[go: up one dir, main page]

login
Search: a367580 -id:a367580
     Sort: relevance | references | number | modified | created      Format: long | short | data
Least number whose multiset multiplicity kernel (in which each prime exponent becomes the least prime factor with that exponent) is n. First position of n in A367580.
+20
13
1, 2, 3, 6, 5, 12, 7, 30, 15, 20, 11, 90, 13, 28, 45, 210, 17, 60, 19, 150, 63, 44, 23, 630, 35, 52, 105, 252, 29, 360, 31, 2310, 99, 68, 175, 2100, 37, 76, 117, 1050, 41, 504, 43, 396, 525, 92, 47, 6930, 77, 140, 153, 468, 53, 420, 275, 1470, 171, 116, 59
OFFSET
1,2
COMMENTS
We define the multiset multiplicity kernel (MMK) of a positive integer n to be the product of (least prime factor with exponent k)^(number of prime factors with exponent k) over all distinct exponents k appearing in the prime factorization of n. For example, 90 has prime factorization 2^1 * 3^2 * 5^1, so for k = 1 we have 2^2, and for k = 2 we have 3^1, so MMK(90) = 12. As an operation on multisets, MMK is represented by the triangle A367579, and as an operation on their ranks it is represented by A367580.
FORMULA
a(p) = p for all primes p.
EXAMPLE
The least number with multiset multiplicity kernel 9 is 15, so a(9) = 15.
The terms together with their prime indices begin:
1 -> 1: {}
2 -> 2: {1}
3 -> 3: {2}
4 -> 6: {1,2}
5 -> 5: {3}
6 -> 12: {1,1,2}
7 -> 7: {4}
8 -> 30: {1,2,3}
9 -> 15: {2,3}
10 -> 20: {1,1,3}
11 -> 11: {5}
12 -> 90: {1,2,2,3}
13 -> 13: {6}
14 -> 28: {1,1,4}
15 -> 45: {2,2,3}
16 ->210: {1,2,3,4}
MATHEMATICA
nn=1000;
mmk[q_]:=With[{mts=Length/@Split[q]}, Sort[Table[Min@@Select[q, Count[q, #]==i&], {i, mts}]]];
spnm[y_]:=Max@@NestWhile[Most, Sort[y], Union[#]!=Range[Max@@#]&];
qq=Table[Times@@mmk[Join@@ConstantArray@@@FactorInteger[n]], {n, nn}];
Table[Position[qq, i][[1, 1]], {i, spnm[qq]}]
CROSSREFS
Positions of primes are A000040.
Positions of squarefree numbers are A000961.
All terms are rootless A007916.
Contains no nonprime prime powers A246547.
The MMK triangle is A367579, sum A367581, min A055396, max A367583.
Positions of first appearances in A367580.
The sorted version is A367585.
The complement is A367768.
A007947 gives squarefree kernel.
A027746 lists prime factors, length A001222, indices A112798.
A027748 lists distinct prime factors, length A001221, indices A304038.
A071625 counts distinct prime exponents.
A124010 gives prime signature, sorted A118914.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 29 2023
STATUS
approved
Numbers whose prime indices have a multiset multiplicity kernel (in which each prime exponent becomes the least prime factor with that exponent) that is all ones {1,1,...}. Positions of powers of 2 in A367580.
+20
9
1, 2, 4, 6, 8, 10, 14, 16, 22, 26, 30, 32, 34, 36, 38, 42, 46, 58, 62, 64, 66, 70, 74, 78, 82, 86, 94, 100, 102, 106, 110, 114, 118, 122, 128, 130, 134, 138, 142, 146, 154, 158, 166, 170, 174, 178, 182, 186, 190, 194, 196, 202, 206, 210, 214, 216, 218, 222
OFFSET
1,2
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define the multiset multiplicity kernel MMK(m) of a multiset m by the following property, holding for all distinct multiplicities k >= 1. If S is the set of elements of multiplicity k in m, then min(S) has multiplicity |S| in MMK(m). For example, MMK({1,1,2,2,3,4,5}) = {1,1,3,3,3}, and MMK({1,2,3,4,5,5,5,5}) = {1,1,1,1,5}. As an operation on multisets MMK is represented by A367579, and as an operation on their ranks it is represented by A367580.
