OFFSET
1,9
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..65537
FORMULA
a(4*n) = a(27*n) = 0 and in general, a(m * p^p) = 0, for any m >= 1 and any prime p.
EXAMPLE
For n = 9, it itself is not a squarefree number, while its arithmetic derivative A003415(9) = 6 is, so it took just one iteration to find a squarefree number, thus a(9) = 1+1 = 2.
PROG
(PARI)
A003415checked(n) = if(n<=1, 0, my(f=factor(n), s=0); for(i=1, #f~, if(f[i, 2]>=f[i, 1], return(0), s += f[i, 2]/f[i, 1])); (n*s));
A328248(n) = { my(k=1); while(n && !issquarefree(n), k++; n = A003415checked(n)); (!!n*k); };
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 11 2019
STATUS
approved