[go: up one dir, main page]

login
Search: a369251 -id:a369251
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = n' = arithmetic derivative of n: a(0) = a(1) = 0, a(prime) = 1, a(m*n) = m*a(n) + n*a(m).
(Formerly M3196)
+10
1064
0, 0, 1, 1, 4, 1, 5, 1, 12, 6, 7, 1, 16, 1, 9, 8, 32, 1, 21, 1, 24, 10, 13, 1, 44, 10, 15, 27, 32, 1, 31, 1, 80, 14, 19, 12, 60, 1, 21, 16, 68, 1, 41, 1, 48, 39, 25, 1, 112, 14, 45, 20, 56, 1, 81, 16, 92, 22, 31, 1, 92, 1, 33, 51, 192, 18, 61, 1, 72, 26, 59, 1, 156, 1, 39, 55, 80, 18, 71
OFFSET
0,5
COMMENTS
Can be extended to negative numbers by defining a(-n) = -a(n).
Based on the product rule for differentiation of functions: for functions f(x) and g(x), (fg)' = f'g + fg'. So with numbers, (ab)' = a'b + ab'. This implies 1' = 0. - Kerry Mitchell, Mar 18 2004
The derivative of a number x with respect to a prime number p as being the number "dx/dp" = (x-x^p)/p, which is an integer due to Fermat's little theorem. - Alexandru Buium, Mar 18 2004
The relation (ab)' = a'b + ab' implies 1' = 0, but it does not imply p' = 1 for p a prime. In fact, any function f defined on the primes can be extended uniquely to a function on the integers satisfying this relation: f(Product_i p_i^e_i) = (Product_i p_i^e_i) * (Sum_i e_i*f(p_i)/p_i). - Franklin T. Adams-Watters, Nov 07 2006
See A131116 and A131117 for record values and where they occur. - Reinhard Zumkeller, Jun 17 2007
Let n be the product of a multiset P of k primes. Consider the k-dimensional box whose edges are the elements of P. Then the (k-1)-dimensional surface of this box is 2*a(n). For example, 2*a(25) = 20, the perimeter of a 5 X 5 square. Similarly, 2*a(18) = 42, the surface area of a 2 X 3 X 3 box. - David W. Wilson, Mar 11 2011
The arithmetic derivative n' was introduced, probably for the first time, by the Spanish mathematician José Mingot Shelly in June 1911 with "Una cuestión de la teoría de los números", work presented at the "Tercer Congreso Nacional para el Progreso de las Ciencias, Granada", cf. link to the abstract on Zentralblatt MATH, and L. E. Dickson, History of the Theory of Numbers. - Giorgio Balzarotti, Oct 19 2013
a(A235991(n)) odd; a(A235992(n)) even. - Reinhard Zumkeller, Mar 11 2014
Sequence A157037 lists numbers with prime arithmetic derivative, i.e., indices of primes in this sequence. - M. F. Hasler, Apr 07 2015
Maybe the simplest "natural extension" of the arithmetic derivative, in the spirit of the above remark by Franklin T. Adams-Watters (2006), is the "pi based" version where f(p) = primepi(p), see sequence A258851. When f is chosen to be the identity map (on primes), one gets A066959. - M. F. Hasler, Jul 13 2015
When n is composite, it appears that a(n) has lower bound 2*sqrt(n), with equality when n is the square of a prime, and a(n) has upper bound (n/2)*log_2(n), with equality when n is a power of 2. - Daniel Forgues, Jun 22 2016
If n = p1*p2*p3*... where p1, p2, p3, ... are all the prime factors of n (not necessarily distinct), and h is a real number (we assume h nonnegative and < 1), the arithmetic derivative of n is equivalent to n' = lim_{h->0} ((p1+h)*(p2+h)*(p3+h)*... - (p1*p2*p3*...))/h. It also follows that the arithmetic derivative of a prime is 1. We could assume h = 1/N, where N is an integer; then the limit becomes {N -> oo}. Note that n = 1 is not a prime and plays the role of constant. - Giorgio Balzarotti, May 01 2023
REFERENCES
G. Balzarotti, P. P. Lava, La derivata aritmetica, Editore U. Hoepli, Milano, 2013.
E. J. Barbeau, Problem, Canad. Math. Congress Notes, 5 (No. 8, April 1973), 6-7.
L. E. Dickson, History of the Theory of Numbers, Vol. 1, Chapter XIX, p. 451, Dover Edition, 2005. (Work originally published in 1919.)
