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ON CERTAIN ARITHMETIC FUNCTIONS
INVOLVING EXPONENTIAL DIVISORS
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Dedicated to Professor Imre Kátai on the ocassion of his 65th birthday

1. Introduction

Let n > 1 be an integer of canonical form n =
r∏

i=1

pai
i . The integer d is

called an exponential divisor of n if d =
r∏

i=1

pci
i , where ci|ai for every 1 ≤ i ≤ r,

notation: d|en. By convention 1|c1. This notion was introduced by M.V.
Subbarao [9]. Note that 1 is not an exponential divisor of n > 1, the smallest

exponential divisor of n > 1 is its squarefree kernel κ(n) =
r∏

i=1

pi.

Let τ (e)(n) =
∑

d|en

1 and σ(e)(n) =
∑

d|en

d denote the number and the sum

of exponential divisors of n, respectively. The integer n =
r∏

i=1

pai
i is called

exponentially squarefree if all the exponents ai (1 ≤ i ≤ r) are squarefree.
Let q(e) denote the characteristic function of exponentially squarefree integers.
Properties of these functions were investigated by several authors, see [1], [2],
[3], [5], [8], [9], [12].

Two integers n,m > 1 have common exponential divisors iff they have the

same prime factors and in this case, i.e. for n =
r∏

i=1

pai
i , m =

r∏
i=1

pbi
i , ai, bi ≥
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≥ 1 (1 ≤ i ≤ r), the greatest common exponential divisor of n and m is

(n,m)(e) =
r∏

i=1

p
(ai,bi)
i .

Here (1, 1)(e) = 1 by convention and (1,m)(e) does not exist for m > 1.
The integers n, m > 1 are called exponentially coprime, if they have the

same prime factors and (ai, bi) = 1 for every 1 ≤ i ≤ r, with the notation of
above. In this case (n,m)(e) = κ(n) = κ(m). 1 and 1 are considered to be
exponentially coprime. 1 and m > 1 are not exponentially coprime.

For n =
r∏

i=1

pai
i > 1, ai ≥ 1 (1 ≤ i ≤ r), denote by φ(e)(n) the number of

integers
r∏

i=1

pci
i such that 1 ≤ ci ≤ ai and (ci, ai) = 1 for 1 ≤ i ≤ r, and let

φ(e)(1) = 1. Thus φ(e)(n) counts the number of divisors d of n such that d and
n are exponentially coprime.

It is immediately, that φ(e) is a prime independent multiplicative function
and for n > 1

φ(e)(n) =
r∏

i=1

φ(ai),

where φ is the Euler-function. Exponentially coprime integers and function
φ(e) were introduced by J. Sándor [6]. He showed that

lim sup
n→∞

log φ(e)(n) log log n

log n
=

log 4
5

.

We consider the functions σ̃ and P̃ defined as follows. Let σ̃(n) be the sum
of those divisors d of n such that d and n are exponentially coprime. Function
σ̃ is multiplicative and for every prime power pa,

σ̃(pa) =
∑

1≤c≤a
(c,a)=1

pc.

Here σ̃(p) = σ̃(p2) = p, σ̃(p3) = p + p2, σ̃(p4) = p + p3, etc.

Furthermore let P̃ (n) be given by

P̃ (n) =
∑

1≤j≤n
κ(j)=κ(n)

(j, n)(c),
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representing an analogue of Pillai’s function P (n) =
n∑

j=1

(j, n).

Function P̃ is also multiplicative and for every prime power pa,

P̃ (pa) =
∑

1≤c≤a

p(c,a) =
∑

d|a
pdφ(a/d),

here P̃ (p) = p, P̃ (p2) = p + p2, P̃ (p3) = 2p + p3, P̃ (p4) = 2p + p2 + p4, etc.

We call an integer n =
r∏

i=1

pai
i exponentially k-free if all the exponents

ai (1 ≤ i ≤ r) are k-free, i.e. are not divisible by the k-th power of any prime
(k ≥ 2). Let q

(e)
k denote the characteristic function of exponentially k-free

integers.
The aim of this paper is to investigate the functions φ(e)(n), σ̃(n), P̃ (n)

and q
(e)
k (n). The estimate given for the sum

∑
n≤x

q
(e)
k (n) generalizes the result

of J. Wu [12] concerning exponentially squarefree integers. Our main results
are formulated in Section 2, their proofs are given in Section 3.

Our estimates for
∑

n≤x

(σ̃(n))u and
∑

n≤x

q
(e)
k (n) are consequences of a general

result due to V. Sita Ramaiah and D. Suryanarayana [7], the proof of which
uses the estimate of A. Walfisz [11] concerning k-free integers and is simpler
than the proof given by J. Wu [12].

A. Smati and J. Wu [8] deduced some interesting analogues of known
results on the divisor function τ(n) in case of τ (e)(n). They remarked that their
results can be stated also for certain other prime independent multiplicative
functions f if f(n) depends only on the squarefull kernel of n.

We point out two such results in case of φ(e)(n). Note that, since φ(1) =
= φ(2) = 1, φ(e)(n) depends only on the cubfull kernel of n. These results are
contained in Section 4. Here some open problems are also stated.

