm) wurden mit einer Walzenmühle zerkleinert und auf die Korngrösse 0, 5-2 mm gesiebt. Anschliessend wurden die Körner im Kammerofen unter strömendem Argon geglüht, zuerst 1 Stunde bei 600 C, dann bei 1500 C 2 Stunden lang. Die Porosität betrug 2 Vol%. Beispiel 14 1000g Böhmit (Catapal D von Vista mit ca. 0, 2 % Ti02 Gehalt) wurden bei 950 C im Kammerofen an Luft zu gamma-Aluminiumoxid geglüht. Das Pulver wurde dann mit 7,7g Chromdisilizidpulver CrSi2 einer einer mittleren EMI7.5 Suspension eingerührt (Feststoffgehalt etwa 40 Gew%) und in einer Rührwerkskugelmühle mit Aluminiumoxidkugeln (85% A1203) im Durchlauf (Verweilzeit 2 min bei Drehzahl 1000Upm) nassgemahlen. Der Mahlkörperabrieb betrug ca 0, 2% bezogen auf Disperal. Nach Zusatz von 10 g Polyäthylenglykol PEG 4000 (Hoechst) und 30 g Salpetersäure (65 % ig) wurde die Suspension in einer Zentrifuge bei 2000. facher Erdbeschleunigung ab zentrifugiert. Nach ca einer Stunde war die überstehende Flüssigkeit fast klar und wurde dekantiert. Der Sedimentkuchen wurde bei 60 C getrocknet und danach auf die Korngrösse 0, 5-2 mm zerkleinert und gesiebt. Die Körner wurden im Kammerofen bei 1400 C 4 Stunden lang unter strömendem Argon gesintert. Die Porosität betrug 3 Vol%. <Desc/Clms Page number 8> Vergleichsbeispiele : Beispiel 15 In die Suspension von Beispiel 1 bis 11 wurden 12 g Tonerde CS 4000 (Martinswerk) eingerührt. Die Suspension wurde in Polypropylenschalen bei 110 C getrocknet. Die dabei entstehenden spröden Stücke wurden auf die Korngrösse 0, 5-2 mm zerkleinert, gesiebt und bei 1300 C in einem elektrisch beheizten Kammerofen 4 Stunden lang gesintert. Die Porosität betrug 2 Vol%. Beispiel 16 Das getrocknete, gesiebte Gel von Beispiel 12-13 wurde im Kammerofen an Luft bei 950 C zu EMI8.1 facher Erdbeschleunigung abzentrifugiert. Nach ca einer Stunde war die überstehende Flüssigkeit fast klar und wurde dekantiert. Der Sedimentkuchen wurde bei 600C getrocknet und danach auf die Korngrösse 0, 5-2 mm zerkleinert und gesiebt. Die Körner wurden im Kammerofen bei 1600 C 4 Stunden lang unter strömendem Stickstoff gesintert. Die Porosität betrug 3 Vol%. Die Beispiele 15 und 16 sind Vergleichsbeispiele, wobei Beispiel 15 nach EP-152 768 B 1 und Beispiel 16 nach einer Variante der US 3 093 498 A hergestellt wurden. Mit den hergestellten Materialien wurden verschiedene Schleifkörper hergestellt und getestet. Als Beispiele sind für 2 verschiedene Anwendungen die Ergebnisse in der Tabelle enthalten. a) Schleifbänder mit Korngrösse 40 zum Schleifen einer Nickelbasislegierung. Angegeben ist die bis zur Erschöp- fung abgetragene Materialmenge, bezogen auf das Vergleichsbeispiel 15. b) Schleifscheibe mit Korngrösse 60 zum Schleifen von Werkzeugstahl HSS. Angegeben ist das Verhältnis Ab- schliff zu Scheibenverschleiss, wieder bezogen auf das Vergleichsbeispiel 15. In der Tabelle sind die Daten und Messwerte für alle