A. M. Gleason et al., The William Lowell Putnam Mathematical Competition: Problems and Solutions 1938-1964, Math. Assoc. America, 1980, p. 295.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Krassimir T. Atanassov, A formula for the n-th prime number, Comptes rendus de l'Académie bulgare des Sciences, Tome 66, No 4, 2013.
E. J. Barbeau, Remark on an arithmetic derivative, Canad. Math. Bull. vol. 4, no. 2, May 1961.
A. Buium, Home Page
A. Buium, Differential characters of Abelian varieties over p-adic fields, Invent. Math. 122 (1995), no. 2, 309-340.
A. Buium, Geometry of p-jets, Duke Math. J. 82 (1996), no. 2, 349-367.
A. Buium, Arithmetic analogues of derivations, J. Algebra 198 (1997), no. 1, 290-299.
A. Buium, Differential modular forms, J. Reine Angew. Math. 520 (2000), 95-167.
Brad Emmons and Xiao Xiao, The Arithmetic Partial Derivative, arXiv:2201.12453 [math.NT], 2022.
José María Grau and Antonio M. Oller-Marcén, Giuga Numbers and the Arithmetic Derivative, Journal of Integer Sequences, Vol. 15 (2012), #12.4.1.
P. Haukkanen, M. Mattila, J. K. Merikoski and T. Tossavainen, Can the Arithmetic Derivative be Defined on a Non-Unique Factorization Domain?, Journal of Integer Sequences, 16 (2013), #13.1.2. - From N. J. A. Sloane, Feb 03 2013
P. Haukkanen, J. K. Merikoski and T. Tossavainen, Asymptotics of partial sums of the Dirichlet series of the arithmetic derivative, Mathematical Communications 25 (2020), 107-115.
Antti Karttunen, Program in LODA-assembly
J. Kovič, The Arithmetic Derivative and Antiderivative, Journal of Integer Sequences 15 (2012), Article 12.3.8.
Ivars Peterson, Deriving the Structure of Numbers, Science News, March 20, 2004.
D. J. M. Shelly, Una cuestión de la teoria de los numeros, Asociation Esp. Granada 1911, 1-12 S (1911). (Abstract of ref. JFM42.0209.02 on zbMATH.org)
T. Tossavainen, P. Haukkanen, J. K. Merikoski, and M. Mattila, We can differentiate numbers, too, The College Mathematics Journal 55 (2024), no. 2, 100-108.
Victor Ufnarovski and Bo Åhlander, How to Differentiate a Number, J. Integer Seqs., Vol. 6, 2003, #03.3.4.
Linda Westrick, Investigations of the Number Derivative, Siemens Foundation competition 2003 and Intel Science Talent Search 2004.
FORMULA
If n = Product p_i^e_i, a(n) = n * Sum (e_i/p_i).
a(m*p^p) = (m + a(m))*p^p, p prime: a(m*A051674(k))=A129283(m)*A051674(k). - Reinhard Zumkeller, Apr 07 2007
For n > 1: a(n) = a(A032742(n)) * A020639(n) + A032742(n). - Reinhard Zumkeller, May 09 2011
a(n) = n * Sum_{p|n} v_p(n)/p, where v_p(n) is the largest power of the prime p dividing n. - Wesley Ivan Hurt, Jul 12 2015
For n >= 2, Sum_{k=2..n} floor(1/a(k)) = pi(n) = A000720(n) (see K. T. Atanassov article). - Ivan N. Ianakiev, Mar 22 2019
From A.H.M. Smeets, Jan 17 2020: (Start)
Limit_{n -> oo} (1/n^2)*Sum_{i=1..n} a(i) = A136141/2.
Limit_{n -> oo} (1/n)*Sum_{i=1..n} a(i)/i = A136141.
a(n) = n if and only if n = p^p, where p is a prime number. (End)
Dirichlet g.f.: zeta(s-1)*Sum_{p prime} 1/(p^s-p), see A136141 (s=2), A369632 (s=3) [Haukkanen, Merikoski and Tossavainen]. - Sebastian Karlsson, Nov 25 2021
From Antti Karttunen, Nov 25 2021: (Start)
a(n) = Sum_{d|n} d * A349394(n/d).
