[go: up one dir, main page]

login
Search: a365924 -id:a365924
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of complete partitions of n.
+10
84
1, 1, 1, 2, 2, 4, 5, 8, 10, 16, 20, 31, 39, 55, 71, 100, 125, 173, 218, 291, 366, 483, 600, 784, 971, 1244, 1538, 1957, 2395, 3023, 3693, 4605, 5604, 6942, 8397, 10347, 12471, 15235, 18309, 22267, 26619, 32219, 38414, 46216, 54941, 65838, 77958, 93076, 109908
OFFSET
0,4
COMMENTS
A partition of n is complete if every number 1 to n can be represented as a sum of parts of the partition. This generalizes perfect partitions, where the representation for each number must be unique.
A partition is complete iff each part is no more than 1 more than the sum of all smaller parts. (This includes the smallest part, which thus must be 1.) - Franklin T. Adams-Watters, Mar 22 2007
For n > 0: a(n) = sum of n-th row in A261036 and also a(floor(n/2)) = A261036(n,floor((n+1)/2). - Reinhard Zumkeller, Aug 08 2015
a(n+1) is the number of partitions of n such that each part is no more than 2 more than the sum of all smaller parts (generalizing Adams-Watters's criterion). Bijection: each partition counted by a(n+1) must contain a 1, removing that gives a desired partition of n. - Brian Hopkins, May 16 2017
A partition (x_1, ..., x_k) is complete if and only if 1, x_1, ..., x_k is a "regular sequence" (see A003513 for definition). As a result, the number of complete partitions with n parts is given by A003513(n+1). - Nathaniel Johnston, Jun 29 2023
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..10000 (first 301 terms from David W. Wilson)
George E. Andrews, George Beck, and Brian Hopkins, On a Conjecture of Hanna Connecting Distinct Part and Complete Partitions, Annals of Comb., 24(2020), pp. 217-224.
George Beck and Shane Chern, Reciprocity between partitions and compositions, arXiv:2108.04363 [math.CO], 2021.
Nathaniel Johnston and Sarah Plosker, Laplacian {-1,0,1}- and {-1,1}-diagonalizable graphs, arXiv:2308.15611 [math.CO], 2023.
SeungKyung Park, Complete Partitions, Fibonacci Quarterly, Vol. 36 (1998), pp. 354-360.
FORMULA
G.f.: 1 = Sum_{n>=0} a(n)*x^n*Product_{k=1..n+1} (1-x^k). - Paul D. Hanna, Mar 08 2012
a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*sqrt(3)*n) * (1 - (sqrt(3/2)/Pi + 25*Pi/(24*sqrt(6))) / sqrt(n) + (25/16 - 1679*Pi^2/6912)/n). - Vaclav Kotesovec, May 24 2018, extended Nov 02 2019
a(n) = A000041(n) - A365924(n). - Gus Wiseman, Oct 14 2023
EXAMPLE
There are a(5) = 4 complete partitions of 5:
[1, 1, 1, 1, 1], [1, 1, 1, 2], [1, 2, 2], and [1, 1, 3].
G.f.: 1 = 1*(1-x) + 1*x*(1-x)*(1-x^2) + 1*x^2*(1-x)*(1-x^2)*(1-x^3) + 2*x^3*(1-x)*(1-x^2)*(1-x^3)*(1-x^4) + 2*x^4*(1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5) + ...
