[go: up one dir, main page]

login
Search: a327837 -id:a327837
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(1) = 1; for n > 1, a(n) = number of exponential divisors of n.
+10
48
1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 3, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 3, 3, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 4, 1, 1
OFFSET
1,4
COMMENTS
The exponential divisors of a number x = Product p(i)^r(i) are all numbers of the form Product p(i)^s(i) where s(i) divides r(i) for all i.
Wu gives a complicated Dirichlet g.f.
a(1) = 1 by convention. This is also required for a function to be multiplicative. - N. J. A. Sloane, Mar 03 2009
The inverse Moebius transform seems to be in A124315. The Dirichlet inverse appears to be related to A166234. - R. J. Mathar, Jul 14 2014
LINKS
Andrew V. Lelechenko, Exponential and infinitary divisors, arXiv:1405.7597 [math.NT], 2014, sequence tau^(e).
J. O. M. Pedersen, Tables of Aliquot Cycles.
J. O. M. Pedersen, Tables of Aliquot Cycles. [Via Internet Archive Wayback-Machine]
J. O. M. Pedersen, Tables of Aliquot Cycles. [Cached copy, pdf file only]
László Tóth and Nicuşor Minculete, Exponential unitary divisors, arXiv:0910.2798 [math.NT], 2009.
Tim Trudgian, The sum of the unitary divisor function, arXiv:1312.4615 [math.NT], 2013-2014, Section 3.
Eric Weisstein's World of Mathematics, e-Divisor.
Jie Wu, Problème de diviseurs exponentiels et entiers exponentiellement sans facteur carré, J. Theor. Nombr. Bordeaux 7 (1) (1995) 133-141.
FORMULA
Multiplicative with a(p^e) = tau(e). - Vladeta Jovovic, Jul 23 2001
Sum_{k=1..n} a(k) ~ A327837 * n. - Vaclav Kotesovec, Feb 27 2023
EXAMPLE
a(8)=2 because 2 and 2^3 are e-divisors of 8.
The sets of e-divisors start as:
1:{1}
2:{2}
3:{3}
4:{2, 4}
5:{5}
6:{6}
7:{7}
8:{2, 8}
9:{3, 9}
10:{10}
11:{11}
12:{6, 12}
13:{13}
14:{14}
15:{15}
16:{2, 4, 16}
17:{17}
18:{6, 18}
19:{19}
20:{10, 20}
21:{21}
22:{22}
23:{23}
24:{6, 24}
MAPLE
A049419 := proc(n)
local a;
a := 1 ;
for pf in ifactors(n)[2] do
a := a*numtheory[tau](op(2, pf)) ;
end do:
a ;
end proc:
seq(A049419(n), n=1..20) ; # R. J. Mathar, Jul 14 2014
MATHEMATICA
a[1] = 1; a[p_?PrimeQ] = 1; a[p_?PrimeQ, e_] := DivisorSigma[0, e]; a[n_] := Times @@ (a[#[[1]], #[[2]]] & ) /@ FactorInteger[n]; Table[a[n], {n, 1, 102}] (* Jean-François Alcover, Jan 30 2012, after Vladeta Jovovic *)
PROG
(Haskell)
a049419 = product . map (a000005 . fromIntegral) . a124010_row
-- Reinhard Zumkeller, Mar 13 2012
(GAP) A049419:=n->Product(List(Collected(Factors(n)), p -> Tau(p[2]))); List([1..10^4], n -> A049419(n)); # Muniru A Asiru, Oct 29 2017
(PARI) a(n) = vecprod(apply(numdiv, factor(n)[, 2])); \\ Amiram Eldar, Mar 27 2023
CROSSREFS
Row lengths of A322791.
Cf. A049599, A061389, A051377 (sum of e-divisors).
Partial sums are in A099593.
KEYWORD
nonn,mult,nice
EXTENSIONS
More terms from Jud McCranie, May 29 2000
STATUS
approved
Multiplicative with a(p^e) = sigma(e), where sigma = A000203.
