[go: up one dir, main page]

login
A325761
Heinz numbers of integer partitions whose length is itself a part.
8
1, 2, 6, 9, 15, 20, 21, 30, 33, 39, 45, 50, 51, 56, 57, 69, 70, 75, 84, 87, 93, 105, 110, 111, 123, 125, 126, 129, 130, 140, 141, 159, 165, 170, 175, 176, 177, 183, 189, 190, 195, 196, 201, 210, 213, 219, 230, 237, 245, 249, 255, 264, 267, 275, 285, 290, 291
OFFSET
1,2
COMMENTS
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The enumeration of these partitions by sum is given by A002865.
EXAMPLE
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
6: {1,2}
9: {2,2}
15: {2,3}
20: {1,1,3}
21: {2,4}
30: {1,2,3}
33: {2,5}
39: {2,6}
45: {2,2,3}
50: {1,3,3}
51: {2,7}
56: {1,1,1,4}
57: {2,8}
69: {2,9}
70: {1,3,4}
75: {2,3,3}
84: {1,1,2,4}
87: {2,10}
MATHEMATICA
Select[Range[100], MemberQ[PrimePi/@First/@FactorInteger[#], PrimeOmega[#]]&]
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 18 2019
STATUS
approved