OFFSET
1,4
COMMENTS
EXAMPLE
a(6) counts these partitions: 51, 42, 33, 321, 3111.
MATHEMATICA
Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, n - Max[p]]], {n, 50}]
PROG
(Python)
from sympy.utilities.iterables import partitions
def A238628(n): return sum(1 for p in partitions(n) if n-max(p, default=0) in p) # Chai Wah Wu, Sep 21 2023
(PARI) a(n) = my(res = floor(n/2)); if(!bitand(n, 1), res+=(numbpart(n/2)-1)); res
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Mar 02 2014
STATUS
approved