OFFSET
1,2
COMMENTS
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The enumeration of these partitions by sum is given by A002865.
EXAMPLE
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
6: {1,2}
9: {2,2}
15: {2,3}
20: {1,1,3}
21: {2,4}
30: {1,2,3}
33: {2,5}
39: {2,6}
45: {2,2,3}
50: {1,3,3}
51: {2,7}
56: {1,1,1,4}
57: {2,8}
69: {2,9}
70: {1,3,4}
75: {2,3,3}
84: {1,1,2,4}
87: {2,10}
MATHEMATICA
Select[Range[100], MemberQ[PrimePi/@First/@FactorInteger[#], PrimeOmega[#]]&]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 18 2019
STATUS
approved