[go: up one dir, main page]

login
A329029
a(n) = A069359(A276086(n)), where A276086 converts the primorial base expansion of n into its prime product form and A069359(n) = n * Sum_{p|n} 1/p where p are primes dividing n.
8
0, 1, 1, 5, 3, 15, 1, 7, 8, 31, 24, 93, 5, 35, 40, 155, 120, 465, 25, 175, 200, 775, 600, 2325, 125, 875, 1000, 3875, 3000, 11625, 1, 9, 10, 41, 30, 123, 12, 59, 71, 247, 213, 741, 60, 295, 355, 1235, 1065, 3705, 300, 1475, 1775, 6175, 5325, 18525, 1500, 7375, 8875, 30875, 26625, 92625, 7, 63, 70, 287, 210, 861, 84, 413, 497, 1729
OFFSET
0,4
FORMULA
a(n) = A069359(A276086(n)).
PROG
(PARI) A329029(n) = { my(s=0, m=1, p=2, e); while(n, e = (n%p); if(e, m *= (p^e); s += (1/p)); n = n\p; p = nextprime(1+p)); (s*m); };
(PARI)
A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
A069359(n) = (n*sumdiv(n, d, isprime(d)/d));
CROSSREFS
Coincides with A327860 on the positions given by A276156.
Sequence in context: A213774 A167583 A351951 * A248983 A298975 A070375
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 07 2019
STATUS
approved