FORMULA
Consists of 1 and all even terms of A072774 (powers of squarefree numbers).
EXAMPLE
We have MMK({1,1,2,2}) = {1,1} so 36 is in the sequence.
The terms together with their prime indices begin:
1: {}
2: {1}
4: {1,1}
6: {1,2}
8: {1,1,1}
10: {1,3}
14: {1,4}
16: {1,1,1,1}
22: {1,5}
26: {1,6}
30: {1,2,3}
32: {1,1,1,1,1}
34: {1,7}
36: {1,1,2,2}
38: {1,8}
42: {1,2,4}
MATHEMATICA
Select[Range[100], #==1||EvenQ[#]&&SameQ@@Last/@FactorInteger[#]&]
CROSSREFS
Contains all prime powers A000961 and squarefree numbers A005117.
Partitions of this type (uniform containing 1) are counted by A097986.
Positions of all one rows {1,1,...} in A367579.
Positions of powers of 2 in A367580.
A007947 gives squarefree kernel.
A027746 lists prime factors, length A001222, indices A112798.
A027748 lists distinct prime factors, length A001221, indices A304038.
A071625 counts distinct prime exponents.
A124010 gives prime signature, sorted A118914.
A367581 gives multiset multiplicity kernel sum, max A367583, min A055396.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 30 2023
STATUS
approved
Numbers k such that MMK(k) = MMK(i) for some i < k, where MMK is multiset multiplicity kernel A367580.
+20
3
4, 8, 9, 10, 14, 16, 18, 21, 22, 24, 25, 26, 27, 32, 33, 34, 36, 38, 39, 40, 42, 46, 48, 49, 50, 51, 54, 55, 56, 57, 58, 62, 64, 65, 66, 69, 70, 72, 74, 75, 78, 80, 81, 82, 84, 85, 86, 87, 88, 91, 93, 94, 95, 96, 98, 100, 102, 104, 106, 108, 110, 111, 112, 114
OFFSET
1,1
COMMENTS
We define the multiset multiplicity kernel (MMK) of a positive integer n to be the product of (least prime factor with exponent k)^(number of prime factors with exponent k) over all distinct exponents k appearing in the prime factorization of n. For example, 90 has prime factorization 2^1 * 3^2 * 5^1, so for k = 1 we have 2^2, and for k = 2 we have 3^1, so MMK(90) = 12. As an operation on multisets MMK is represented by A367579, and as an operation on their ranks it is represented by A367580.
FORMULA
A367580(a(k)) = A367580(i) for some i < a(k).
EXAMPLE
The terms together with their prime indices begin:
4: {1,1}
8: {1,1,1}
9: {2,2}
10: {1,3}
14: {1,4}
16: {1,1,1,1}
18: {1,2,2}
21: {2,4}
22: {1,5}
24: {1,1,1,2}
25: {3,3}
26: {1,6}
27: {2,2,2}
32: {1,1,1,1,1}
33: {2,5}
34: {1,7}
36: {1,1,2,2}
MATHEMATICA
nn=100;
mmk[q_]:=With[{mts=Length/@Split[q]}, Sort[Table[Min@@Select[q, Count[q, #]==i&], {i, mts}]]];
qq=Table[Times@@mmk[Join @@ ConstantArray@@@FactorInteger[n]], {n, nn}];
Select[Range[nn], MemberQ[Take[qq, #-1], qq[[#]]]&]
CROSSREFS
The squarefree case is A073486, complement A073485.
The MMK triangle is A367579, sum A367581, min A055396, max A367583.
Sorted positions of non-first appearances in A367580.
The complement is A367585, sorted version of A367584.
A007947 gives squarefree kernel.
A027746 lists prime factors, length A001222, indices A112798.
A027748 lists distinct prime factors, length A001221, indices A304038.