For all n >= 1, A322582(n) <= a(n) <= A348507(n).
If n is not a prime, then a(n) >= 2*sqrt(n), or in other words, for all k >= 1 for which A002620(n)+k is not a prime, we have a(A002620(n)+k) > n. [See Ufnarovski and Åhlander, Theorem 9, point (3).]
(End)
EXAMPLE
6' = (2*3)' = 2'*3 + 2*3' = 1*3 + 2*1 = 5.
Note that, for example, 2' + 3' = 1 + 1 = 2, (2+3)' = 5' = 1. So ' is not linear.
G.f. = x^2 + x^3 + 4*x^4 + x^5 + 5*x^6 + x^7 + 12*x^8 + 6*x^9 + 7*x^10 + ...
MAPLE
A003415 := proc(n) local B, m, i, t1, t2, t3; B := 1000000000039; if n<=1 then RETURN(0); fi; if isprime(n) then RETURN(1); fi; t1 := ifactor(B*n); m := nops(t1); t2 := 0; for i from 1 to m do t3 := op(i, t1); if nops(t3) = 1 then t2 := t2+1/op(t3); else t2 := t2+op(2, t3)/op(op(1, t3)); fi od: t2 := t2-1/B; n*t2; end;
A003415 := proc(n)
local a, f;
a := 0 ;
for f in ifactors(n)[2] do
a := a+ op(2, f)/op(1, f);
end do;
n*a ;
end proc: # R. J. Mathar, Apr 05 2012
MATHEMATICA
a[ n_] := If[ Abs @ n < 2, 0, n Total[ #2 / #1 & @@@ FactorInteger[ Abs @ n]]]; (* Michael Somos, Apr 12 2011 *)
dn[0] = 0; dn[1] = 0; dn[n_?Negative] := -dn[-n]; dn[n_] := Module[{f = Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Total[n*f[[2]]/f[[1]]]]]; Table[dn[n], {n, 0, 100}] (* T. D. Noe, Sep 28 2012 *)
PROG
(PARI) A003415(n) = {local(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))} /* Michael B. Porter, Nov 25 2009 */
(PARI) apply( A003415(n)=vecsum([n/f[1]*f[2]|f<-factor(n+!n)~]), [0..99]) \\ M. F. Hasler, Sep 25 2013, updated Nov 27 2019
(PARI) A003415(n) = { my(s=0, m=1, spf); while(n>1, spf = A020639(n); n /= spf; s += m*n; m *= spf); (s); }; \\ Antti Karttunen, Mar 10 2021
(PARI) a(n) = my(f=factor(n), r=[1/(e+!e)|e<-f[, 1]], c=f[, 2]); n*r*c; \\ Ruud H.G. van Tol, Sep 03 2023
(Haskell)
a003415 0 = 0
a003415 n = ad n a000040_list where
ad 1 _ = 0
ad n ps'@(p:ps)
| n < p * p = 1
| r > 0 = ad n ps
| otherwise = n' + p * ad n' ps' where
(n', r) = divMod n p
-- Reinhard Zumkeller, May 09 2011
(Magma) Ad:=func<h | h*(&+[Factorisation(h)[i][2]/Factorisation(h)[i][1]: i in [1..#Factorisation(h)]])>; [n le 1 select 0 else Ad(n): n in [0..80]]; // Bruno Berselli, Oct 22 2013
(Python)
from sympy import factorint
def A003415(n):
return sum([int(n*e/p) for p, e in factorint(n).items()]) if n > 1 else 0
# Chai Wah Wu, Aug 21 2014
(Sage)
def A003415(n):
F = [] if n == 0 else factor(n)
return n * sum(g / f for f, g in F)
[A003415(n) for n in range(79)] # Peter Luschny, Aug 23 2014
(GAP)
A003415:= Concatenation([0, 0], List(List([2..10^3], Factors),
i->Product(i)*Sum(i, j->1/j))); # Muniru A Asiru, Aug 31 2017
(APL, Dyalog dialect) A003415 ← { ⍺←(0 1 2) ⋄ ⍵≤1:⊃⍺ ⋄ 0=(3⊃⍺)|⍵:((⊃⍺+(2⊃⍺)×(⍵÷3⊃⍺)) ((2⊃⍺)×(3⊃⍺)) (3⊃⍺)) ∇ ⍵÷3⊃⍺ ⋄ ((⊃⍺) (2⊃⍺) (1+(3⊃⍺))) ∇ ⍵} ⍝ Antti Karttunen, Feb 18 2024
CROSSREFS
Cf. A086134 (least prime factor of n').