From Gus Wiseman, Oct 14 2023: (Start)
The a(1) = 1 through a(8) = 10 partitions:
(1) (11) (21) (211) (221) (321) (421) (3221)
(111) (1111) (311) (2211) (2221) (3311)
(2111) (3111) (3211) (4211)
(11111) (21111) (4111) (22211)
(111111) (22111) (32111)
(31111) (41111)
(211111) (221111)
(1111111) (311111)
(2111111)
(11111111)
(End)
MAPLE
isCompl := proc(p, n) local m, pers, reps, f, lst, s; reps := {}; pers := combinat[permute](p); for m from 1 to nops(pers) do lst := op(m, pers); for f from 1 to nops(lst) do s := add( op(i, lst), i=1..f); reps := reps union {s}; od; od; for m from 1 to n do if not m in reps then RETURN(false); fi; od; RETURN(true); end: A126796 := proc(n) local prts, res, p; prts := combinat[partition](n); res :=0; for p from 1 to nops(prts) do if isCompl(op(p, prts), n) then res := res+1; fi; od; RETURN(res); end: for n from 1 to 40 do printf("%d %d ", n, A126796(n)); od; # R. J. Mathar, Feb 27 2007
# At the beginning of the 2nd Maple program replace the current 15 by any other positive integer n in order to obtain a(n). - Emeric Deutsch, Mar 04 2007
with(combinat): a:=proc(n) local P, b, k, p, S, j: P:=partition(n): b:=0: for k from 1 to numbpart(n) do p:=powerset(P[k]): S:={}: for j from 1 to nops(p) do S:=S union {add(p[j][i], i=1..nops(p[j]))} od: if nops(S)=n+1 then b:=b+1 else b:=b: fi: od: end: seq(a(n), n=1..30); # Emeric Deutsch, Mar 04 2007
with(combinat): n:=15: P:=partition(n): b:=0: for k from 1 to numbpart(n) do p:=powerset(P[k]): S:={}: for j from 1 to nops(p) do S:=S union {add(p[j][i], i=1..nops(p[j]))} od: if nops(S)=n+1 then b:=b+1 else b:=b: fi: od: b; # Emeric Deutsch, Mar 04 2007
MATHEMATICA
T[n_, k_] := T[n, k] = If[k <= 1, 1, If[n < 2k-1, T[n, Floor[(n+1)/2]], T[n, k-1] + T[n-k, k]]];
a[n_] := T[n, Floor[(n+1)/2]];
Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Apr 11 2017, after Franklin T. Adams-Watters *)
nmz[y_]:=Complement[Range[Total[y]], Total/@Subsets[y]]; Table[Length[Select[IntegerPartitions[n], nmz[#]=={}&]], {n, 0, 15}] (* Gus Wiseman, Oct 14 2023 *)
PROG
(PARI) {T(n, k)=if(k<=1, 1, if(n<2*k-1, T(n, floor((n+1)/2)), T(n, k-1)+T(n-k, k)))}
{a(n)=T(n, floor((n+1)/2))} /* If modified to save earlier results, this would be efficient. */ /* Franklin T. Adams-Watters, Mar 22 2007 */
(PARI) /* As coefficients in g.f.: */
{a(n)=local(A=[1, 1]); for(i=1, n+1, A=concat(A, 0); A[#A]=polcoeff(1-sum(m=1, #A, A[m]*x^m*prod(k=1, m, 1-x^k +x*O(x^#A))), #A) ); A[n+1]}
for(n=0, 50, print1(a(n), ", ")) /* Paul D. Hanna, Mar 06 2012 */
(Haskell)
import Data.MemoCombinators (memo3, integral, Memo)
a126796 n = a126796_list !! n
a126796_list = map (pMemo 1 1) [0..] where
pMemo = memo3 integral integral integral p
p _ _ 0 = 1
p s k m
| k > min m s = 0
| otherwise = pMemo (s + k) k (m - k) + pMemo s (k + 1) m
-- Reinhard Zumkeller, Aug 07 2015
CROSSREFS
For parts instead of sums we have A000009 (sc. coverings), ranks A055932.
The strict case is A188431, complement A365831.
These partitions have ranks A325781.
First column k = 0 of A365923.
The complement is counted by A365924, ranks A365830.
KEYWORD
nonn,nice
AUTHOR
Brian Hopkins, Feb 20 2007
EXTENSIONS
More terms from R. J. Mathar, Feb 27 2007
More terms from Emeric Deutsch, Mar 04 2007
Further terms from Franklin T. Adams-Watters and David W. Wilson, Mar 22 2007
STATUS
approved
Number of incomplete strict integer partitions of n, meaning not every number from 0 to n is the sum of some submultiset.
+10
25
0, 0, 1, 1, 2, 3, 3, 4, 6, 8, 9, 11, 13, 16, 21, 25, 31, 36, 43, 50, 59, 69, 82, 96, 113, 131, 155, 179, 208, 239, 276, 315, 362, 414, 472, 539, 614, 698, 795, 902, 1023, 1158, 1311, 1479, 1672, 1881, 2118, 2377, 2671, 2991, 3354, 3748, 4194, 4679, 5223, 5815
OFFSET
0,5
EXAMPLE
The strict partition (14,5,4,2,1) has no subset summing to 13 so is counted under a(26).
