[go: up one dir, main page]

login
Search: a292786 -id:a292786
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = n * Sum_{p|n} 1/p where p are primes dividing n.
+10
59
0, 1, 1, 2, 1, 5, 1, 4, 3, 7, 1, 10, 1, 9, 8, 8, 1, 15, 1, 14, 10, 13, 1, 20, 5, 15, 9, 18, 1, 31, 1, 16, 14, 19, 12, 30, 1, 21, 16, 28, 1, 41, 1, 26, 24, 25, 1, 40, 7, 35, 20, 30, 1, 45, 16, 36, 22, 31, 1, 62, 1, 33, 30, 32, 18, 61, 1, 38, 26, 59, 1, 60, 1, 39, 40, 42, 18, 71, 1, 56
OFFSET
1,4
COMMENTS
Coincides with arithmetic derivative on squarefree numbers: a(A005117(n)) = A068328(n) = A003415(A005117(n)). - Reinhard Zumkeller, Jul 20 2003, Clarified by Antti Karttunen, Nov 15 2019
a(n) = n-1 iff n = 1 or n is a primary pseudoperfect number A054377. - Jonathan Sondow, Apr 16 2014
a(1) = 0 by the standard convention for empty sums.
“Seva” on the MathOverflow link asks if the iterates of this sequence are all eventually 0. - Charles R Greathouse IV, Feb 15 2019
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..16384 (first 10000 terms from Franklin T. Adams-Watters)
FORMULA
G.f.: Sum(x^p(j)/(1-x^p(j))^2,j>=1), where p(j) is the j-th prime. - Vladeta Jovovic, Mar 29 2006
a(n) = A230593(n) - n. a(n) = A010051(n) (*) A000027(n), where operation (*) denotes Dirichlet convolution, that is, convolution of type: a(n) = Sum_(d|n) b(d) * c(n/d) = Sum_(d|n) A010051(d) * A000027(n/d). - Jaroslav Krizek, Nov 07 2013
a(A054377(n)) = A054377(n) - 1. - Jonathan Sondow, Apr 16 2014
Dirichlet g.f.: zeta(s - 1)*primezeta(s). - Geoffrey Critzer, Mar 17 2015
Sum_{k=1..n} a(k) ~ A085548 * n^2 / 2. - Vaclav Kotesovec, Feb 04 2019
From Antti Karttunen, Nov 15 2019: (Start)
a(n) = Sum_{d|n} A008683(n/d)*A323599(d).
a(n) = A003415(n) - A329039(n) = A230593(n) - n = A306369(n) - A000010(n).
a(n) = A276085(A329350(n)) = A048675(A329352(n)).
a(A276086(n)) = A329029(n), a(A328571(n)) = A329031(n).
(End)
a(n) = Sum_{d|n} A000010(d) * A001221(n/d). - Torlach Rush, Jan 21 2020
a(n) = Sum_{k=1..n} omega(gcd(n, k)). - Ilya Gutkovskiy, Feb 21 2020
EXAMPLE
a(12) = 10 because the prime divisors of 12 are 2 and 3 so we have: 12/2 + 12/3 = 6 + 4 = 10. - Geoffrey Critzer, Mar 17 2015
MAPLE
A069359 := n -> add(n/d, d = select(isprime, numtheory[divisors](n))):
seq(A069359(i), i = 1..20); # Peter Luschny, Jan 31 2012
# second Maple program:
a:= n-> n*add(1/i[1], i=ifactors(n)[2]):
seq(a(n), n=1..100); # Alois P. Heinz, Oct 23 2019
MATHEMATICA
f[list_, i_] := list[[i]]; nn = 100; a = Table[n, {n, 1, nn}]; b =
Table[If[PrimeQ[n], 1, 0], {n, 1, nn}]; Table[DirichletConvolve[f[a, n], f[b, n], n, m], {m, 1, nn}] (* Geoffrey Critzer, Mar 17 2015 *)
PROG
(Sage)
def A069359(n) :
D = filter(is_prime, divisors(n))
return add(n/d for d in D)
print([A069359(i) for i in (1..20)]) # Peter Luschny, Jan 31 2012
(PARI) a(n) = n*sumdiv(n, d, isprime(d)/d); \\ Michel Marcus, Mar 18 2015
(PARI) a(n) = my(ps=factor(n)[, 1]~); sum(k=1, #ps, n\ps[k]) \\ Franklin T. Adams-Watters, Apr 09 2015
(Magma) [0] cat [n*&+[1/p: p in PrimeDivisors(n)]:n in [2..80]]; // Marius A. Burtea, Jan 21 2020
(Python)
from sympy import primefactors
def A069359(n): return sum(n//p for p in primefactors(n)) # Chai Wah Wu, Feb 05 2022
CROSSREFS
Cf. A322068 (partial sums), A323599 (Inverse Möbius transform).