A071625 counts distinct prime exponents.
A124010 gives prime signature, sorted A118914.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 01 2023
STATUS
approved
Irregular triangle read by rows where row n is the multiset multiplicity kernel (MMK) of the multiset of prime indices of n.
+10
15
1, 2, 1, 3, 1, 1, 4, 1, 2, 1, 1, 5, 1, 2, 6, 1, 1, 2, 2, 1, 7, 1, 2, 8, 1, 3, 2, 2, 1, 1, 9, 1, 2, 3, 1, 1, 2, 1, 4, 10, 1, 1, 1, 11, 1, 2, 2, 1, 1, 3, 3, 1, 1, 12, 1, 1, 2, 2, 1, 3, 13, 1, 1, 1, 14, 1, 5, 2, 3, 1, 1, 15, 1, 2, 4, 1, 3, 2, 2, 1, 6, 16, 1, 2
OFFSET
1,2
COMMENTS
Row n = 1 is empty.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define the multiset multiplicity kernel MMK(m) of a multiset m by the following property, holding for all distinct multiplicities k >= 1. If S is the set of elements of multiplicity k in m, then min(S) has multiplicity |S| in MMK(m). For example, MMK({1,1,2,2,3,4,5}) = {1,1,3,3,3}, and MMK({1,2,3,4,5,5,5,5}) = {1,1,1,1,5}.
Note: I chose the word 'kernel' because, as with A007947 and A304038, MMK(m) is constructed using the same underlying elements as m and has length equal to the number of distinct elements of m. However, it is not necessarily a submultiset of m.
FORMULA
For all positive integers n and k, row n^k is the same as row n.
EXAMPLE
The first 45 rows:
1: {} 16: {1} 31: {11}
2: {1} 17: {7} 32: {1}
3: {2} 18: {1,2} 33: {2,2}
4: {1} 19: {8} 34: {1,1}
5: {3} 20: {1,3} 35: {3,3}
6: {1,1} 21: {2,2} 36: {1,1}
7: {4} 22: {1,1} 37: {12}
8: {1} 23: {9} 38: {1,1}
9: {2} 24: {1,2} 39: {2,2}
10: {1,1} 25: {3} 40: {1,3}
11: {5} 26: {1,1} 41: {13}
12: {1,2} 27: {2} 42: {1,1,1}
13: {6} 28: {1,4} 43: {14}
14: {1,1} 29: {10} 44: {1,5}
15: {2,2} 30: {1,1,1} 45: {2,3}
MATHEMATICA
mmk[q_]:=With[{mts=Length/@Split[q]}, Sort[Table[Min@@Select[q, Count[q, #]==i&], {i, mts}]]];
Table[mmk[PrimePi/@Join@@ConstantArray@@@If[n==1, {}, FactorInteger[n]]], {n, 100}]
CROSSREFS
Indices of empty and singleton rows are A000961.
Row lengths are A001221.
Depends only on rootless base A052410, see A007916.
Row minima are A055396.
Rows have A071625 distinct elements.
Indices of constant rows are A072774.
Indices of strict rows are A130091.
Rows have Heinz numbers A367580.
Row sums are A367581.
Row maxima are A367583, opposite A367587.
Index of first row with Heinz number n is A367584.
Sorted row indices of first appearances are A367585.
Indices of rows of the form {1,1,...} are A367586.
Agrees with sorted prime signature at A367683, counted by A367682.
A submultiset of prime indices at A367685, counted by A367684.
A007947 gives squarefree kernel.
A112798 lists prime indices, length A001222, sum A056239, reverse A296150.
A124010 lists prime multiplicities (prime signature), sorted A118914.
A181819 gives prime shadow, with an inverse A181821.
A238747 gives prime metasignature, reversed A353742.
A304038 lists distinct prime indices, length A001221, sum A066328.
A367582 counts partitions by sum of multiset multiplicity kernel.
KEYWORD
nonn,tabf
AUTHOR
Gus Wiseman, Nov 25 2023
STATUS
approved
Sum of the multiset multiplicity kernel (in which each multiplicity becomes the least element of that multiplicity) of the prime indices of n.