The a(2) = 1 through a(10) = 9 strict partitions:
(2) (3) (4) (5) (6) (7) (8) (9) (10)
(3,1) (3,2) (4,2) (4,3) (5,3) (5,4) (6,4)
(4,1) (5,1) (5,2) (6,2) (6,3) (7,3)
(6,1) (7,1) (7,2) (8,2)
(4,3,1) (8,1) (9,1)
(5,2,1) (4,3,2) (5,3,2)
(5,3,1) (5,4,1)
(6,2,1) (6,3,1)
(7,2,1)
MATHEMATICA
nmz[y_]:=Complement[Range[Total[y]], Total/@Subsets[y]];
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Length[nmz[#]]>0&]], {n, 0, 15}]
CROSSREFS
For parts instead of sums we have ranks A080259, A055932.
The strict complement is A188431, non-strict A126796 (ranks A325781).
Row sums of A365545 without the first column, non-strict A365923.
The non-strict version is A365924, ranks A365830.
A000041 counts integer partitions, strict A000009.
A046663 counts partitions w/o a submultiset summing to k, strict A365663.
A276024 counts positive subset-sums of partitions, strict A284640.
A325799 counts non-subset-sums of prime indices.
A365543 counts partitions with a submultiset summing to k, strict A365661.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 28 2023
STATUS
approved
Number of integer partitions of n whose length (number of parts) is not equal to the sum of any submultiset.
+10
25
0, 0, 1, 1, 2, 2, 5, 4, 7, 8, 12, 13, 19, 21, 29, 33, 45, 49, 67, 73, 97, 108, 139, 152, 196, 217, 274, 303, 379, 420, 523, 579, 709, 786, 960, 1061, 1285, 1423, 1714, 1885, 2265, 2498, 2966, 3280, 3881, 4268, 5049, 5548, 6507, 7170, 8391, 9194, 10744, 11778, 13677
OFFSET
0,5
COMMENTS
These partitions are necessarily incomplete (A365924).
Are there any decreases after the initial terms?
LINKS
EXAMPLE
The a(3) = 1 through a(9) = 8 partitions:
(3) (4) (5) (6) (7) (8) (9)
(3,1) (4,1) (3,3) (4,3) (4,4) (5,4)
(5,1) (6,1) (5,3) (6,3)
(2,2,2) (5,1,1) (7,1) (8,1)
(4,1,1) (4,2,2) (4,4,1)
(6,1,1) (5,2,2)
(5,1,1,1) (7,1,1)
(6,1,1,1)
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], FreeQ[Total/@Subsets[#], Length[#]]&]], {n, 0, 10}]
CROSSREFS
The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000041 counts partitions, strict A000009.
A002865 counts partitions whose length is a part, complement A229816.
A007865/A085489/A151897 count certain types of sum-free subsets.
A108917 counts knapsack partitions, non-knapsack A366754.
A126796 counts complete partitions, incomplete A365924.
A237667 counts sum-free partitions, sum-full A237668.
A304792 counts subset-sums of partitions, strict A365925.
Triangles:
A008284 counts partitions by length, strict A008289.
A046663 counts partitions of n without a subset-sum k, strict A365663.
A365543 counts partitions of n with a subset-sum k, strict A365661.
A365658 counts partitions by number of subset-sums, strict A365832.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 12 2023
EXTENSIONS
a(41)-a(54) from Chai Wah Wu, Nov 13 2023
STATUS
approved
Numbers m without a divisor whose prime indices sum to bigomega(m).
+10
25
3, 5, 7, 10, 11, 13, 14, 17, 19, 22, 23, 25, 26, 27, 28, 29, 31, 34, 35, 37, 38, 41, 43, 44, 46, 47, 49, 52, 53, 55, 58, 59, 61, 62, 63, 65, 67, 68, 71, 73, 74, 76, 77, 79, 82, 83, 85, 86, 88, 89, 91, 92, 94, 95, 97, 98, 99, 101, 103, 104, 106, 107, 109, 113
OFFSET
1,1
COMMENTS
Also numbers m whose prime indices do not have a submultiset summing to bigomega(m).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
These are the Heinz numbers of the partitions counted by A367213.