+10
6
1, 1, 1, 3, 1, 1, 1, 4, 3, 1, 1, 3, 1, 1, 1, 7, 1, 3, 1, 3, 1, 1, 1, 4, 3, 1, 4, 3, 1, 1, 1, 6, 1, 1, 1, 9, 1, 1, 1, 4, 1, 1, 1, 3, 3, 1, 1, 7, 3, 3, 1, 3, 1, 4, 1, 4, 1, 1, 1, 3, 1, 1, 3, 12, 1, 1, 1, 3, 1, 1, 1, 12, 1, 1, 3, 3, 1, 1, 1, 7, 7, 1, 1, 3, 1, 1
OFFSET
1,4
FORMULA
Dirichlet g.f.: Product_{p prime} (1 + Sum_{e>=1} sigma(e) / p^(e*s)).
Sum_{k=1..n} a(k) ~ c * n, where c = Product_{p prime} (1 + Sum_{e>=2} (sigma(e) - sigma(e-1)) / p^e) = 2.96008030202494141048182047811089469392843909592516341... = A361013
MATHEMATICA
g[p_, e_] := DivisorSigma[1, e]; a[1] = 1; a[n_] := Times @@ g @@@ FactorInteger[n]; Array[a, 100]
PROG
(Python)
from math import prod
from sympy import divisor_sigma, factorint
def A361012(n): return prod(divisor_sigma(e) for e in factorint(n).values()) # Chai Wah Wu, Feb 28 2023
KEYWORD
nonn,mult
AUTHOR
Vaclav Kotesovec, Feb 28 2023
STATUS
approved
Sum of the number of e-divisors of all numbers from 1 up to n.
+10
5
1, 2, 3, 5, 6, 7, 8, 10, 12, 13, 14, 16, 17, 18, 19, 22, 23, 25, 26, 28, 29, 30, 31, 33, 35, 36, 38, 40, 41, 42, 43, 45, 46, 47, 48, 52, 53, 54, 55, 57, 58, 59, 60, 62, 64, 65, 66, 69, 71, 73, 74, 76, 77, 79, 80, 82, 83, 84, 85, 87, 88, 89, 91, 95, 96, 97, 98, 100, 101, 102, 103, 107
OFFSET
1,2
LINKS
FORMULA
a(n) ~ c * n, where c = A327837. - Amiram Eldar, Dec 08 2022
MATHEMATICA
f[p_, e_] := DivisorSigma[0, e]; ediv[n_] := Times @@ (f @@@ FactorInteger[n]); Accumulate[Array[ediv, 100]] (* Amiram Eldar, Jun 23 2019 *)
PROG
(PARI) d(n) = {my(f = factor(n)); prod(i = 1, #f~, numdiv(f[i, 2])); }
lista(nmax) = {my(s = 0); for(n = 1, nmax, s += d(n); print1(s, ", ")); } \\ Amiram Eldar, Dec 08 2022
CROSSREFS
Equals partial sums of A049419.
Different from A013936 (which does not contain 52).
KEYWORD
nonn
AUTHOR
STATUS
approved
Decimal expansion of a constant related to the asymptotics of A361012.
+10
5
2, 9, 6, 0, 0, 8, 0, 3, 0, 2, 0, 2, 4, 9, 4, 1, 4, 1, 0, 4, 8, 1, 8, 2, 0, 4, 7, 8, 1, 1, 0, 8, 9, 4, 6, 9, 3, 9, 2, 8, 4, 3, 9, 0, 9, 5, 9, 2, 5, 1, 6, 3, 4, 1, 1, 9, 6, 7, 5, 0, 4, 4, 8, 0, 8, 6, 6, 3, 3, 9, 3, 5, 7, 8, 7, 3, 7, 3, 8, 2, 4, 9, 5, 8, 4, 6, 2, 6, 7, 3, 8, 5, 0, 1, 0, 8, 0, 5, 1, 7, 8, 6, 0, 6, 6
OFFSET
1,1
FORMULA
Equals limit_{n->oo} A361012(n) / n.
Equals Product_{p prime} (1 + Sum_{e>=2} (sigma(e) - sigma(e-1)) / p^e), where sigma = A000203.
EXAMPLE
2.960080302024941410481820478110894693928439095925163411967504480866339...