+10
14
0, 1, 2, 1, 3, 2, 4, 1, 2, 2, 5, 3, 6, 2, 4, 1, 7, 3, 8, 4, 4, 2, 9, 3, 3, 2, 2, 5, 10, 3, 11, 1, 4, 2, 6, 2, 12, 2, 4, 4, 13, 3, 14, 6, 5, 2, 15, 3, 4, 4, 4, 7, 16, 3, 6, 5, 4, 2, 17, 5, 18, 2, 6, 1, 6, 3, 19, 8, 4, 3, 20, 3, 21, 2, 5, 9, 8, 3, 22, 4, 2, 2
OFFSET
1,3
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define the multiset multiplicity kernel MMK(m) of a multiset m by the following property, holding for all distinct multiplicities k >= 1. If S is the set of elements of multiplicity k in m, then min(S) has multiplicity |S| in MMK(m). For example, MMK({1,1,2,2,3,4,5}) = {1,1,3,3,3}, and MMK({1,2,3,4,5,5,5,5}) = {1,1,1,1,5}. As an operation on multisets, MMK is represented by A367579, and as an operation on their Heinz numbers, it is represented by A367580.
FORMULA
a(n^k) = a(n) for all positive integers n and k.
a(n) = A056239(A367580(n)).
If n is squarefree, a(n) = A055396(n)*A001222(n).
EXAMPLE
The multiset multiplicity kernel of {1,2,2,3} is {1,1,2}, so a(90) = 4.
MATHEMATICA
mmk[q_]:=With[{mts=Length/@Split[q]}, Sort[Table[Min@@Select[q, Count[q, #]==i&], {i, mts}]]];
Table[Total[mmk[PrimePi/@Join@@ConstantArray@@@FactorInteger[n]]], {n, 100}]
CROSSREFS
Positions of 1's are A000079 without 1.
Positions of first appearances are A008578.
Depends only on rootless base A052410, see A007916, A052409.
The triangle A367579 has these as row sums, ranks A367580.
The triangle for this rank statistic is A367582.
For maximum instead of sum we have A367583, opposite A367587.
A007947 gives squarefree kernel.
A112798 lists prime indices, length A001222, sum A056239, reverse A296150.
A124010 gives prime signature, sorted A118914.
A181819 gives prime shadow, with an inverse A181821.
A238747 gives prime metasignature, reverse A353742.
A304038 lists distinct prime indices, length A001221, sum A066328.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 28 2023
STATUS
approved
Greatest element in row n of A367579 (multiset multiplicity kernel).
+10
12
0, 1, 2, 1, 3, 1, 4, 1, 2, 1, 5, 2, 6, 1, 2, 1, 7, 2, 8, 3, 2, 1, 9, 2, 3, 1, 2, 4, 10, 1, 11, 1, 2, 1, 3, 1, 12, 1, 2, 3, 13, 1, 14, 5, 3, 1, 15, 2, 4, 3, 2, 6, 16, 2, 3, 4, 2, 1, 17, 2, 18, 1, 4, 1, 3, 1, 19, 7, 2, 1, 20, 2, 21, 1, 3, 8, 4, 1, 22, 3, 2, 1
OFFSET
1,3
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define the multiset multiplicity kernel MMK(m) of a multiset m by the following property, holding for all distinct multiplicities k >= 1. If S is the set of elements of multiplicity k in m, then min(S) has multiplicity |S| in MMK(m). For example, MMK({1,1,2,2,3,4,5}) = {1,1,3,3,3}, and MMK({1,2,3,4,5,5,5,5}) = {1,1,1,1,5}.
FORMULA
a(n) = A061395(A367580(n)).
a(n^k) = a(n) for all positive integers n and k.
If n is a power of a squarefree number, a(n) = A055396(n).
EXAMPLE
For 450 = 2^1 * 3^2 * 5^2, we have MMK({1,2,2,3,3}) = {1,2,2} so a(450) = 2.