Cf. A086131 (greatest prime factor of n').
Cf. A068719 (derivative of 2n).
Cf. A068720 (derivative of n^2).
Cf. A068721 (derivative of n^3).
Cf. A001787 (derivative of 2^n).
Cf. A027471 (derivative of 3^(n-1)).
Cf. A085708 (derivative of 10^n).
Cf. A068327 (derivative of n^n).
Cf. A024451 (derivative of p#).
Cf. A068237 (numerator of derivative of 1/n).
Cf. A068238 (denominator of derivative of 1/n).
Cf. A068328 (derivative of squarefree numbers).
Cf. A068311 (derivative of n!).
Cf. A168386 (derivative of n!!).
Cf. A260619 (derivative of hyperfactorial(n)).
Cf. A260620 (derivative of superfactorial(n)).
Cf. A068312 (derivative of triangular numbers).
Cf. A068329 (derivative of Fibonacci(n)).
Cf. A096371 (derivative of partition number).
Cf. A099301 (derivative of d(n)).
Cf. A099310 (derivative of phi(n)).
Cf. A342925 (derivative of sigma(n)).
Cf. A349905 (derivative of prime shift).
Cf. A327860 (derivative of primorial base exp-function).
Cf. A369252 (derivative of products of three odd primes), A369251 (same sorted).
Cf. A068346 (second derivative of n).
Cf. A099306 (third derivative of n).
Cf. A258644 (fourth derivative of n).
Cf. A258645 (fifth derivative of n).
Cf. A258646 (sixth derivative of n).
Cf. A258647 (seventh derivative of n).
Cf. A258648 (eighth derivative of n).
Cf. A258649 (ninth derivative of n).
Cf. A258650 (tenth derivative of n).
Cf. A185232 (n-th derivative of n).
Cf. A258651 (A(n,k) = k-th arithmetic derivative of n).
Cf. A085731 (gcd(n,n')), A083345 (n'/gcd(n,n')), A057521 (gcd(n, (n')^k) for k>1).
Cf. A342014 (n' mod n), A369049 (n mod n').
Cf. A341998 (A003557(n')), A342001 (n'/A003557(n)).
Cf. A098699 (least x such that x' = n, antiderivative of n).
Cf. A098700 (n such that x' = n has no integer solution).
Cf. A099302 (number of solutions to x' = n).
Cf. A099303 (greatest x such that x' = n).
Cf. A051674 (n such that n' = n).
Cf. A083347 (n such that n' < n).
Cf. A083348 (n such that n' > n).
Cf. A099304 (least k such that (n+k)' = n' + k').
Cf. A099305 (number of solutions to (n+k)' = n' + k').
Cf. A328235 (least k > 0 such that (n+k)' = u * n' for some natural number u).
Cf. A328236 (least m > 1 such that (m*n)' = u * n' for some natural number u).
Cf. A099307 (least k such that the k-th arithmetic derivative of n is zero).
Cf. A099308 (k-th arithmetic derivative of n is zero for some k).
Cf. A099309 (k-th arithmetic derivative of n is nonzero for all k).
Cf. A129150 (n-th derivative of 2^3).
Cf. A129151 (n-th derivative of 3^4).
Cf. A129152 (n-th derivative of 5^6).
Cf. A189481 (x' = n has a unique solution).
Cf. A190121 (partial sums).
Cf. A258057 (first differences).
Cf. A229501 (n divides the n-th partial sum).
Cf. A165560 (parity).
Cf. A235991 (n' is odd), A235992 (n' is even).
Cf. A327863, A327864, A327865 (n' is a multiple of 3, 4, 5).
Cf. A157037 (n' is prime), A192192 (n'' is prime), A328239 (n''' is prime).
Cf. A328393 (n' is squarefree), A328234 (squarefree and > 1).
Cf. A328244 (n'' is squarefree), A328246 (n''' is squarefree).
Cf. A328303 (n' is not squarefree), A328252 (n' is squarefree, but n is not).
Cf. A328248 (least k such that the (k-1)-th derivative of n is squarefree).