MATHEMATICA
$MaxExtraPrecision = 1000; smax = 500; Do[Clear[f]; f[p_] := 1 + Sum[(DivisorSigma[1, e] - DivisorSigma[1, e-1])/p^e, {e, 2, emax}]; cc = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, smax}], x, smax + 1]]; Print[f[2] * f[3] * f[5] * f[7] * Exp[N[Sum[cc[[n]]*(PrimeZetaP[n] - 1/2^n - 1/3^n - 1/5^n - 1/7^n), {n, 2, smax}], 120]]], {emax, 100, 1000, 100}]
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, Feb 28 2023
STATUS
approved
Decimal expansion of the asymptotic mean of the exponential totient function (A072911).
+10
4
1, 2, 5, 2, 7, 0, 7, 7, 8, 5, 3, 7, 5, 4, 4, 6, 1, 2, 6, 0, 5, 3, 7, 5, 0, 7, 5, 1, 9, 3, 4, 2, 8, 3, 0, 6, 0, 4, 3, 9, 2, 3, 7, 9, 6, 7, 1, 0, 8, 9, 1, 5, 3, 7, 3, 7, 4, 4, 8, 4, 9, 5, 1, 4, 0, 2, 9, 5, 7, 8, 3, 4, 3, 8, 6, 5, 4, 4, 2, 8, 6, 5, 0, 9, 5, 3, 7
OFFSET
1,2
LINKS
László Tóth, On certain arithmetic functions involving exponential divisors, Annales Univ. Sci. Budapest., Sect. Comp., Vol. 24 (2004), pp. 285-294.
FORMULA
Equals lim_{m->oo} (1/m) Sum_{k=1..m} A072911(k).
Equals Product_{p prime} (1 + Sum_{e >= 3} (phi(e) - phi(e-1))/p^e), where phi is the Euler totient function (A000010).
EXAMPLE
1.252707785375446126053750751934283060439237967108915...
MATHEMATICA
$MaxExtraPrecision = 500; m = 500; f[x_] := Log[1 + Sum[x^e * (EulerPhi[e] - EulerPhi[e - 1]), {e, 3, m}]]; c = Rest[CoefficientList[Series[f[x], {x, 0, m}], x]*Range[0, m]]; RealDigits[Exp[f[1/2] + NSum[Indexed[c, k]*(PrimeZetaP[k] - 1/2^k)/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Amiram Eldar, Sep 27 2019
STATUS
approved
The number of exponential divisors of n that are squares (A000290).
+10
3
1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0
OFFSET
1,16
LINKS
FORMULA
a(n) = A049419(n^2).
Multiplicative with a(p^e) = A183063(e), or equivalently, a(p^e) = 0 if e is odd, and A000005(e/2) if e is even.
a(n) >= 0, with equality if and only if n is not a square number (A000037).
a(n) <= A049419(n), with equality if and only if n = 1.
Sum_{k=1..n} a(k) ~ c * sqrt(n), where c = 1.602317... (A327837).
MATHEMATICA
f[p_, e_] := If[OddQ[e], 0, DivisorSigma[0, e/2]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) a(n) = vecprod(apply(x -> if(x%2, 0, numdiv(x/2)), factor(n)[, 2]));
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Amiram Eldar, Jan 11 2024
STATUS
approved
Sum of the number of e-divisors of all numbers from 2 up to n.
+10
2
0, 1, 2, 4, 5, 6, 7, 9, 11, 12, 13, 15, 16, 17, 18, 21, 22, 24, 25, 27, 28, 29, 30, 32, 34, 35, 37, 39, 40, 41, 42, 44, 45, 46, 47, 51, 52, 53, 54, 56, 57, 58, 59, 61, 63, 64, 65, 68, 70, 72, 73, 75, 76, 78, 79, 81, 82, 83, 84, 86, 87, 88, 90, 94, 95, 96, 97, 99, 100, 101
OFFSET
1,3
LINKS
FORMULA
a(n) ~ A327837 * n. - Vaclav Kotesovec, Feb 27 2023
MATHEMATICA
f[p_, e_] := DivisorSigma[0, e]; ediv[n_] := Times @@ (f @@@ FactorInteger[n]);
Accumulate[Array[ediv, 100]] - 1 (* Amiram Eldar, Jun 23 2019 *)
CROSSREFS
Equals - 1 + partial sums of A049419. Cf. A145353, A327837.
KEYWORD
nonn
AUTHOR
Ralf Stephan, Oct 26 2004
STATUS
approved
Multiplicative with a(p^e) = sigma_2(e), where sigma_2 = A001157.