MATHEMATICA
mmk[q_]:=With[{mts=Length/@Split[q]}, Sort[Table[Min@@Select[q, Count[q, #]==i&], {i, mts}]]];
Table[If[n==1, 0, Max@@mmk[PrimePi/@Join@@ConstantArray@@@If[n==1, {}, FactorInteger[n]]]], {n, 1, 100}]
CROSSREFS
Positions of first appearances are A008578.
Depends only on rootless base A052410, see A007916, A052409.
For minimum instead of maximum element we have A055396.
Row maxima of A367579.
Greatest prime index of A367580.
Positions of 1's are A367586 (powers of even squarefree numbers).
The opposite version is A367587.
A007947 gives squarefree kernel.
A072774 lists powers of squarefree numbers.
A112798 lists prime indices, length A001222, sum A056239, reverse A296150.
A124010 gives prime signature, sorted A118914.
A181819 gives prime shadow, with an inverse A181821.
A238747 gives prime metasignature, reverse A353742.
A304038 lists distinct prime indices, length A001221, sum A066328.
A363486 gives least prime index of greatest exponent.
A363487 gives greatest prime index of greatest exponent.
A364191 gives least prime index of least exponent.
A364192 gives greatest prime index of least exponent.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 28 2023
STATUS
approved
Triangle read by rows where T(n,k) is the number of integer partitions of n whose multiset multiplicity kernel (in which each multiplicity becomes the least element of that multiplicity), sums to k.
+10
11
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 1, 2, 2, 1, 0, 1, 3, 3, 2, 1, 1, 0, 1, 1, 4, 3, 3, 2, 1, 0, 1, 3, 5, 4, 4, 3, 1, 1, 0, 1, 2, 6, 4, 8, 3, 3, 2, 1, 0, 1, 3, 7, 9, 6, 7, 4, 3, 1, 1, 0, 1, 1, 8, 7, 11, 9, 9, 4, 3, 2, 1
OFFSET
0,13
COMMENTS
We define the multiset multiplicity kernel MMK(m) of a multiset m by the following property, holding for all distinct multiplicities k >= 1. If S is the set of elements of multiplicity k in m, then min(S) has multiplicity |S| in MMK(m). For example, MMK({1,1,2,2,3,4,5}) = {1,1,3,3,3}, and MMK({1,2,3,4,5,5,5,5}) = {1,1,1,1,5}. As an operation on multisets, MMK is represented by A367579, and as an operation on their Heinz numbers, it is represented by A367580.
EXAMPLE
Triangle begins:
1
0 1
0 1 1
0 1 1 1
0 1 2 1 1
0 1 1 2 2 1
0 1 3 3 2 1 1
0 1 1 4 3 3 2 1
0 1 3 5 4 4 3 1 1
0 1 2 6 4 8 3 3 2 1
0 1 3 7 9 6 7 4 3 1 1
0 1 1 8 7 11 9 9 4 3 2 1
0 1 5 10 11 13 10 11 6 5 3 1 1
0 1 1 10 11 17 14 18 10 9 4 3 2 1
0 1 3 12 17 19 18 22 14 12 8 4 3 1 1
0 1 3 12 15 27 19 31 19 19 10 9 5 3 2 1
0 1 4 15 23 27 31 33 24 26 18 12 8 4 3 1 1
0 1 1 14 20 35 33 48 32 37 25 20 11 10 4 3 2 1
Row n = 7 counts the following partitions:
(1111111) (61) (421) (52) (4111) (511) (7)
(2221) (331) (322) (43)
(22111) (31111) (3211)
(211111)
MATHEMATICA
mmk[q_]:=With[{mts=Length/@Split[q]}, Sort[Table[Min@@Select[q, Count[q, #]==i&], {i, mts}]]];
Table[Length[Select[IntegerPartitions[n], Total[mmk[#]]==k&]], {n, 0, 10}, {k, 0, n}]
CROSSREFS
Column k = 2 is A000005(n) - 1 = A032741(n).
Row sums are A000041.
The case of constant partitions is A051731, row sums A000005.