EXAMPLE
The prime indices of 24 are {1,1,1,2} with submultiset {1,1,2} summing to 4, so 24 is not in the sequence.
The terms together with their prime indices begin:
3: {2} 29: {10} 58: {1,10}
5: {3} 31: {11} 59: {17}
7: {4} 34: {1,7} 61: {18}
10: {1,3} 35: {3,4} 62: {1,11}
11: {5} 37: {12} 63: {2,2,4}
13: {6} 38: {1,8} 65: {3,6}
14: {1,4} 41: {13} 67: {19}
17: {7} 43: {14} 68: {1,1,7}
19: {8} 44: {1,1,5} 71: {20}
22: {1,5} 46: {1,9} 73: {21}
23: {9} 47: {15} 74: {1,12}
25: {3,3} 49: {4,4} 76: {1,1,8}
26: {1,6} 52: {1,1,6} 77: {4,5}
27: {2,2,2} 53: {16} 79: {22}
28: {1,1,4} 55: {3,5} 82: {1,13}
MATHEMATICA
prix[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[100], FreeQ[Total/@prix/@Divisors[#], PrimeOmega[#]]&]
CROSSREFS
The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000700 counts self-conjugate partitions, ranks A088902.
A108917 counts knapsack partitions, ranks A299702, strict A275972.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A229816 counts partitions whose length is not a part, ranks A367107.
A237667 counts sum-free partitions, ranks A364531.
A365924 counts incomplete partitions, ranks A365830.
Triangles:
A046663 counts partitions of n without a subset-sum k, strict A365663.
A365543 counts partitions of n with a subset-sum k, strict A365661.
A365658 counts partitions by number of subset-sums, strict A365832.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 15 2023
STATUS
approved
Number of subset-sums of strict integer partitions of n.
+10
24
1, 2, 2, 6, 6, 10, 17, 22, 29, 42, 59, 74, 102, 130, 171, 226, 281, 356, 454, 566, 699, 896, 1080, 1342, 1637, 2006, 2413, 2962, 3548, 4286, 5114, 6148, 7272, 8738, 10268, 12224, 14387, 16996, 19863, 23450, 27257, 31984, 37187, 43364, 50173, 58428, 67322
OFFSET
0,2
COMMENTS
This is the "not necessarily positive" version, cf. A284640.
EXAMPLE
The a(6) = 17 ways, showing each strict partition and its subset-sums:
(6): 0,6
(51): 0,1,5,6
(42): 0,2,4,6
(321): 0,1,2,3,4,5,6
MATHEMATICA
Table[Total[Length[Union[Total/@Subsets[#]]]& /@ Select[IntegerPartitions[n], UnsameQ@@#&]], {n, 30}]
CROSSREFS
The positive case is A284640.
The non-strict version is A304792, positive case A276024.
Row sums of A365661, non-strict A365543.
The complement (non-subset-sums) is A365922, non-strict A365918.
A000041 counts integer partitions, strict A000009.
A126796 counts complete partitions, ranks A325781, strict A188431.
A365923 counts partitions by non-subset-sums, strict A365545.
A365924 counts incomplete partitions, ranks A365830, strict A365831.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 26 2023
STATUS
approved
Number of integer partitions of n whose length (number of parts) is equal to the sum of some submultiset.
+10
24
1, 1, 1, 2, 3, 5, 6, 11, 15, 22, 30, 43, 58, 80, 106, 143, 186, 248, 318, 417, 530, 684, 863, 1103, 1379, 1741, 2162, 2707, 3339, 4145, 5081, 6263, 7640, 9357, 11350, 13822, 16692, 20214, 24301, 29300, 35073, 42085, 50208, 59981, 71294, 84866, 100509, 119206
OFFSET
0,4
COMMENTS
Or, partitions whose length is a subset-sum of the parts.
EXAMPLE
The partition (3,2,1,1) has submultisets (3,1) or (2,1,1) with sum 4, so is counted under a(7).
