[go: up one dir, main page]

login
A368979
The number of exponential divisors of n that are exponentially odd numbers (A268335).
3
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
1,8
COMMENTS
First differs from A367516 at n = 128, and from A359411 at n = 512.
LINKS
FORMULA
Multiplicative with a(p^e) = A001227(e).
a(n) >= 1, with equality if and only if n is in A138302.
a(n) <= A049419(n), with equality if and only if n is noncomposite (A008578).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + Sum_{k>=2} (d(k) - d(k-1))/p^k) = 1.13657098749361390865..., where d(k) is the number of odd divisors of k (A001227).
MATHEMATICA
f[p_, e_] := DivisorSigma[0, e/2^IntegerExponent[e, 2]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) a(n) = vecprod(apply(x -> numdiv(x >> valuation(x, 2)), factor(n)[, 2]));
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Amiram Eldar, Jan 11 2024
STATUS
approved