Cf. A328251 (k-th arithmetic derivative is never squarefree for any k >= 0).
Cf. A256750 (least k such that the k-th derivative is either 0 or has a factor p^p).
Cf. A327928 (number of distinct primes p such that p^p divides n').
Cf. A342003 (max. exponent k for any prime power p^k that divides n').
Cf. A327929 (n' has at least one divisor of the form p^p).
Cf. A327978 (n' is primorial number > 1).
Cf. A328243 (n' is a partial sum of primorial numbers and larger than one).
Cf. A328310 (maximal prime exponent of n' minus maximal prime exponent of n).
Cf. A328320 (max. prime exponent of n' is less than that of n).
Cf. A328321 (max. prime exponent of n' is >= that of n).
Cf. A328383 (least k such that the k-th derivative of n is either a multiple or a divisor of n, but not both).
Cf. A263111 (the ordinal transform of a).
Cf. A300251, A319684 (Möbius and inverse Möbius transform).
Cf. A305809 (Dirichlet convolution square).
Cf. A349133, A349173, A349394, A349380, A349618, A349619, A349620, A349621 (for miscellaneous Dirichlet convolutions).
Cf. A069359 (similar formula which agrees on squarefree numbers).
Cf. A258851 (the pi-based arithmetic derivative of n).
Cf. A328768, A328769 (primorial-based arithmetic derivatives of n).
Cf. A328845, A328846 (Fibonacci-based arithmetic derivatives of n).
Cf. A302055, A327963, A327965, A328099 (for other variants and modifications).
Cf. A038554 (another sequence using "derivative" in its name, but involving binary expansion of n).
Cf. A322582, A348507 (lower and upper bounds), also A002620.
KEYWORD
nonn,easy,nice,hear,look
EXTENSIONS
More terms from Michel ten Voorde, Apr 11 2001
STATUS
approved
Number of representations of n as a sum (p*q + p*r + q*r) with three odd primes p <= q <= r.
+10
26
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1
OFFSET
0,76
COMMENTS
Number of solutions to n = x', where x' is the arithmetic derivative of x (A003415), and x is a product of three odd primes (not all necessarily distinct, A046316).
See the conjecture in A369055.
LINKS
Victor Ufnarovski and Bo Ahlander, How to Differentiate a Number, J. Integer Seqs., Vol. 6, 2003.
FORMULA
a(n) = Sum_{i=1..A002620(n)} A369058(i)*[A003415(i)==n], where [ ] is the Iverson bracket.
For n >= 2, a(n) <= A099302(n).
EXAMPLE
a(27) = 1 as 27 can be expressed in exactly one way in the form (p*q + p*r + q*r), with p, q, r all being 3 in this case, as 27 = (3*3 + 3*3 + 3*3).
a(311) = 5 as 311 = (3*5 + 3*37 + 5*37) = (3*7 + 3*29 + 7*29) = (3*13 + 3*17 + 13*17) = (5*7 + 5*23 + 7*23) = (7*11 + 7*13 + 11*13). Expressed in the terms of arithmetic derivatives, of the A099302(311) = 8 antiderivatives of 311 [366, 430, 494, 555, 609, 663, 805, 1001], only the last five are products of three odd primes: 555 = 3*5*37, 609 = 3*7*29, 663 = 3*13*17, 805 = 5*7*23, 1001 = 7 * 11 * 13.
PROG
(PARI)
\\ Use this for building up a list up to a certain n. We iterate over weakly increasing triplets of odd primes:
A369054list(up_to) = { my(v = [3, 3, 3], ip = #v, d, u = vector(up_to)); while(1, d = ((v[1]*v[2]) + (v[1]*v[3]) + (v[2]*v[3])); if(d > up_to, ip--, ip = #v; u[d]++); if(!ip, return(u)); v[ip] = nextprime(1+v[ip]); for(i=1+ip, #v, v[i]=v[i-1])); };
v369054 = A369054list(100001);
A369054(n) = if(!n, n, v369054[n]);
(PARI)
\\ Use this for computing the value of arbitrary n. We iterate over weakly increasing pairs of odd primes:
A369054(n) = if(3!=(n%4), 0, my(v = [3, 3], ip = #v, r, c=0); while(1, r = (n-(v[1]*v[2])) / (v[1]+v[2]); if(r < v[2], ip--, ip = #v; if(1==denominator(r) && isprime(r), c++)); if(!ip, return(c)); v[ip] = nextprime(1+v[ip]); for(i=1+ip, #v, v[i]=v[i-1])));
CROSSREFS
Cf. A369055 [quadrisection, a(4n-1)], and its trisections A369460 [= a((12*n)-9)], A369461 [= a((12*n)-5)], A369462 [= a((12*n)-1)].