The corresponding rank statistic is A367581, row sums of A367579.
A072233 counts partitions by number of parts.
A091602 counts partitions by greatest multiplicity, least A243978.
A116608 counts partitions by number of distinct parts.
A116861 counts partitions by sum of distinct parts.
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Nov 28 2023
STATUS
approved
Numbers k whose multiset multiplicity kernel (in which each prime exponent becomes the least prime factor with that exponent) is different from that of all positive integers less than k.
+10
10
1, 2, 3, 5, 6, 7, 11, 12, 13, 15, 17, 19, 20, 23, 28, 29, 30, 31, 35, 37, 41, 43, 44, 45, 47, 52, 53, 59, 60, 61, 63, 67, 68, 71, 73, 76, 77, 79, 83, 89, 90, 92, 97, 99, 101, 103, 105, 107, 109, 113, 116, 117, 124, 127, 131, 137, 139, 140, 143, 148, 149, 150
OFFSET
1,2
COMMENTS
We define the multiset multiplicity kernel (MMK) of a positive integer n to be the product of (least prime factor with exponent k)^(number of prime factors with exponent k) over all distinct exponents k appearing in the prime factorization of n. For example, 90 has prime factorization 2^1 * 3^2 * 5^1, so for k = 1 we have 2^2, and for k = 2 we have 3^1, so MMK(90) = 12. As an operation on multisets, MMK is represented by A367579, and as an operation on their ranks it is represented by A367580.
EXAMPLE
The terms together with their prime indices begin:
1: {} 28: {1,1,4} 60: {1,1,2,3}
2: {1} 29: {10} 61: {18}
3: {2} 30: {1,2,3} 63: {2,2,4}
5: {3} 31: {11} 67: {19}
6: {1,2} 35: {3,4} 68: {1,1,7}
7: {4} 37: {12} 71: {20}
11: {5} 41: {13} 73: {21}
12: {1,1,2} 43: {14} 76: {1,1,8}
13: {6} 44: {1,1,5} 77: {4,5}
15: {2,3} 45: {2,2,3} 79: {22}
17: {7} 47: {15} 83: {23}
19: {8} 52: {1,1,6} 89: {24}
20: {1,1,3} 53: {16} 90: {1,2,2,3}
23: {9} 59: {17} 92: {1,1,9}
MATHEMATICA
nn=100;
mmk[q_]:=With[{mts=Length/@Split[q]}, Sort[Table[Min@@Select[q, Count[q, #]==i&], {i, mts}]]];
qq=Table[Times@@mmk[Join@@ConstantArray@@@FactorInteger[n]], {n, nn}];
Select[Range[nn], FreeQ[Take[qq, #-1], qq[[#]]]&]
CROSSREFS
Contains all primes A000040 but no other perfect powers A001597.
All terms are rootless A007916 (have no positive integer roots).
Positions of squarefree terms appear to be A073485.
Contains no nonprime prime powers A246547.
The MMK triangle is A367579, sum A367581, min A055396, max A367583.
Sorted positions of first appearances in A367580.
Sorted version of A367584.
Complement of A367768.
A007947 gives squarefree kernel.
A027746 lists prime factors, length A001222, indices A112798.
A027748 lists distinct prime factors, length A001221, indices A304038.
A071625 counts distinct prime exponents.
A124010 gives prime signature, sorted A118914.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 29 2023
STATUS
approved
Least element in row n of A367858 (multiset multiplicity cokernel).
+10
8
0, 1, 2, 1, 3, 2, 4, 1, 2, 3, 5, 1, 6, 4, 3, 1, 7, 1, 8, 1, 4, 5, 9, 1, 3, 6, 2, 1, 10, 3, 11, 1, 5, 7, 4, 2, 12, 8, 6, 1, 13, 4, 14, 1, 2, 9, 15, 1, 4, 1, 7, 1, 16, 1, 5, 1, 8, 10, 17, 1, 18, 11, 2, 1, 6, 5, 19, 1, 9, 4, 20, 1, 21, 12, 2, 1, 5, 6, 22, 1, 2
OFFSET
1,3
COMMENTS
We define the multiset multiplicity cokernel MMC(m) of a multiset m by the following property, holding for all distinct multiplicities k >= 1. If S is the set of elements of multiplicity k in m, then max(S) has multiplicity |S| in MMC(m). For example, MMC({1,1,2,2,3,4,5}) = {2,2,5,5,5}, and MMC({1,2,3,4,5,5,5,5}) = {4,4,4,4,5}. As an operation on multisets MMC is represented by A367858, and as an operation on their ranks it is represented by A367859.
