[go: up one dir, main page]

AR130698A1 - ANTICIPATE THE CAUSE OF ABNORMAL OPERATION IN INDUSTRIAL MACHINES - Google Patents

ANTICIPATE THE CAUSE OF ABNORMAL OPERATION IN INDUSTRIAL MACHINES

Info

Publication number
AR130698A1
AR130698A1 ARP230102676A ARP230102676A AR130698A1 AR 130698 A1 AR130698 A1 AR 130698A1 AR P230102676 A ARP230102676 A AR P230102676A AR P230102676 A ARP230102676 A AR P230102676A AR 130698 A1 AR130698 A1 AR 130698A1
Authority
AR
Argentina
Prior art keywords
future
industrial machine
computer
operating mode
time series
Prior art date
Application number
ARP230102676A
Other languages
Spanish (es)
Inventor
Cdric Schockaert
Original Assignee
Wurth Paul Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wurth Paul Sa filed Critical Wurth Paul Sa
Publication of AR130698A1 publication Critical patent/AR130698A1/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • G05B23/024Quantitative history assessment, e.g. mathematical relationships between available data; Functions therefor; Principal component analysis [PCA]; Partial least square [PLS]; Statistical classifiers, e.g. Bayesian networks, linear regression or correlation analysis; Neural networks
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0283Predictive maintenance, e.g. involving the monitoring of a system and, based on the monitoring results, taking decisions on the maintenance schedule of the monitored system; Estimating remaining useful life [RUL]

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Physics (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Numerical Control (AREA)

Abstract

Una computadora identifica una transición de estado de parámetro con una ocurrencia pronosticada en el futuro, en donde la transición de estado de parámetro es una transición crítica debida a un aumento pronosticado en la probabilidad de que el modo de operación de una máquina industrial cambien en el futuro, en donde el modo de operación es un estado técnico de la máquina. La computadora procesa una serie de tiempo multivariada operacional ({{X}}_op) procesando una serie de tiempo multivariada operacional ({{X}}_op) que representa la operación de la máquina industrial en particular (101) durante un intervalo de tiempo de operación específico (T_op) que está en curso en el presente (t_actual). La computadora proporciona una serie de tiempo multivariada futura ({X}_ft) que representa la operación prevista de la máquina industrial en particular (101) durante un intervalo de tiempo de predicción en particular (T_ft) que llega al futuro. La computadora anticipa (423) la transición de estado de parámetro (11a, 31) si se cumplen las dos condiciones siguientes (i) se prevé que por lo menos un parámetro en particular tenga un valor que será distinto de un valor de referencia en por lo menos un segmento de desviación; (ii) se prevé que la probabilidad de cambio en el modo de operación de la máquina industrial aumente.A computer identifies a parameter state transition with a predicted occurrence in the future, wherein the parameter state transition is a critical transition due to a predicted increase in the probability that the operating mode of an industrial machine will change in the future, wherein the operating mode is a technical state of the machine. The computer processes an operational multivariate time series ({{X}}_op) by processing an operational multivariate time series ({{X}}_op) representing the operation of the particular industrial machine (101) during a specific operation time interval (T_op) that is ongoing at present (t_current). The computer provides a future multivariate time series ({X}_ft) representing the predicted operation of the particular industrial machine (101) during a particular prediction time interval (T_ft) reaching into the future. The computer anticipates (423) the parameter state transition (11a, 31) if both of the following conditions are met (i) at least one particular parameter is expected to have a value that will be different from a reference value in at least one deviation segment; (ii) the probability of change in the operating mode of the industrial machine is expected to increase.

ARP230102676A 2022-10-05 2023-10-05 ANTICIPATE THE CAUSE OF ABNORMAL OPERATION IN INDUSTRIAL MACHINES AR130698A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
LU502876A LU502876B1 (en) 2022-10-05 2022-10-05 Anticipating the cause of abnormal operation in industrial machines

Publications (1)

Publication Number Publication Date
AR130698A1 true AR130698A1 (en) 2025-01-08

Family

ID=83688642

Family Applications (1)

Application Number Title Priority Date Filing Date
ARP230102676A AR130698A1 (en) 2022-10-05 2023-10-05 ANTICIPATE THE CAUSE OF ABNORMAL OPERATION IN INDUSTRIAL MACHINES

Country Status (4)

Country Link
AR (1) AR130698A1 (en)
LU (1) LU502876B1 (en)
TW (1) TW202433209A (en)
WO (1) WO2024074516A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11232371B2 (en) * 2017-10-19 2022-01-25 Uptake Technologies, Inc. Computer system and method for detecting anomalies in multivariate data
US11157782B2 (en) * 2017-11-16 2021-10-26 International Business Machines Corporation Anomaly detection in multidimensional time series data
EP3696619A1 (en) * 2019-02-15 2020-08-19 Basf Se Determining operating conditions in chemical production plants
WO2021160260A1 (en) * 2020-02-12 2021-08-19 Swiss Reinsurance Company Ltd. Digital platform using cyber-physical twin structures providing an evolving digital representation of a risk-related real world asset for quantifying risk measurements, and method thereof
AU2021257589A1 (en) * 2020-04-16 2022-09-22 Abb Schweiz Ag Method for an intelligent alarm management in industrial processes

Also Published As

Publication number Publication date
WO2024074516A1 (en) 2024-04-11
TW202433209A (en) 2024-08-16
LU502876B1 (en) 2024-04-08

Similar Documents

Publication Publication Date Title
CN1113279C (en) Process for automatic fault diagnosis
AR130698A1 (en) ANTICIPATE THE CAUSE OF ABNORMAL OPERATION IN INDUSTRIAL MACHINES
CN1845026A (en) Numerical controller
US20060265182A1 (en) Process abnormal condition recovering operation supporting system
CN114020441B (en) Instruction prediction method of multi-thread processor and related device
CN118569832A (en) System for intelligent campus laboratory
EP3671683A1 (en) Notification system
CN116088438A (en) Intelligent electric control system and method of slitting machine
CN110744356A (en) Abnormality detection device for machine tool
CN105428272A (en) Method and device for treating semiconductor device alarm
JP4886404B2 (en) Source code modification prioritization system and prioritization method
CN110365234B (en) Modular multi-level converter valve submodule switching method and device
CN110695769B (en) Abnormality detection device for machine tool
CN116033725B (en) Control device, system and method for liquid cooling system of data machine room
CN118381415A (en) Independent frequency converter system and control method thereof
CN118152752A (en) Bottleneck resource identification system and bottleneck resource identification method
CN115859572B (en) Material cutting scheme creation method, readable storage medium, and computer device
Wang et al. Analysis of application of plc technology in automation control of electrical engineering
CN115116909A (en) Wafer scheduling control method and device under abnormal working condition of semiconductor processing equipment
CN117270465A (en) Automatic production control system and method
Niu et al. Decision-making of stencil cleaning for solder paste printing machine based on variable threshold sequence
JP2018120558A (en) Slave device, method for controlling slave device, master slave control system, and information processing program
JP7338922B2 (en) Method and apparatus for processing and executing heterogeneous embedded tabularized motion processes
CN110857871B (en) Cooling water path early warning method and system and semiconductor processing equipment
CN108572629A (en) Operating industrial factory machines preventing collisions