[go: up one dir, main page]

login
A175781
a(n) = n^(1/k) with the smallest k>1 such that n is a k-th power, taking k=1 if no such k>1 exists.
9
1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 12, 13, 14, 15, 4, 17, 18, 19, 20, 21, 22, 23, 24, 5, 26, 3, 28, 29, 30, 31, 2, 33, 34, 35, 6, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 7, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 8, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75
OFFSET
1,2
LINKS
EXAMPLE
a(32) = 2 since the least k, in this case 5, yields 32^(1/5) = 2.
MAPLE
f:= proc(n) local F, m;
F:= ifactors(n)[2];
m:= igcd(op(map(t->t[2], F)));
if m = 1 then n
else m:= min(numtheory:-factorset(m)); mul(t[1]^(t[2]/m), t=F)
fi
end proc:
map(f, [$1..100]); # Robert Israel, Jan 10 2018
MATHEMATICA
perfectPowerQ[n_] := n == 1 || GCD @@ FactorInteger[n][[All, 2]] > 1; f[n_] := If[ perfectPowerQ@ n, k = 2; While[ !IntegerQ[n^(1/k)], k++]; n^(1/k), n]; Array[f, 75] (* Robert G. Wilson v, Jan 09 2018 *)
PROG
(PARI) a(n) = my(p = ispower(n)); if (!p, n, sqrtnint(n, divisors(p)[2])); \\ Michel Marcus, Jan 02 2018
CROSSREFS
Sequence in context: A304776 A052410 A327501 * A072775 A304768 A243057
KEYWORD
nonn
AUTHOR
Vincenzo Librandi, Sep 03 2010
EXTENSIONS
Edited by the Associate Editors of the OEIS, Sep 03 2010
a(32) corrected by Gionata Neri, Jan 02 2018
STATUS
approved