Sequences of the form n^k * Sum_{p|n, p prime} 1/p^k for k = 0..10: A001221 (k=0), this sequence (k=1), A322078 (k=2), A351242 (k=3), A351244 (k=4), A351245 (k=5), A351246 (k=6), A351247 (k=7), A351248 (k=8), A351249 (k=9), A351262 (k=10).
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Apr 15 2002
STATUS
approved
a(n) = (psi(n) - phi(n))/2.
+10
6
0, 1, 1, 2, 1, 5, 1, 4, 3, 7, 1, 10, 1, 9, 8, 8, 1, 15, 1, 14, 10, 13, 1, 20, 5, 15, 9, 18, 1, 32, 1, 16, 14, 19, 12, 30, 1, 21, 16, 28, 1, 42, 1, 26, 24, 25, 1, 40, 7, 35, 20, 30, 1, 45, 16, 36, 22, 31, 1, 64, 1, 33, 30, 32, 18, 62, 1, 38, 26, 60, 1, 60, 1, 39, 40, 42, 18, 72, 1, 56, 27, 43, 1, 84, 22, 45, 32, 52, 1, 96
OFFSET
1,4
LINKS
Marcin Mazur and Bogdan V. Petrenko, Generalizations of Arnold's version of Euler's theorem for matrices, Japanese Journal of Mathematics, 5:183-189, 2010.
FORMULA
a(n) = (A001615(n) - A000010(n))/2 = A292786(n)/2.
a(n) = A291784(n) - A000010(n).
a(n) = A318326(n) + A318442(n).
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = 9/(4*Pi^2) = 0.227972... . - Amiram Eldar, Dec 05 2023
MATHEMATICA
psi[n_] := n * Times @@ (1 + 1/FactorInteger[n][[;; , 1]]); psi[1] = 1; a[n_] := (psi[n] - EulerPhi[n])/2; Array[a, 100] (* Amiram Eldar, Dec 05 2023 *)
PROG
(PARI) A318320(n) = sumdiv(n, d, (-1==moebius(n/d))*d);
(PARI) A318320(n) = ((n*sumdivmult(n, d, issquarefree(d)/d))-eulerphi(n))/2;
CROSSREFS
Differs from A069359 for the first time at n=30, where a(30) = 32, while A069359(30) = 31.
KEYWORD
nonn,easy,look
AUTHOR
Antti Karttunen, Aug 26 2018
STATUS
approved
Numbers n such that psi(k) - phi(k) = 2*n has no solution.
+10
0
6, 51, 57, 65, 77, 87, 93, 95, 117, 119, 123, 145, 147, 155, 161, 171, 177, 185, 187, 189, 203, 205, 207, 209, 215, 217, 219, 221, 237, 245, 247, 249, 255, 261, 267, 275, 287, 291, 297, 299, 301, 303, 305, 321, 325, 327, 329, 335, 341, 345, 357, 363, 365, 371, 377, 387
OFFSET
1,1
COMMENTS
Inspired by a comment from Robert G. Wilson v.
All terms are composite.
Initial examples of forms of psi(k) - phi(k) where p, q, r, t are primes and a, b, c, d >= 1 as below:
If k = p^a, then psi(k) - phi(k) = 2*k/p.
If k = p^a*q^b, then psi(k) - phi(k) = 2*k*(p + q)/(p*q).
If k = p^a*q^b*r^c, then psi(k) - phi(k) = 2*k*(p*q + q*r + p*r + 1)/(p*q*r).
If k = p^a*q^b*r^c*t^d, then psi(k) - phi(k) = 2*k*(p*q*r + p*q*t + p*r*t + q*r*t + p + q + r + t)/(p*q*r*t).
EXAMPLE
6 is a term because psi(k) - phi(k) = 12 has no solution for any possible form of k.
MATHEMATICA
psi[n_] := If[n == 1, 1, n Times @@ (1 + 1/First /@ FactorInteger@ n)]; upto[n_] := Block[{d, T = 0 Range[n]}, Do[d = (psi[k] - EulerPhi[k])/2; If[d <= n, T[[d]] = 1], {k, 2, n^2}]; Flatten@ Position[T, 0]]; upto[387] (* Giovanni Resta, Sep 25 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Altug Alkan, Sep 24 2017
STATUS
approved

Search completed in 0.005 seconds