[go: up one dir, main page]

login
Search: a318458 -id:a318458
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(1) = 0; for n > 1, a(n) = A318458(A156552(n)).
+20
12
0, 0, 0, 1, 0, 1, 0, 1, 6, 0, 0, 1, 0, 1, 8, 9, 0, 1, 0, 1, 16, 1, 0, 1, 0, 1, 10, 1, 0, 1, 0, 1, 0, 1, 20, 9, 0, 1, 66, 1, 0, 1, 0, 1, 6, 1, 0, 1, 0, 0, 2, 1, 0, 1, 36, 1, 258, 1, 0, 1, 0, 1, 6, 41, 0, 1, 0, 1, 0, 1, 0, 17, 0, 1, 16, 1, 32, 1, 0, 1, 10, 1, 0, 1, 132, 1, 1026, 1, 0, 33, 72, 1, 0, 1, 256, 25, 0, 0, 66, 17, 0, 1, 0, 1, 34
OFFSET
1,9
FORMULA
a(1) = 0; for n > 1, a(n) = A318458(A156552(n)).
a(n) = A156552(n) AND (A323243(n) - A156552(n)).
PROG
(PARI)
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f)};
A156552(n) = if(1==n, 0, if(!(n%2), 1+(2*A156552(n/2)), 2*A156552(A064989(n))));
A318458(n) = bitand(n, sigma(n)-n);
A324398(n) = if(1==n, 0, A318458(A156552(n)));
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 05 2019
STATUS
approved
Numbers k such that A318458(k) (bitwise-AND of k and sigma(k)-k) is equal to k.
+20
7
6, 20, 28, 36, 66, 72, 88, 100, 104, 114, 132, 150, 240, 258, 264, 272, 280, 304, 354, 368, 392, 402, 464, 496, 498, 516, 550, 552, 642, 644, 680, 708, 748, 770, 774, 784, 786, 834, 836, 840, 860, 978, 1026, 1032, 1040, 1044, 1056, 1062, 1064, 1068, 1074, 1092, 1104, 1120, 1184, 1232, 1266, 1312, 1362, 1376, 1410, 1504
OFFSET
1,1
COMMENTS
Positions of zeros in A324648. Fixed points of A318458, also positions of the records in the latter.
Intersection with A324652 gives A324643.
The odd terms are: 7425, 76545, 92565, ... (A324897).
MATHEMATICA
Select[Range@ 1600, BitAnd[#, DivisorSigma[1, #] - #] == # &] (* Michael De Vlieger, Apr 21 2019, after Vincenzo Librandi at A318458 *)
PROG
(PARI) for(n=1, oo, if(bitand(n, sigma(n)-n)==n, print1(n, ", ")));
CROSSREFS
Cf. A000396, A324643, A324897, A324898 (subsequences).
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 14 2019
STATUS
approved
Lexicographically earliest sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = [A009194(n), A318458(n)] for all other numbers, except f(1) = -1.
+20
6
1, 2, 3, 2, 3, 4, 3, 2, 2, 5, 3, 6, 3, 7, 8, 2, 3, 9, 3, 10, 3, 11, 3, 12, 2, 13, 14, 15, 3, 16, 3, 2, 17, 18, 3, 19, 3, 11, 3, 20, 3, 21, 3, 22, 23, 7, 3, 6, 2, 24, 25, 26, 3, 27, 28, 29, 28, 30, 3, 31, 3, 32, 33, 2, 3, 34, 3, 18, 17, 35, 3, 36, 3, 5, 3, 37, 3, 38, 3, 39, 2, 18, 3, 40, 41, 11, 17, 42, 3, 43, 44, 45, 3, 46, 47, 12, 3, 48, 23, 49, 3, 50, 3
OFFSET
1,2
COMMENTS
For all i, j:
A324401(i) = A324401(j) => a(i) = a(j).
Regarding the scatter plot of this sequence, see also comments in A318310. - Antti Karttunen, Feb 04 2020
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A009194(n) = gcd(n, sigma(n));
A318458(n) = bitand(n, sigma(n)-n);
Aux324389(n) = if(1==n, -1, [A009194(n), A318458(n)]);
v324389 = rgs_transform(vector(up_to, n, Aux324389(n)));
A324389(n) = v324389[n];
KEYWORD
nonn,look
AUTHOR
Antti Karttunen, Mar 05 2019
STATUS
approved
Lexicographically earliest sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = [A033879(n), A318458(n)] for all other numbers, except f(1) = -1.