Beispiele zusammengefasst. Die Ergebnisse zeigen, dass die erfindungsgemässen Materialien in fast allen untersuchten Fällen eine weit bessere Schleifleistung als die Vergleichsmaterialien aufweisen. <Desc/Clms Page number 9> EMI9.1 <tb> <tb> TABELLE <tb> eingelagerte <SEP> Phasen <SEP> Mengen <SEP> (Gew <SEP> %) <SEP> Schleifleistung <tb> Art <SEP> Mikrostruktur <SEP> ( m) <tb> Nr <SEP> 1 <SEP> 2 <SEP> 3 <SEP> KGA <SEP> KG1 <SEP> GK2 <SEP> KG3 <SEP> 1 <SEP> 2 <SEP> 3 <SEP> HV <SEP> KRG <SEP> Kic <SEP> Bänder <SEP> Scheiben <tb> ( m) <SEP> ( m) <SEP> ( m) <SEP> ( m) <SEP> (GPa <SEP> *) <SEP> **) <SEP> (%) <SEP> (%) <tb> 1 <SEP> SiC <SEP> 2 <SEP> 0,03 <SEP> 1,0 <SEP> 23,0 <SEP> 1,0 <SEP> 4,5 <SEP> 200 <SEP> 150 <tb> 2 <SEP> SiC <SEP> AIVO4 <SEP> 4 <SEP> 0,2 <SEP> 0,5 <SEP> 3,0 <SEP> 0,3 <SEP> 21,0 <SEP> 9,0 <SEP> 5,0 <SEP> 110 <SEP> 200 <tb> 3 <SEP> SiC <SEP> TiO2 <SEP> 0,5 <SEP> 0,03 <SEP> 1,0 <SEP> 0,1 <SEP> 24,0 <SEP> 3,0 <SEP> 4,0 <SEP> 170 <SEP> 130 <tb> 4 <SEP> TiN <SEP> AIVO4 <SEP> 2,5 <SEP> 0,05 <SEP> KGF <SEP> 1,0 <SEP> 1,0 <SEP> 21,0 <SEP> 2,0 <SEP> 4, 5 <SEP> 180 <SEP> 170 <tb> 5 <SEP> SiC <SEP> MoSi2 <SEP> 2 <SEP> 0,2 <SEP> 0,15 <SEP> 1,0 <SEP> 1,0 <SEP> 23,0 <SEP> 3,0 <SEP> 5,0 <SEP> 160 <SEP> 190 <tb> 6 <SEP> SiC <SEP> CrSi2 <SEP> TiO2 <SEP> 1,5 <SEP> 0,1 <SEP> 0,15 <SEP> 0,3 <SEP> 0,5 <SEP> 0,2 <SEP> 0,1 <SEP> 22,0 <SEP> 8,0 <SEP> 4,5 <SEP> 120 <SEP> 140 <tb> 7 <SEP> B4C <SEP> 1,5 <SEP> 0,1 <SEP> 2,0 <SEP> 21,0 <SEP> 2,5 <SEP> 4,8 <SEP> 170 <SEP> 160 <tb> 8 <SEP> B4C <SEP> BN <SEP> 1,5 <SEP> 0,1 <SEP> 0,15 <SEP> 1,0 <SEP> 2,0 <SEP> 22,0 <SEP> 4,0 <SEP> 5,1 <SEP> 150 <SEP> 200 <tb> 9 <SEP> BN <SEP> AlNbo5 <SEP> 3 <SEP> 0,25 <SEP> 0,2 <SEP> 1,0 <SEP> 0,2 <SEP> 20,0 <SEP> 5,0 <SEP> 5,2 <SEP> 150 <SEP> 210 <tb> 10 <SEP> WC <SEP> TiO2 <SEP> AlNbO5 <SEP> 5 <SEP> 0,2 <SEP> 0,3 <SEP> 0,3 <SEP> 5,0 <SEP> 0,1 <SEP> 0,5 <SEP> 22,0 <SEP> 0,5 <SEP> 4,5 <SEP> 220 <SEP> 150 <tb> 11 <SEP> Al2OC <SEP> AlVO4 <SEP> 10 <SEP> 0, 5 <SEP> KGF <SEP> 1,0 <SEP> 0,01 <SEP> 20,0 <SEP> 1,0 <SEP> 4,0 <SEP> 190 <SEP> 130 <tb> 12 <SEP> CrSi2 <SEP> Cr2O3 <SEP> TiO2 <SEP> 3 <SEP> 0,2 <SEP> FL <SEP> 0,3 <SEP> 1,0 <SEP> 0,5 <SEP> 0,2 <SEP> 23,0 <SEP> 2,0 <SEP> 4,5 <SEP> 150 <SEP> 160 <tb> 13 <SEP> VC <SEP> 2 <SEP> 0,5 <SEP> 1,0 <SEP> 20,0 <SEP> 7,0 <SEP> 4,0 <SEP> 130 <SEP> 120 <tb> 14 <SEP> 0,5 <SEP> 20,0 <SEP> 12,0 <SEP> 2,5 <SEP> 100 <SEP> 100 <tb> 15 <SEP> 4 <SEP> 18,0 <SEP> 10,0 <SEP> 3,5 <SEP> 80 <SEP> 60 <tb> *) <SEP> KRG <SEP> die <SEP> Kriechgeschwindigkeit <SEP> wird <SEP> in <SEP> 10-7/s <SEP> angegeben <tb> **) <SEP> K1c <SEP> die <SEP> RiÖzähigkeit <SEP> in <SEP> MPam1/2 <tb> KGA=Kristallitgrösse <SEP> der <SEP> Al2O3-Matrix <tb> KG1. <SEP> KG2. <SEP> KG3=milliere <SEP> Durchmesser <SEP> der <SEP> zusätzlichen <SEP> Phasen <tb> FL <SEP> = <SEP> feste <SEP> Lösung.keine <SEP> zusätzliche <SEP> Phase <tb> KGF <SEP> = <SEP> Korngrenzenfilm <tb>
Claims (1)