2. Main results

Regarding the average orders of the functions φ(e)(n), σ̃(n) and P̃ (n) we
prove the following results.
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Theorem 1.

∑

n≤x

φ(e)(n) = C1x + C2x
1/3 + O

(
x1/5+ε

)
,

for every ε > 0, where C1, C2 are constants given by

C1 =
∏
p

(
1 +

∞∑
a=3

φ(a)− φ(a− 1)
pa

)
,

C2 = ζ(1/3)

(
1 +

∞∑
a=5

φ(a)− φ(a− 1)− φ(a− 3)− φ(a− 4)
pa/3

)
.

Theorem 2. Let u > 1/3 be fixed real number. Then

∑

n≤x

(σ̃(n))u = C3x
u+1 + O

(
xu+1/2δ(x)

)
,

where C3 is given by

C3 =
1

u + 1

∏
p

(
1 +

∞∑
a=2

(σ̃(pa))u − pu(σ̃(pa−1))u

pa(u+1)

)

and
δ(x) = exp

(
−A(log x)3/5(log log x)−1/5

)
,

A being a positive constant.

Theroem 3.

∑

n≤x

P̃ (n) = C4x
2 + O

(
x(log x)5/3

)
,

where the constant C4 is given by

C4 =
1
2

∏
p

(
1 +

∞∑
a=2

P̃ (pa)− pP̃ (pa−1)
p2a

)
.

Concerning the maximal order of the function P̃ (n) we have
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Theorem 4.

lim sup
n→∞

P̃ (n)
n log log n

=
6
π2

eγ ,

where γ is Euler’s constant.

Theorem 5. If k ≥ 2 is a fixed integer, then

∑

n≤x

q
(e)
k (n) = Dkx + O

(
x1/2k

δ(x)
)

,

where

Dk =
∏
p

(
1 +

∞∑

a=2k

qk(a)− qk(a− 1)
pa

)
,

qk(n) denoting the characteristic function of k-free integers.
In the special case k = 2 case this formula is due to J. Wu [12], improving

an earlier result of M.V. Subbarao [9].

3. Proofs

The proof of Theorem 1 is based on the following lemma.

Lemma 1. The Dirichlet series of φ(e) is absolutely convergent for Re s >
> 1 and it is of form

∞∑
n=1

φ(e)(n)
ns

= ζ(s)ζ(3s)V (s),

where the Dirichlet series V (s) =
∞∑

n=1

v(n)
ns

is absolutely convergent for Re s >

> 1/5.

Proof of Lemma 1. Let µ3(n) = µ(m) or 0, according as n = m3 or not,
where µ is the Möbius function, and let f = µ3 ∗ µ in terms of the Dirichlet
convolution. Then we can formally obtain the desired expression by taking
v = φ(e) ∗ f . Both f and v are multiplicative and easy computations show
that f(p) = f(p3) = −1, f(p4) = 1, f(p2) = f(pa) = 0 for each a ≥ 5, and
v(pa) = 0 for 1 ≤ a ≤ 4, v(pa) = φ(a)−φ(a−1)−φ(a−3)−φ(a−4) for a ≥ 5.

Since |v(pa)| < 4a for a ≥ 5, we obtain that V (s) is absolutely convergent
for Re s > 1/5.
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Proof of Theorem 1. Lemma 1 shows that φ(e) = v ∗ τ(1, 3, ·), where
τ(1, 3, n) =

∑
ab3=n

1 for which

∑

n≤x

τ(1, 3, n) = ζ(3)x + ζ(1/3)x1/3 + O
(
x1/5

)
,

cf. [4], pp. 196-199. Therefore,
∑

n≤x

φ(e)(n) =
∑

d≤x

v(d)
∑

e≤x/d

τ(1, 3, e) =

= ζ(3)x
∑

d≤x

v(d)
d

+ ζ(1/3)x1/3
∑

d≤x

v(d)
d1/3

+ O


x1/5+ε

∑

d≤x

|v(d)|
d1/5+ε


 ,

and obtain the desired by usual estimates.

For the proof of Theorem 2 we use the following general result due to V.
Sita Ramaiah and D. Suryanarayana [7], Theorem 1.

Lemma 2. Let k ≥ 2 be a fixed integer, β > (k + 1)−1 be a fixed real
number and g be a multiplicative arithmetic function such that |g(n)| ≤ 1 for
all n ≥ 1. Suppose that either

(i) |g(pj)− 1| ≤ p−1 for 1 ≤ j ≤ k − 1, g(pk) = 0 for all primes p, or
(ii) g(pj) = 1 for 1 ≤ j ≤ k − 1, g(pk) = p−β for all primes p.

Then
∑

n≤x

g(n) = x

∞∑
n=1

(g ∗ u)(n)
n

+ O
(
x1/kδ(x)

)
.