+20
5
1, 2, 3, 2, 4, 5, 6, 2, 7, 8, 9, 10, 11, 12, 13, 2, 14, 15, 16, 17, 9, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 2, 16, 28, 19, 29, 30, 31, 19, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 2, 39, 56, 57, 58, 35, 59, 60, 61, 62, 63, 64, 65, 51, 66, 67, 68, 41, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 51, 80
OFFSET
1,2
FORMULA
a(2^n) = 2 for all n >= 1.
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A033879(n) = (n+n-sigma(n));
A318458(n) = bitand(n, sigma(n)-n);
Aux324530(n) = if(1==n, -1, [A033879(n), A318458(n)]);
v324530 = rgs_transform(vector(up_to, n, Aux324530(n)));
A324530(n) = v324530[n];
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 05 2019
STATUS
approved
Odd numbers k such that sigma(k) is congruent to 2 modulo 4 and k = A318458(k), where A318458(k) is bitwise-AND of k and sigma(k)-k.
+20
5
236925, 3847725, 51122925, 69468525, 151141725, 154669725, 269748225, 344211525, 415565325, 445817925, 551569725, 1111904325, 1112565825, 1113756525, 1175717025, 1400045625, 1631666925, 1695170925, 1820873925, 1915847325, 1946981925, 2179080225, 2321121825, 2453690925, 2460041325, 2491740225, 3223500525, 3493517445, 3775103325
OFFSET
1,1
COMMENTS
If this sequence has no common terms with A324647, or no terms common with A324727, then there are no odd perfect numbers.
The first 29 terms factored:
236925 = 3^6 * 5^2 * 13,
3847725 = 3^2 * 5^2 * 7^2 * 349,
51122925 = 3^2 * 5^2 * 7^2 * 4637,
69468525 = 3^2 * 5^2 * 7^2 * 6301,
151141725 = 3^2 * 5^2 * 7^2 * 13709,
154669725 = 3^2 * 5^2 * 7^2 * 14029,
269748225 = 3^6 * 5^2 * 19^2 * 41,
344211525 = 3^4 * 5^2 * 7^2 * 3469,
415565325 = 3^2 * 5^2 * 7^2 * 37693,
445817925 = 3^4 * 5^2 * 7^2 * 4493,
551569725 = 3^2 * 5^2 * 7^4 * 1021,
1111904325 = 3^2 * 5^2 * 7^2 * 100853,
1112565825 = 3^2 * 5^2 * 7^2 * 100913,
1113756525 = 3^2 * 5^2 * 7^2 * 101021,
1175717025 = 3^4 * 5^2 * 7^2 * 17^2 * 41,
1400045625 = 3^2 * 5^4 * 11^4 * 17,
1631666925 = 3^2 * 5^2 * 7^2 * 147997,
1695170925 = 3^2 * 5^2 * 7^2 * 153757,
1820873925 = 3^4 * 5^2 * 13 * 263^2, [Here the unitary prime is not the largest]
1915847325 = 3^2 * 5^2 * 7^2 * 173773,
1946981925 = 3^2 * 5^2 * 7^2 * 176597,
2179080225 = 3^4 * 5^2 * 7^2 * 21961,
2321121825 = 3^4 * 5^2 * 11^2 * 9473,
2453690925 = 3^2 * 5^2 * 7^2 * 222557,
2460041325 = 3^2 * 5^2 * 7^2 * 223133,
2491740225 = 3^6 * 5^2 * 13^2 * 809,
3223500525 = 3^2 * 5^2 * 7^2 * 292381,
3493517445 = 3^6 * 5^1 * 11^2 * 89^2, [Here the unitary prime is not the largest]
3775103325 = 3^2 * 5^2 * 7^2 * 342413.