- ANSPRÜCHE EMI10.1 Verbindungen der folgenden Gruppen bestehen : a Bor und Kohlenstoff b Boride der Elemente Si, V, Mo, W, Ta, Nb, Ti, Cr, Zr, Hf, Al und den Elementen der Lanthanidenreihe c Silizide der Elemente Si, V, Mo, W, Ta, Nb, Ti, Cr, Zr, Hf, Al und den Elementen der Lanthanidenreihe d Carbide der Elemente Si, V, Mo, W, Ta, Nb, Ti, Cr, Zr, Hf, Al und den Elementen der Lanthanidenreihe e Nitride der Elemente Si, V, Mo, W, Ta, Nb, Ti, Cr, Zr, Hf, Al und den Elementen der Lanthanidenreihe f Carbonitride der Elemente Si, V, Mo, W, Ta, Nb, Ti, Cr, Zr, Hf, Al und den Elementen der Lanthanidenreihe g Oxycarbide der Elemente Si, V, Mo, W, Ta, Nb, Ti, Cr, Zr, Hf, Al und den Elementen der Lanthanidenreihe h Oxynitride der Elemente Si, V, Mo, W, Ta, Nb, Ti, Cr, Zr, Hf,Al und den Elementen der Lanthanidenreihe j Carboxynitride der Elemente Si, V, Mo, W, Ta, Nb, Ti, Cr, Zr, Hf, Al und den Elementen der Lanthanidenreihe k Phosphate der Elemente Mg, Al, Cr, Ce, Ca, Be, Co, Ni, Zn, Sn, Fe, Cu, Zr, W, V, Ti, Ag, Nb, Sc, Mo und den Elementen der Lanthanidenreihe t feste Lösungen der Verbindungen nach den Punkten b) bis k) untereinander, m intermetallische Verbindungen der Elemente AL, Si, Ni, Mg, Ti n hexagonales Bornitrid BN, Borcarbid 0 Phosphate der Elemente Mg, Al, Cr, Ce, Ca, Be, Co, Ni, Zn, Sn, Fe, Cu, Zr, W, V, Ti, Ag, Nb, Sc, Mo und der Elemente der Lanthanidenreihe p Verbindungen der allgemeinen Formel AB (L, wobei A aus den in Punkt o) angegebenen Elementen und B aus den Elementen V und Cr ausgewählt sind q Ag, B und C in elementarer bzw. metallischer Form.3. Schleif-Korn nach Anspruch 1 bis 2, dadurch gekennzeichnet, dass zur Einstellung des Kristallitwachstums noch Verbindungen eines oder mehrerer der Elemente Mg, Cr, Ti, V, Al als Oxide oder deren Vorstufen zugesetzt werden.4. Schleif-Korn nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Kriechgeschwindigkeit des Materiales im Druckversuch nich mehr als 1. 10. 6/s bei 1200 C, vorzugsweise nicht mehr als asz beträgt, die Porosität nicht mehr als 5 Vol%, die Härte HV 500 über 18 GPa liegt und die Risszähigkeit K 1 c des Materiales ohne den gröbsten diskontinuierlichen Gefügebestandteil mehr als 3, 5 MPam112 beträgt. <Desc/Clms Page number 11>5. Verfahren zur Herstellung eines Schleifkorns nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Kompositmaterial durch keramische Pulvertechnologie mittels Nassmahlung, Trocknung, Formgebung und Sinterung hergestellt wird.6. Verfahren zur Herstellung eines Schleifkorns nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Kompositmaterial durch einen Sol. Gel. Prozess hergestellt wird.7. Verfahren zur Herstellung eines Schleifkorns nach einem der Ansprüche 5 bis 6, dadurch gekennzeichnet, dass für die eingelagerten zusätzlichen Phasen Vorstufen eingesetzt werden.8. Verfahren zur Herstellung eines Schleifkorns nach Anspruch 7, dadurch gekennzeichnet, dass die