Cf. A369251 (positions of terms > 0), A369464 (positions of 0's).
Cf. A369063 (positions of records), A369064 (values of records).
Cf. A369241 [= a(2^n - 1)], A369242 [= a(n!-1)], A369245 [= a(A006862(n))], A369247 [= a(3*A057588(n))].
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 20 2024
STATUS
approved
Arithmetic derivative applied to the numbers of the form p*q*r where p,q,r are (not necessarily distinct) odd primes.
+10
14
27, 39, 51, 55, 75, 71, 87, 75, 91, 111, 103, 123, 95, 119, 147, 131, 119, 151, 183, 151, 135, 195, 167, 155, 231, 147, 199, 191, 187, 255, 167, 267, 211, 291, 195, 215, 247, 191, 263, 215, 327, 251, 247, 363, 203, 375, 311, 271, 255, 239, 411, 231, 311, 343, 299, 231, 435, 359, 331, 447, 311, 263, 391, 483, 263
OFFSET
1,1
COMMENTS
The table showing the possible modulo 3 combinations for p, q, r and the sum ((p*q) + (p*r) + (q*r)):
| p | q | r | sum ((p*q) + (p*r) + (q*r)) (mod 3)
--+------+------+------+----------------------------------------
| 0 | 0 | 0 | 0, p=q=r=3, sum is 27.
--+------+------+------+----------------------------------------
| 0 | 0 | +/-1 | 0, p=q=3, r > 3.
--+------+------+------+----------------------------------------
| 0 | +1 | +1 | +1
--+------+------+------+----------------------------------------
| 0 | -1 | -1 | +1
--+------+------+------+----------------------------------------
| 0 | -1 | +1 | -1
--+------+------+------+----------------------------------------
| 0 | +1 | -1 | -1
--+------+------+------+----------------------------------------
| +1 | +1 | +1 | 0
--+------+------+------+----------------------------------------
| -1 | -1 | -1 | 0
--+------+------+------+----------------------------------------
| -1 | +1 | +1 | -1, regardless of the order, thus x3.
--+------+------+------+----------------------------------------
| +1 | -1 | -1 | -1, regardless of the order, thus x3.
--+------+------+------+----------------------------------------
Notably a(n) is a multiple of 3 only when A046316(n) is either a multiple of 9, or all primes p, q and r are either == +1 (mod 3) or all are == -1 (mod 3), and the case a(n) == +1 (mod 3) is only possible when A046316(n) is a multiple of 3, but not of 9, and furthermore, it is required that r == q (mod 3). See how these combinations affects sequences like A369241, A369245, A369450, A369451, A369452.
For n=1..9 the number of terms of the form 3k, 3k+1 and 3k+2 in range [1..10^n-1] are:
6, 2, 1,
39, 22, 38,
291, 209, 499,
2527, 1884, 5588,
23527, 17020, 59452,
227297, 156240, 616462,
2232681, 1453030, 6314288,
22119496, 13661893, 64218610,
220098425, 129624002, 650277572.
It seems that 3k+2 terms are slowly gaining at the expense of 3k+1 terms when n grows, while the density of the multiples of 3 might converge towards a limit.
LINKS
FORMULA
a(n) = A003415(A046316(n)).
CROSSREFS
Cf. A369251 (same sequence sorted into ascending order, with duplicates removed).
Cf. A369464 (numbers that do not occur in this sequence).
Cf. also the trisections of A369055: A369460, A369461, A369462 and their partial sums A369450, A369451, A369452, also A369241, A369245.
Only terms of A004767 occur here.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 22 2024
STATUS
approved
Numbers k of the form 4m+3 for which there is no representation as a sum (p*q + p*r + q*r) with three odd primes p <= q <= r.