The a(1) = 1 through a(8) = 15 partitions:
(1) (11) (21) (22) (32) (42) (52) (62)
(111) (211) (221) (321) (322) (332)
(1111) (311) (2211) (331) (431)
(2111) (3111) (421) (521)
(11111) (21111) (2221) (2222)
(111111) (3211) (3221)
(4111) (3311)
(22111) (4211)
(31111) (22211)
(211111) (32111)
(1111111) (41111)
(221111)
(311111)
(2111111)
(11111111)
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], MemberQ[Total/@Subsets[#], Length[#]]&]], {n, 0, 10}]
CROSSREFS
The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000041 counts partitions, strict A000009.
A002865 counts partitions whose length is a part, complement A229816.
A088809/A093971/A364534 count certain types of sum-full subsets.
A108917 counts knapsack partitions, non-knapsack A366754.
A126796 counts complete partitions, incomplete A365924.
A237668 counts sum-full partitions, sum-free A237667.
A304792 counts subset-sums of partitions, strict A365925.
Triangles:
A008284 counts partitions by length, strict A008289.
A365381 counts sets with a subset summing to k, complement A366320.
A365543 counts partitions of n with a subset-sum k, strict A365661.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 11 2023
STATUS
approved
Heinz numbers of incomplete integer partitions, meaning not every number from 0 to A056239(n) is the sum of some submultiset.
+10
22
3, 5, 7, 9, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 27, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89
OFFSET
1,1
COMMENTS
First differs from A325798 in lacking 156.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The complement (complete partitions) is A325781.
EXAMPLE
The terms together with their prime indices begin:
3: {2}
5: {3}
7: {4}
9: {2,2}
10: {1,3}
11: {5}
13: {6}
14: {1,4}
15: {2,3}
17: {7}
19: {8}
21: {2,4}
22: {1,5}
23: {9}
25: {3,3}
26: {1,6}
27: {2,2,2}
28: {1,1,4}
For example, the submultisets of (1,1,2,6) (right column) and their sums (left column) are:
0: ()
1: (1)
2: (2) or (11)
3: (12)
4: (112)
6: (6)
7: (16)
8: (26) or (116)
9: (126)
10: (1126)
But 5 is missing, so 156 is in the sequence.
MATHEMATICA
prix[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
nmz[y_]:=Complement[Range[Total[y]], Total/@Subsets[y]];
Select[Range[100], Length[nmz[prix[#]]]>0&]
CROSSREFS
For prime indices instead of sums we have A080259, complement of A055932.
The complement is A325781, counted by A126796, strict A188431.
Positions of nonzero terms in A325799, complement A304793.
These partitions are counted by A365924, strict A365831.
A056239 adds up prime indices, row sums of A112798.
A276024 counts positive subset-sums of partitions, strict A284640
A299701 counts distinct subset-sums of prime indices.
A365918 counts distinct non-subset-sums of partitions, strict A365922.
A365923 counts partitions by distinct non-subset-sums, strict A365545.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 26 2023
STATUS
approved
Number of distinct non-subset-sums of integer partitions of n.
+10
22
0, 1, 2, 6, 8, 19, 24, 46, 60, 101, 124, 206, 250, 378, 462, 684, 812, 1165, 1380, 1927, 2268, 3108, 3606, 4862, 5648, 7474, 8576, 11307, 12886, 16652, 19050, 24420, 27584, 35225, 39604, 49920, 56370, 70540, 78608, 98419, 109666, 135212, 151176, 185875, 205308
OFFSET
1,3
COMMENTS
For an integer partition y of n, we call a positive integer k <= n a non-subset-sum iff there is no submultiset of y summing to k.
FORMULA
a(n) = (n+1)*A000041(n) - A304792(n).
EXAMPLE
The a(6) = 19 ways, showing each partition and its non-subset-sums:
(6): 1,2,3,4,5
(51): 2,3,4
(42): 1,3,5
(411): 3
(33): 1,2,4,5
(321):
(3111):
(222): 1,3,5
(2211):
(21111):
(111111):
MATHEMATICA
Table[Total[Length[Complement[Range[n], Total/@Subsets[#]]]&/@IntegerPartitions[n]], {n, 10}]
PROG
(Python)
# uses A304792_T
from sympy import npartitions
def A365918(n): return (n+1)*npartitions(n)-A304792_T(n, n, (0, ), 1) # Chai Wah Wu, Sep 25 2023
CROSSREFS
Row sums of A046663, strict A365663.