FORMULA
a(n) = A055396(A367859(n)).
a(n^k) = a(n) for all positive integers n and k.
If n is a power of a squarefree number, a(n) = A061395(n).
MATHEMATICA
prix[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
mmc[q_]:=With[{mts=Length/@Split[q]}, Sort[Table[Max@@Select[q, Count[q, #]==i&], {i, mts}]]];
Table[If[n==1, 0, Min@@mmc[prix[n]]], {n, 100}]
CROSSREFS
Indices of first appearances are A008578.
Depends only on rootless base A052410, see A007916.
For kernel instead of cokernel we have A055396.
For maximum instead of minimum element we have A061395.
The opposite version is A367583.
Row-minima of A367858.
A007947 gives squarefree kernel.
A112798 lists prime indices, length A001222, sum A056239, reverse A296150.
A124010 lists prime multiplicities (prime signature), sorted A118914.
A181819 gives prime shadow, with an inverse A181821.
A238747 gives prime metasignature, sorted A353742.
A304038 lists distinct prime indices, length A001221, sum A066328.
A367579 lists MMK, rank A367580, sum A367581, max A367583, min A055396.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 03 2023
STATUS
approved
Numbers divisible by their multiset multiplicity kernel.
+10
6
1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 36, 37, 40, 41, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 59, 61, 63, 64, 67, 68, 71, 72, 73, 75, 76, 79, 80, 81, 83, 88, 89, 92, 96, 97, 98, 99, 100, 101, 103, 104, 107
OFFSET
1,2
COMMENTS
First differs from A344586 in lacking 120.
We define the multiset multiplicity kernel (MMK) of a positive integer n to be the product of (least prime factor with exponent k)^(number of prime factors with exponent k) over all distinct exponents k appearing in the prime factorization of n. For example, 90 has prime factorization 2^1 * 3^2 * 5^1, so for k = 1 we have 2^2, and for k = 2 we have 3^1, so MMK(90) = 12. As an operation on multisets MMK is represented by A367579, and as an operation on their ranks it is represented by A367580.
First differs from A212165 at n=73: A212165(73)=120 is not a term of this. - Amiram Eldar, Dec 04 2023
EXAMPLE
The terms together with their prime indices begin:
1: {}
2: {1}
3: {2}
4: {1,1}
5: {3}
7: {4}
8: {1,1,1}
9: {2,2}
11: {5}
12: {1,1,2}
13: {6}
16: {1,1,1,1}
17: {7}
18: {1,2,2}
19: {8}
20: {1,1,3}
23: {9}
24: {1,1,1,2}
MATHEMATICA
mmk[n_Integer]:= Product[Min[#]^Length[#]&[First/@Select[FactorInteger[n], Last[#]==k&]], {k, Union[Last/@FactorInteger[n]]}];
Select[Range[100], Divisible[#, mmk[#]]&]
CROSSREFS
Includes all prime-powers A000961.

The only squarefree terms are the primes A008578.
Partitions of this type are counted by A367684.
A007947 gives squarefree kernel.
A027746 lists prime factors, length A001222, indices A112798.
A027748 lists distinct prime factors, length A001221, indices A304038.
A071625 counts distinct prime exponents.
A124010 gives multiset of multiplicities (prime signature), sorted A118914.
A181819 gives prime shadow, with an inverse A181821.
A367579 lists MMK, ranks A367580, sum A367581, max A367583.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 30 2023
STATUS
approved

Search completed in 0.018 seconds