+10
9
3, 7, 11, 15, 19, 23, 31, 35, 43, 47, 59, 63, 67, 79, 83, 99, 107, 115, 127, 139, 143, 159, 163, 171, 175, 179, 207, 219, 223, 227, 235, 243, 259, 279, 283, 295, 303, 307, 319, 323, 339, 347, 367, 379, 387, 399, 403, 415, 427, 443, 463, 499, 515, 523, 531, 547, 559, 571, 579, 595, 603, 619, 639, 643, 655, 659, 675
OFFSET
1,1
COMMENTS
Numbers k in A004767 for which A369054(k) = 0.
Numbers k of the form 4m-1 such that they are not arithmetic derivative (A003415) of any term of A046316.
Question: Is it possible that this sequence might be finite (although very long)? See comments in A369055.
LINKS
MAPLE
N:= 1000: # for terms <= N
S:= {seq(i, i=3..N, 4)}:
P:= select(isprime, [seq(i, i=3..N/3, 2)]):
for i from 1 to nops(P) do
p:= P[i];
for j from i to nops(P) do
q:= P[j];
if 2*p*q + q^2 > N then break fi;
for k from j to nops(P) do
r:= P[k];
v:= p*q + p*r + q*r;
if v > N then break fi;
S:= S minus {v};
od od od:
sort(convert(S, list)); # Robert Israel, Apr 17 2024
PROG
(PARI) isA369056(n) = ((3==(n%4)) && !A369054(n)); \\ Needs also program from A369054.
CROSSREFS
Setwise difference A004767 \ A369251.
Subsequences: A369248 (terms that are multiples of 3), A369249 (primes in this sequence).
Cf. also A369250 (4m+3 primes missing from this sequence).
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 20 2024
STATUS
approved
Numbers m with at least one integer solution for x' = m, where x' is the arithmetic derivative of x (cf. A003415).
+10
5
4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81
OFFSET
1,1
COMMENTS
A099302(a(n)) > 0.
LINKS
PROG
(Haskell)
a239433 n = a239433_list !! (n-1)
a239433_list = filter
(\z -> any (== z) $ map a003415 $ takeWhile (<= a002620 z) a013929_list) [2..]
CROSSREFS
Cf. A002620, A098700 (complement), A369251 (subsequence).
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Mar 18 2014
STATUS
approved
Numbers for which there is no representation as a sum (p*q + p*r + q*r) with three odd primes p <= q <= r.
+10
5
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 88
OFFSET
1,3
PROG
(PARI)
isA369251(n) = if(3!=(n%4), 0, my(v = [3, 3], ip = #v, r); while(1, r = (n-(v[1]*v[2])) / (v[1]+v[2]); if(r < v[2], ip--, ip = #v; if(1==denominator(r) && isprime(r), return(1))); if(!ip, return(0)); v[ip] = nextprime(1+v[ip]); for(i=1+ip, #v, v[i]=v[i-1])));
isA369464(n) = !isA369251(n);
CROSSREFS
Complement of A369251. Numbers not in A369252.
Union of A004773 and A369056.
Positions of 0's in A369054.
Cf. A098700, A369248, A369249, A369463 (subsequences).
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 24 2024
STATUS
approved
Primes for which there is at least one representation as a sum (p*q + p*r + q*r) with three odd primes p <= q <= r.
+10
4
71, 103, 131, 151, 167, 191, 199, 211, 239, 251, 263, 271, 311, 331, 359, 383, 419, 431, 439, 467, 479, 487, 491, 503, 563, 587, 599, 607, 631, 647, 691, 719, 727, 739, 743, 751, 811, 823, 839, 859, 863, 887, 911, 919, 971, 983, 991, 1019, 1031, 1051, 1063, 1091, 1103, 1151, 1163, 1187, 1223, 1231, 1279, 1283, 1291
OFFSET
1,1
COMMENTS
All such primes are by necessity of the form 4m+3 (in A002145). See A369249 for those 4m+3 primes that do not have such a representation.
Also by necessity, in these cases the primes in the sum (p*q + p*r + q*r) must all be distinct, that is, we actually need p < q < r, otherwise the sum would not be a prime.
LINKS
EXAMPLE
71 is present as 71 = (3*5) + (3*7) + (5*7) = A003415(105).
PROG
(PARI) isA369250(n) = (isprime(n) && (A369054(n)>0)); \\ Needs also program from A369054.
CROSSREFS
Primes in A369251.
Setwise difference A002145 \ A369249.
Subsequence of A189441.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 22 2024
STATUS
approved

Search completed in 0.018 seconds