Vorstufen Alkoxide, Alkoholate, Alkyle, Silazane, Silane, Carbosilane, Kohlenhydrate, Metalle, Borane, Borsäureester, anorganische oder organsische Salze sind.9. Verfahren zur Herstellung eines Schleifkorns nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, dass bei Temperaturen zwischen 400 und 1200 C vorgeglühte poröse Grünkörper mit Lösungen oder Suspension getränkt, dann getrocknet und gesintert werden, wobei die in den Lösungen oder Suspensionen enthaltenen Verbindungen untereinander, mit dem Aluminiumoxid oder mit der Gasatmosphäre beim Sintern zu den erfindungsgemässen Verbindungen reagieren.10. Verfahren zur Herstellung eines Schleifkorns nach Anspruch 9, dadurch gekennzeichnet, dass die Lösungen oder Suspensionen Alkoxide, Alkoholate, Alkyle, Silazane, Silane, Carbosilane, Kohlenhydrate, Metalle, Borane, Borsäureester, anorganische oder organische Salze enthalten.11. Verwendung des Schleifkorns nach einem der Ansprüche 1 bis 4 als Schleifkorn in gebundenen Schleifmittel, auf flexiblen Trägern gehaltenes oder als loses Schleifmaterial.12. Verwendung des Materials des Schleifkorns nach einem der Ansprüche 1 bis 4 zur Herstellung von keramischen Formteilen für Schneid-oder Verschleisskeramik.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT0068895U AT1191U1 (de) | 1995-12-18 | 1995-12-18 | Schleifkorn |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT0068895U AT1191U1 (de) | 1995-12-18 | 1995-12-18 | Schleifkorn |
Publications (1)
Publication Number | Publication Date |
---|---|
AT1191U1 true AT1191U1 (de) | 1996-12-27 |
Family
ID=3497198
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AT0068895U AT1191U1 (de) | 1995-12-18 | 1995-12-18 | Schleifkorn |
Country Status (1)
Country | Link |
---|---|
AT (1) | AT1191U1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19945335A1 (de) * | 1999-09-22 | 2001-04-05 | Treibacher Schleifmittel Gmbh | Al¶2¶O¶3¶/SiC-Nanokomposit-Schleifkörner, Verfahren zu ihrer Herstellung sowie ihre Verwendung |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0364195A2 (de) * | 1988-10-14 | 1990-04-18 | Minnesota Mining And Manufacturing Company | Abriebfeste Schleifkörner, Verfahren zu deren Herstellung sowie Schleifmittel |
EP0480678A2 (de) * | 1990-10-09 | 1992-04-15 | Japan Abrasive Co., Ltd. | Läppschleifmittel auf Basis von Alumina-Zirconia und Verfahren zur Herstellung |
EP0622438A1 (de) * | 1993-04-30 | 1994-11-02 | Hermes Schleifmittel GmbH & Co. | Keramisches Korundschleifmittel |
-
1995
- 1995-12-18 AT AT0068895U patent/AT1191U1/de not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0364195A2 (de) * | 1988-10-14 | 1990-04-18 | Minnesota Mining And Manufacturing Company | Abriebfeste Schleifkörner, Verfahren zu deren Herstellung sowie Schleifmittel |
EP0480678A2 (de) * | 1990-10-09 | 1992-04-15 | Japan Abrasive Co., Ltd. | Läppschleifmittel auf Basis von Alumina-Zirconia und Verfahren zur Herstellung |