Subsequence of A228058 provided this sequence does not contain any prime powers. - Antti Karttunen, Jun 17 2019
Sequence contains no prime powers up to 10^20. I believe any prime powers must be of the form (4k+1)^(4e+1), in which case I have verified this up to 10^50. - Charles R Greathouse IV, Dec 08 2021
MATHEMATICA
Select[Range[10^5, 10^8, 2], And[Mod[#2, 4] == 2, BitAnd[#1, #2 - #1] == #1] & @@ {#, DivisorSigma[1, #]} &] (* Michael De Vlieger, Jun 22 2019 *)
PROG
(PARI) for(n=1, oo, if((n%2)&&2==((t=sigma(n))%4)&&(bitand(n, t-n)==n), print1(n, ", ")));
CROSSREFS
Intersection of A191218 and A324897, also intersection of A191218 and A324649.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Apr 19 2019
STATUS
approved
Lexicographically earliest sequence such that for all i, j >= 1, a(i) = a(j) => f(i) = f(j), where f(n) = [A278222(n), A318458(n)] for all other numbers, except f(1) = 0.
+20
4
1, 2, 3, 2, 4, 5, 6, 2, 7, 8, 9, 10, 9, 11, 12, 2, 4, 13, 9, 14, 15, 16, 17, 10, 18, 19, 20, 21, 17, 22, 23, 2, 4, 7, 9, 24, 15, 16, 17, 25, 15, 26, 27, 28, 29, 30, 31, 10, 18, 32, 33, 34, 27, 35, 36, 37, 38, 39, 40, 41, 31, 42, 43, 2, 4, 44, 9, 7, 15, 45, 17, 46, 15, 47, 27, 48, 27, 49, 31, 50, 51, 51, 27, 52, 53, 54, 55, 56, 27, 57, 58, 59, 55, 60, 61, 10, 9, 48
OFFSET
1,2
COMMENTS
For all i, j:
a(i) = a(j) => A324532(i) = A324532(j).
FORMULA
For n >= 1, a(2^n) = 2.
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ Modified from code of M. F. Hasler
A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ This function from Charles R Greathouse IV, Aug 17 2011
A278222(n) = A046523(A005940(1+n));
A318458(n) = bitand(n, sigma(n)-n);
Aux324531(n) = if(1==n, 0, [A278222(n), A318458(n)]);
v324531 = rgs_transform(vector(up_to, n, Aux324531(n)));
A324531(n) = v324531[n];
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 05 2019
STATUS
approved
a(n) = n - A318458(n), where A318458(n) is bitwise-AND of n and the sum of proper divisors of n (sigma(n)-n).
+20
4
1, 2, 2, 4, 4, 0, 6, 8, 9, 2, 10, 12, 12, 4, 6, 16, 16, 2, 18, 0, 20, 16, 22, 24, 25, 10, 18, 0, 28, 20, 30, 32, 32, 34, 34, 0, 36, 32, 38, 8, 40, 8, 42, 4, 12, 36, 46, 48, 49, 16, 34, 16, 52, 52, 38, 56, 40, 26, 58, 16, 60, 28, 22, 64, 64, 0, 66, 68, 68, 4, 70, 0, 72, 66, 74, 12, 76, 4, 78, 16, 81, 82, 82, 80, 64, 80, 86, 0, 88
OFFSET
1,2
FORMULA
a(n) = n - A318458(n).
MATHEMATICA
Array[# - BitAnd[#, DivisorSigma[1, #] - #] &, 100] (* Paolo Xausa, Mar 12 2024 *)
PROG
(PARI)
A318458(n) = bitand(n, sigma(n)-n);
A324648(n) = (n-A318458(n));
(PARI) A324648(n) = (n-bitand(n, sigma(n)-n));
CROSSREFS
Cf. A001065, A004198, A318458, A324658, A324649 (positions of zeros).
KEYWORD
nonn,look
AUTHOR
Antti Karttunen, Mar 14 2019
STATUS
approved
Odd numbers k such that A318458(k) (bitwise-AND of k and sigma(k)-k) is equal to k.
+20
4
7425, 76545, 92565, 236925, 831105, 954765, 1401345, 2011905, 2048445, 2129985, 2253825, 2445345, 2621745, 2974725, 3283245, 3847725, 5709825, 6447105, 8422785, 8503425, 8945685, 10781505, 12488385, 13470345, 14322945, 15213825, 15340545, 19470465, 19502145, 20075265, 22749825, 25740225, 25756605, 26215245, 27009045
OFFSET
1,1
COMMENTS
If this sequence has no common terms with A324647, or no terms common with A324727, then there are no odd perfect numbers.
