[go: up one dir, main page]

login
A082090
Length of iteration sequence if function A056239, a pseudo-logarithm is iterated and started at n. Fixed point equals zero for all initial values.
5
2, 3, 4, 4, 5, 5, 5, 5, 5, 5, 6, 5, 6, 6, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 6, 7, 6, 6, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 6, 7, 6, 6, 6, 6, 6, 7, 6, 7, 6, 7, 6, 7, 7, 6, 6, 6, 6, 7, 6, 6, 7, 7, 6, 6, 7, 6, 6, 7, 6, 6, 7, 7, 6, 7, 6, 7, 6, 6, 6, 7, 6, 7, 6, 6, 7
OFFSET
1,1
COMMENTS
From Gus Wiseman, Dec 01 2023: (Start)
Conjecture:
- The position of first appearance of k is n = A007097(k-2).
- The position of last appearance of k is n = A014221(k-2) = 2^^(k-2).
- The number of times k appears is: 1, 1, 2, 8, 435, ...
(End)
REFERENCES
Mohammad K. Azarian, On the Fixed Points of a Function and the Fixed Points of its Composite Functions, International Journal of Pure and Applied Mathematics, Vol. 46, No. 1, 2008, pp. 37-44. Mathematical Reviews, MR2433713 (2009c:65129), March 2009. Zentralblatt MATH, Zbl 1160.65015.
Mohammad K. Azarian, Fixed Points of a Quadratic Polynomial, Problem 841, College Mathematics Journal, Vol. 38, No. 1, January 2007, p. 60. Solution published in Vol. 39, No. 1, January 2008, pp. 66-67.
LINKS
EXAMPLE
n=127:list={127,31,11,5,3,2,1,0},a[127]=8
MAPLE
f:= n-> add (numtheory[pi](i[1])*i[2], i=ifactors(n)[2]):
a:= n-> 1+ `if`(n=1, 1, a(f(n))):
seq (a(n), n=1..120); # Alois P. Heinz, Aug 09 2012
MATHEMATICA
ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] ep[x_] := Table[Part[ffi[x], 2*w], {w, 1, lf[x]}] bpi[x_] := Table[PrimePi[Part[ba[x], j]], {j, 1, lf[x]}] api[x_] := Apply[Plus, ep[x]*bpi[x]] Table[Length[FixedPointList[api, w]]-1, {w, 2, 128}]
Table[Length[FixedPointList[Total[PrimePi/@Join@@ ConstantArray@@@FactorInteger[#]]&, n]]-1, {n, 100}] (* Gus Wiseman, Dec 01 2023 *)
CROSSREFS
A112798 lists prime indices, length A001222, sum A056239.
A304038 lists distinct prime indices, length A001221, sum A066328.
Sequence in context: A372599 A030602 A133947 * A060197 A116487 A249041
KEYWORD
nonn
AUTHOR
Labos Elemer, Apr 09 2003
STATUS
approved