Proof of Theorem 2. This is a direct consequence of Lemma 2 of above.
Take g(n) = (σ̃(n)/n)u. Here g(p) = 1, g(p2) = p−u, g(pa) ≤ p−au(p + p2 +
+ . . .+pa−1)u < (p−1)−u ≤ 1 for every a ≥ 3, hence 0 < g(n) ≤ 1 for all n ≥ 1.
Choosing k = 2, β = u, we obtain the given result by partial summation.

Lemma 3. The Dirichlet series of P̃ (n) is absolutely convergent for
Re s > 2 and it is of form

∞∑
n=1

P̃ (n)
ns

=
ζ(s− 1)ζ(2s− 1)

ζ(3s− 2)
W (s),

where the Dirichlet series W (s) =
∞∑

n=1

w(n)
ns

is absolutely convergent for Re s >

> 3/4.
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Proof of Lemma 3.

∞∑
n=1

P̃ (n)
ns

=
∏
p


1 +

∞∑
a=1

∑

d|a

pdφ(a/d)
pas


 =

=
∏
p


1 +

∞∑

j=1

φ(j)
∞∑

d=1

1
pd(js− 1)


 =

∏
p


1 +

∞∑

j=1

φ(j)
pjs−1 − 1


 =

=
ζ(s− 1)ζ(2s− 1)

ζ(3s− 2)
W (s),

where

W (s) :=
∏
p


1 +

(ps−1 − 1)(p2s−1 − 1)
p3s−2 − 1

∞∑

j=3

φ(j)
pjs−1 − 1


 ,

which is absolutely convergent for Re s > 3/4.

Proof of Theorem 3. By Lemma 3, P̃ = h ∗ w, where

h(n) =
∑

ab2c3=n

abc2µ(c),

and obtain the desired result, exactly like in proof of Theorem 2 of [5], using
the estimate ∑

mn2≤x

mn =
1
2
ζ(3)x2 + O(x(log x)2/3)

due to Y.-F.S. Pétermann and J. Wu [5], Theorem 1.

Theorem 4 is a direct consequence of the following general result of L.
Tóth and E. Wirsing [10], Corollary 1.

Lemma 4. Let f be a nonnegative real-valued multiplicative function.
Suppose that for all primes p we have ρ(p) := sup

ν≥0
f(pν) ≤ (1−1/p)−1 and that

for all primes p there is an exponent ep = po(1) such that f(pep) ≥ 1 + 1/p.
Then

lim sup
n→∞

f(n)
log log n

= eγ
∏
p

(
1− 1

p

)
ρ(p).

Proof of Theorem 4. Apply Lemma 4 for f(n) = P̃ (n)/n, where f(pa) ≤
≤ (p + p2 + . . . + pa)p−a < (1 − 1/p)−1 for every a ≥ 1 and f(p2) = 1 + 1/p,
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hence we can choose ep = 2 for all p. Moreover, ρ(p) = 1 + 1/p for all p and
obtain the desired result.

Proof of Theorem 5. This follows from Lemma 2 by taking 2k instead
of k, where q

(e)
k (p) = q

(e)
k (p2) = . . . = q

(e)
k (p2k−1) = 1, q

(e)
k (p2k

) = 0.

4. Further results and problems

The next result in an analogue of the exponential divisor problem of
Titchmarsh, see Theorem 1 of [8]. The proof is the same using that φ(e)(n) is
a prime independent multiplicative function depending only on the squarefull
(cubfull) kernel of n and that φ(e)(pa) = φ(a) ≤ a for every a ≥ 1.

Theorem 6. For every fixed B > 0

∑

p≤x

φ(e)(p− 1) = C5 li x + O(x/(log x)B),

where

C5 =
∏
p

(
1 +

∞∑

k=3

φ(k)− 1
pk

)
.

Let ω(n) and Ω(n) denote, as usual, the number of prime factors of n and
the number of prime power factors of n, respectively.

Theorem 7. A maximal order of Ω(φ(e)(n)) is 2(log n)/5 log log n.

This can be obtained by the same arguments as those given in the proof
of Theorem 3 (i) of [8]. Here the upper bound is attained for nk = (p1 . . . pk)5,
where pk is the k-th prime.

Problem 1. Determine a maximal order of ω(φ(e)(n)).

Since σ̃(n) ≤ n for all n ≥ 1 and σ̃(p) = p for all primes p, it is clear that
a maximal order of σ̃(n) is n.

Problem 2. Determine a minimal order of σ̃(n).

J. Sándor [6] considered in fact the function ϕe(n) defined as the number
of integers 1 < a < n for which a and n are exponentially coprime (n > 1)
and ϕe(1) = 1. Although ϕe(pa) = φ(e)(pa) = φ(a) for any prime power pa,
functions ϕe and φ(e) are not the same. Take for example n = 23 · 32, then
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numbers a < n exponentially coprime to n are a = 2 · 3, 22 · 3, 24 · 3, hence
ϕe(23 · 32) = 3 6= 2 · 1 = φ(3)φ(2) = ϕe(23) · ϕe(32).

Therefore, ϕe is not multiplicative and ϕe(n) ≥ φ(e)(n) for every n ≥ 1.

Problem 3. What can be said on the order of the function ϕe(n)?
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Ifjúság u. 6.
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