The first 16 terms factored:
7425 = 3^3 * 5^2 * 11,
76545 = 3^7 * 5 * 7,
92565 = 3^2 * 5 * 11^2 * 17,
236925 = 3^6 * 5^2 * 13,
831105 = 3^2 * 5 * 11 * 23 * 73,
954765 = 3^2 * 5 * 7^2 * 433,
1401345 = 3^2 * 5 * 11 * 19 * 149,
2011905 = 3^3 * 5 * 7 * 2129,
2048445 = 3^2 * 5 * 7^2 * 929,
2129985 = 3^2 * 5 * 11 * 13 * 331,
2253825 = 3^5 * 5^2 * 7 * 53,
2445345 = 3^2 * 5 * 7^2 * 1109,
2621745 = 3^2 * 5 * 7^2 * 29 * 41,
2974725 = 3^4 * 5^2 * 13 * 113,
3283245 = 3^2 * 5 * 7^2 * 1489,
3847725 = 3^2 * 5^2 * 7^2 * 349.
MATHEMATICA
Select[Range[1, 10^7, 2], BitAnd[#, DivisorSigma[1, #] - #] == # &] (* Michael De Vlieger, Jun 22 2019, after Vincenzo Librandi at A318458 *)
PROG
(PARI) isok(k) = (k%2) && (bitand(k, sigma(k)-k) == k); \\ Michel Marcus, Jul 18 2021
CROSSREFS
Subsequence of A324649.
Cf. A318458, A324647, A324898 (a subsequence).
KEYWORD
nonn
AUTHOR
Antti Karttunen, Apr 19 2019
STATUS
approved
Lexicographically earliest sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = [A000120(n), A318458(n)] for all other numbers, except f(1) = 0.
+20
3
1, 2, 3, 2, 3, 4, 5, 2, 6, 7, 5, 6, 5, 8, 9, 2, 3, 10, 5, 11, 5, 12, 13, 6, 14, 15, 9, 16, 13, 17, 18, 2, 3, 6, 5, 19, 5, 12, 13, 20, 5, 21, 13, 22, 23, 17, 18, 6, 14, 21, 24, 25, 13, 26, 27, 14, 24, 28, 18, 29, 18, 30, 31, 2, 3, 32, 5, 6, 5, 33, 13, 34, 5, 35, 13, 36, 13, 37, 18, 38, 14, 14, 13, 39, 40, 41, 18, 42, 13, 43, 27, 44, 18, 45, 46, 6, 5, 36, 23, 47, 13
OFFSET
1,2
FORMULA
For n >= 1, a(2^n) = 2.
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A318458(n) = bitand(n, sigma(n)-n);
Aux324532(n) = if(1==n, 0, [hammingweight(n), A318458(n)]);
v324532 = rgs_transform(vector(up_to, n, Aux324532(n)));
A324532(n) = v324532[n];
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 05 2019
STATUS
approved
Lexicographically earliest infinite sequence such that a(i) = a(j) => A318458(i) = A318458(j) and A336158(i) = A336158(j), for all i, j >= 1.
+20
3
1, 1, 2, 1, 2, 3, 2, 1, 4, 5, 2, 6, 2, 7, 8, 1, 2, 9, 2, 10, 11, 3, 2, 6, 4, 12, 13, 14, 2, 15, 2, 1, 11, 6, 11, 16, 2, 3, 11, 17, 2, 18, 2, 19, 20, 7, 2, 6, 4, 21, 22, 23, 2, 24, 22, 6, 22, 17, 2, 25, 2, 26, 27, 1, 11, 28, 2, 6, 11, 28, 2, 29, 2, 5, 30, 31, 11, 32, 2, 31, 33, 6, 2, 34, 35, 3, 11, 36, 2, 37, 22, 38, 11, 39, 40, 6, 2, 41, 20, 42, 2, 43, 2, 44, 45
OFFSET
1,3
COMMENTS
Restricted growth sequence transform of the ordered pair [A318458(n), A336158(n)].
For all i, j:
A324400(i) = A324400(j) => a(i) = a(j).
A324401(i) = A324401(j) => a(i) = a(j).
LINKS
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A000265(n) = (n>>valuation(n, 2));
A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
A318458(n) = bitand(n, sigma(n)-n);
Aux336157(n) = [A318458(n), A336158(n)];
v336157 = rgs_transform(vector(up_to, n, Aux336157(n)));
A336157(n) = v336157[n];
CROSSREFS
Cf. A324389, A324530, A324531, A324532 for other similar constructions (also similar by their scatter plots).
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jul 11 2020
STATUS
approved

Search completed in 0.014 seconds