+10
2
1, 1, 1, 5, 1, 1, 1, 10, 5, 1, 1, 5, 1, 1, 1, 21, 1, 5, 1, 5, 1, 1, 1, 10, 5, 1, 10, 5, 1, 1, 1, 26, 1, 1, 1, 25, 1, 1, 1, 10, 1, 1, 1, 5, 5, 1, 1, 21, 5, 5, 1, 5, 1, 10, 1, 10, 1, 1, 1, 5, 1, 1, 5, 50, 1, 1, 1, 5, 1, 1, 1, 50, 1, 1, 5, 5, 1, 1, 1, 21, 21, 1, 1, 5
OFFSET
1,4
FORMULA
Dirichlet g.f.: Product_{primes p} (1 + Sum_{e>=1} sigma_2(e) / p^(e*s)).
Sum_{k=1..n} a(k) ~ c * n, where c = Product_{p prime} (1 + Sum_{e>=2} (sigma_2(e) - sigma_2(e-1)) / p^e) = 11.343154585178523783556367128387762286267199879648613456124659589127638983...
MATHEMATICA
g[p_, e_] := DivisorSigma[2, e]; a[1] = 1; a[n_] := Times @@ g @@@ FactorInteger[n]; Array[a, 100]
PROG
(Python)
from math import prod
from sympy import factorint, divisor_sigma
def A361063(n): return prod(divisor_sigma(e, 2) for e in factorint(n).values()) # Chai Wah Wu, Mar 01 2023
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Vaclav Kotesovec, Mar 01 2023
STATUS
approved
Multiplicative with a(p^e) = sigma_3(e), where sigma_3 = A001158.
+10
2
1, 1, 1, 9, 1, 1, 1, 28, 9, 1, 1, 9, 1, 1, 1, 73, 1, 9, 1, 9, 1, 1, 1, 28, 9, 1, 28, 9, 1, 1, 1, 126, 1, 1, 1, 81, 1, 1, 1, 28, 1, 1, 1, 9, 9, 1, 1, 73, 9, 9, 1, 9, 1, 28, 1, 28, 1, 1, 1, 9, 1, 1, 9, 252, 1, 1, 1, 9, 1, 1, 1, 252, 1, 1, 9, 9, 1, 1, 1, 73, 73, 1, 1, 9
OFFSET
1,4
FORMULA
Dirichlet g.f.: Product_{primes p} (1 + Sum_{e>=1} sigma_3(e) / p^(e*s)).
Sum_{k=1..n} a(k) ~ c * n, where c = Product_{p prime} (1 + Sum_{e>=2} (sigma_3(e) - sigma_3(e-1)) / p^e) = 136.775196585091127831467103699999450735835551529525277016916082455332230986...
MATHEMATICA
g[p_, e_] := DivisorSigma[3, e]; a[1] = 1; a[n_] := Times @@ g @@@ FactorInteger[n]; Array[a, 100]
PROG
(Python)
from math import prod
from sympy import factorint, divisor_sigma
def A361064(n): return prod(divisor_sigma(e, 3) for e in factorint(n).values()) # Chai Wah Wu, Mar 01 2023
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Vaclav Kotesovec, Mar 01 2023
STATUS
approved
The number of exponential divisors of the nonsquarefree numbers.
+10
2
2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 4, 2, 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 2, 4, 4, 2, 4, 2, 2, 3, 2, 4, 2, 2, 4, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 4, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 3
OFFSET
1,1
COMMENTS
The terms of A049419 that are larger than 1, since A049419(k) = 1 if and only if k is squarefree (A005117).
LINKS
FORMULA
a(n) = A049419(A013929(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (A327837 - A059956)/A229099 = 2.53623753427906735929... .
MATHEMATICA
f[p_, e_] := DivisorSigma[0, e]; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Array[s, 200], # > 1 &]
PROG
(PARI) lista(kmax) = {my(p, f); for(k = 1, kmax, f = factor(k); p = prod(i=1, #f~, numdiv(f[i, 2])); if(p > 1, print1(p, ", "))); }
KEYWORD
nonn
AUTHOR
Amiram Eldar, Dec 29 2023
STATUS
approved

Search completed in 0.010 seconds