The zero-full complement (subset-sums) is A304792.
The strict case is A365922.
Weighted row-sums of A365923, rank statistic A325799, complement A365658.
A000041 counts integer partitions, strict A000009.
A126796 counts complete partitions, ranks A325781, strict A188431.
A365543 counts partitions with a submultiset summing to k, strict A365661.
A365924 counts incomplete partitions, ranks A365830, strict A365831.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 23 2023
EXTENSIONS
a(21)-a(45) from Chai Wah Wu, Sep 25 2023
STATUS
approved
Number of semi-sums of integer partitions of n.
+10
21
0, 0, 1, 2, 5, 9, 17, 28, 46, 72, 111, 166, 243, 352, 500, 704, 973, 1341, 1819, 2459, 3277, 4363, 5735, 7529, 9779, 12685, 16301, 20929, 26638, 33878, 42778, 53942, 67583, 84600, 105270, 130853, 161835, 199896, 245788, 301890, 369208, 451046, 549002, 667370
OFFSET
0,4
COMMENTS
We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums.
EXAMPLE
The partitions of 6 and their a(6) = 17 semi-sums:
(6) ->
(51) -> 6
(42) -> 6
(411) -> 2,5
(33) -> 6
(321) -> 3,4,5
(3111) -> 2,4
(222) -> 4
(2211) -> 2,3,4
(21111) -> 2,3
(111111) -> 2
MATHEMATICA
Table[Total[Length[Union[Total/@Subsets[#, {2}]]]&/@IntegerPartitions[n]], {n, 0, 15}]
CROSSREFS
The non-binary version is A304792.
The strict non-binary version is A365925.
For prime indices instead of partitions we have A366739.
The strict case is A366741.
A000041 counts integer partitions, strict A000009.
A001358 lists semiprimes, squarefree A006881, conjugate A065119.
A126796 counts complete partitions, ranks A325781, strict A188431.
A276024 counts positive subset-sums of partitions, strict A284640.
A365924 counts incomplete partitions, ranks A365830, strict A365831.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 06 2023
EXTENSIONS
More terms from Alois P. Heinz, Nov 06 2023
STATUS
approved
Number of semi-sums of strict integer partitions of n.
+10
17
0, 0, 0, 1, 1, 2, 5, 6, 9, 13, 21, 26, 37, 48, 63, 86, 108, 139, 175, 223, 274, 350, 422, 527, 638, 783, 939, 1146, 1371, 1648, 1957, 2341, 2770, 3285, 3867, 4552, 5353, 6262, 7314, 8529, 9924, 11511, 13354, 15423, 17825, 20529, 23628, 27116, 31139, 35615
OFFSET
0,6
COMMENTS
We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums.
EXAMPLE
The strict partitions of 9 and their a(9) = 13 semi-sums:
(9) ->
(81) -> 9
(72) -> 9
(63) -> 9
(621) -> 3,7,8
(54) -> 9
(531) -> 4,6,8
(432) -> 5,6,7
MATHEMATICA
Table[Total[Length[Union[Total/@Subsets[#, {2}]]]&/@Select[IntegerPartitions[n], UnsameQ@@#&]], {n, 0, 30}]
CROSSREFS
The non-strict non-binary version is A304792.
The non-binary version is A365925.
The non-strict version is A366738.
A000041 counts integer partitions, strict A000009.
A001358 lists semiprimes, squarefree A006881, conjugate A065119.
A126796 counts complete partitions, ranks A325781, strict A188431.
A276024 counts positive subset-sums of partitions, strict A284640.
A365543 counts partitions with a subset summing to k, complement A046663.
A365661 counts strict partitions w/ subset summing to k, complement A365663.
A365924 counts incomplete partitions, ranks A365830, strict A365831.
A366739 counts semi-sums of prime indices, firsts A367097.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 05 2023
STATUS
approved

Search completed in 0.019 seconds