EP0622438A1 (de) * | 1993-04-30 | 1994-11-02 | Hermes Schleifmittel GmbH & Co. | Keramisches Korundschleifmittel |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19945335A1 (de) * | 1999-09-22 | 2001-04-05 | Treibacher Schleifmittel Gmbh | Al¶2¶O¶3¶/SiC-Nanokomposit-Schleifkörner, Verfahren zu ihrer Herstellung sowie ihre Verwendung |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1298322C (en) | Sintered alumina-zirconia ceramic bodies | |
DE3688775T2 (de) | Verfahren zur Herstellung von Tonerdepulvern zur Erzeugung polykristalliner Körper. | |
US4960441A (en) | Sintered alumina-zirconia ceramic bodies | |
Lange | Hot-pressing behaviour of silicon carbide powders with additions of aluminium oxide | |
EP0524436B1 (de) | Verfahren zur Herstellung von gesintertem Material auf Basis von alpha-Aluminiumoxid, insbesondere für Schleifmittel | |
EP0609864B1 (de) | Siliciumcarbid-Sinterschleifkorn und Verfahren zu dessen Herstellung | |
DE69406659T2 (de) | Verdichtetes feinstkörniges feuerfestes metallcarbid oder carbidkeramik aus fester lösung (mischmetall) | |
DE102013218450B3 (de) | Verfahren zum Recycling von pulverförmigen Siliciumcarbid-Abfallprodukten | |
DD297387A5 (de) | Sinterwerkstoff auf basis von alpha-aluminiumoxid, verfahren zu seiner herstellung und seine verwendung | |
DE3306157A1 (de) | Keramisches material und verfahren zu seiner herstellung | |
DE3633030A1 (de) | Aluminiumoxid-titandioxid-compositpulver und verfahren zu ihrer herstellung | |
DE69225304T2 (de) | Gesinterter siliciumnitridverbundkörper und seine herstellung | |
AT394850B (de) | Gesintertes, mikrokristallines keramisches material | |
CN111320465A (zh) | 一种氧化铝基微晶陶瓷颗粒及其制备方法和应用 | |
DE68924707T2 (de) | Schleifkorn und verfahren zur herstellung. | |
DE2056075A1 (de) | Warmgepresste, feste Losung und ihre Herstellung | |
AT394857B (de) | Schleifkorn auf basis von gesintertem aluminiumoxid und metallhaltigen zusaetzen und verfahren zu seiner herstellung | |
DE102009035501B4 (de) | α-Al2O3-Sintermaterial und Verfahren zur Herstellung eines hochdichten und feinstkristallinen Formkörpers aus diesem Material sowie dessen Verwendung | |
AT1191U1 (de) | Schleifkorn | |
DE19730770C2 (de) | Porenfreie Sinterkörper auf Basis von Siliciumcarbid, Verfahren zu ihrer Herstellung und ihre Verwendung als Substrate für Festplattenspeicher | |
AT401928B (de) | Keramisches kompositmaterial | |
AT1190U1 (de) | Schleifkorn | |
DE69106233T2 (de) | Verfahren zur Herstellung von gesintertem Siliciumnitridmaterial. | |
DE19520614C1 (de) | Mikrokristalline Sinterschleifkörner auf Basis von a-AI¶2¶O¶3¶ mit hohem Verschleißwiderstand, Verfahren zu seiner Herstellung sowie dessen Verwendung | |
DE4444597C2 (de) | Verfahren zur Herstellung eines Aluminiumoxid enthaltenden gesinterten Materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM9K | Lapse due to non-payment of renewal fee |